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Abstract: Given the increasing complexity of threats in smart cities, the changing environment and 

the weakness of traditional security systems, which in most cases fail to detect serious threats such 

as zero-day attacks, the need for alternative more active and more effective security methods keeps 

increasing. Such approaches are the adoption of intelligent solutions to prevent, detect and deal 

with threats or anomalies under the conditions and the operating parameters of the infrastructure 

in question. Intelligent systems are capable, of displaying logical, empirical, and non-human 

decision-making, since they are trained appropriately by historical data representative of the 

problem they are trying to solve. In most cases, it is either not possible or it is inappropriate to 

centrally store all smart cities data. Thus, we should perform real-time knowledge mining and we 

should obtain a subset of a data flow containing a small but recent percentage of observations. This 

fact raises serious objections to the accuracy and reliability of the employed intelligent system 

classifiers, who have been tame over time and they become incapable of detecting serious threats. 

This research paper introduces the development of an intelligent Threat Defense system, employing 

Blockchain Federated Learning, which seeks to fully upgrade the way passive intelligent systems 

operate, aiming at implementing an Advanced Adaptive Cooperative Learning (AACL) mechanism 

for smart cities networks. The AACL is based on the most advanced methods of computational 

intelligence, while ensuring privacy and anonymity for participants and stakeholders. The proposed 

framework combines Federated Learning for the distributed and continuously validated learning 

of the tracing algorithms. Learning is achieved through encrypted smart contracts within the 

blockchain technology, for unambiguous validation and control of the process. The aim of the 

proposed Framework is to intelligently classify smart cities networks traffic derived from Industrial 

IoT (IIoT) by Deep Content Inspection (DCI) methods, in order to identify anomalies that are usually 

due to Advanced Persistent Threat (APT) attacks. 
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1. Introduction  

A smart city is an urban development vision to integrate multiple information 

and communication technology solutions in a secure fashion to manage a city’s 

assets – the city’s assets include, but not limited to, local departments information 
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systems, schools, libraries, transportation systems, hospitals, power plants, water 

supply networks, waste management, law enforcement, and other community 

services [1]. The goal of building a smart city is to improve quality of life by using 

technology to improve the efficiency of services and meet residents’ needs [2], [3]. 

Information and communication technology allows city officials to interact directly 

with the community and the city infrastructure and to monitor what is happening 

in the city, how the city is evolving, and how to enable a better quality of life [4].  

Through the use of sensors integrated with real-time monitoring systems, data 

are collected from citizens and devices - then processed and analyzed. The 

information and knowledge gathered are keys to tackling inefficiency. Also 

information and communication technology is used to enhance quality, performance 

and interactivity of urban services, to reduce costs and resource consumption and to 

improve contact between citizens and government. Smart city applications are 

developed with the goal of improving the management of urban flows and allowing 

for real time responses to challenges.  

In a smart city, energy, water, transportation, public health [5] and safety, and 

other key services are managed in concert to support smooth operation of critical 

infrastructure while providing for a clean, economic and safe environment in which 

to live, work and play. Timely logistics information will be gathered and supplied 

to the public by all means available, but particularly through social media networks. 

Conservation, efficiency and safety will all be greatly enhanced. The energy 

infrastructure is arguably the single most important feature in any city. If 

unavailable for a significant enough period of time, all other functions will 

eventually cease [6].  

A smart grid alone does three things [7]–[9]. First, it modernizes power systems 

through self-healing designs, automation, remote monitoring and control, and 

establishment of microgrids. Second, it informs and educates consumers about their 

energy usage, costs and alternative options, to enable them to make decisions 

autonomously about how and when to use electricity and fuels. Third, it provides 

safe, secure and reliable integration of distributed and renewable energy resources. 

All these add up to an energy infrastructure that is more reliable, more sustainable 

and more resilient. Thus, a smart grid sits at the heart of the smart city, which cannot 

fully exist without it.  

Smart cities depend on a smart grid to ensure resilient delivery of energy to 

supply their many functions, present opportunities for conservation, improve 

efficiencies and, most importantly, enable coordination between urban officialdom, 

infrastructure operators, those responsible for public safety and the public. The 

smart city is all about how the city "organism" works together as an integrated whole 

and survives when put under extreme conditions. Energy, water, transportation, 

public health and safety, and other aspects of a smart city are managed in concert to 

support smooth operation of critical infrastructure while providing for a clean, 

economic and safe environment in which to live, work and play [10]. 
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In smart cities, information security plays a major role in protecting the higher 

levels of confidentiality, availability, and integrity as well as the stability that 

national services and organizations need to support sustainable and livable smart 

environments. The biggest security challenges for the smart city environments, 

which can be summarized as the following [1], [11], [12]: 

1. Large and Complex attack surface: The smarter the cities, the more systems and 

“systems of systems” they will incorporate, increasing the risk and impact of 

an attack, thus requiring better control and visibility. Furthermore, what 

adds to the smart city systems complexity is the integration between 

vendor’s solutions, especially during fast evolving technological 

transformations. 

2. Insufficient oversight and organization: Complex systems will then require 

stronger management and governance capabilities; in addition, keeping 

leadership fully knowledgeable of complex occurrences requires more 

resources and capabilities. 

At the core of smart city operation depends on control systems called 

Supervisory Control and Data Acquisition (SCADA) that monitor and control the 

physical infrastructure.  SCADA systems that tie together decentralized facilities 

such as power, oil, gas pipelines, water distribution and wastewater collection 

systems were designed to be open, robust, and easily operated and repaired, but not 

necessarily secure [9], [13], [14]. The move from proprietary technologies to more 

standardized and open solutions together with the increased number of connections 

between SCADA systems, office networks and the Internet has made them more 

vulnerable to types of network attacks that are relatively common in computer 

security.  

In particular, security researchers are concerned about [13], [15]: 

1. the lack of concern about security and authentication in the design, 

deployment and operation of some existing SCADA networks, 

2. the belief that SCADA systems have the benefit of security through obscurity 

through the use of specialized protocols and proprietary interfaces, 

3. the belief that SCADA networks are secure because they are physically 

secured, 

4. the belief that SCADA networks are secure because they are disconnected 

from the Internet. 

The security of SCADA systems is important because compromise or 

destruction of a smart city systems would impact multiple areas of society far 

removed from the original compromise. For example, a blackout caused by a 

compromised electrical SCADA system would cause financial losses to all the 

customers that received electricity from that source.  

There are many threat vectors to a modern SCADA system. One is the threat of 

unauthorized access to the control software, whether it be human access or changes 

induced intentionally or accidentally by virus infections and other software threats 
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residing on the control host machine. Another is the threat of packet access to the 

network segments hosting SCADA devices.  

In many cases, the control protocol lacks any form of cryptographic security, 

allowing an attacker to control a SCADA device by sending commands over a 

network. In many cases SCADA users have assumed that having a VPN offered 

sufficient protection, unaware that security can be trivially bypassed with physical 

access to SCADA-related network jacks and switches. Also, there are destructive 

cyber-attacks against SCADA systems as Advanced Persistent Threats (APT), were 

able to take over the PLCs controlling the centrifuges, reprogramming them in order 

to speed up the centrifuges, leading to the destruction of many and yet displaying a 

normal operating speed in order to trick the centrifuge operators and finally can not 

only shut things down but can alter their function and permanently damage 

industrial equipment. 

Industrial control vendors suggest approaching SCADA security like 

Information Security with a defense in depth strategy that leverages common IT 

practices. The reliable function of SCADA systems in our modern infrastructure may 

be crucial to public health and safety [13], [16], [17].  

2. Decentralized Ecosystem  

Industry 4.0, commonly referred to as the fourth industrial revolution, is 

concerned with the trend of automation and data exchange in industrial ecosystem 

including the smart cities automations [12], [18]. It includes technologies like 

artificial intelligence, cyber-physical systems, IoΤ/ΙΙοΤ, cloud and cognitive 

computing.  

The cyber-physical systems located inside modular structured smart factories 

monitor and supervise physical processes, create a virtual copy of the physical 

world, and take decentralized decisions. Through the IIoT, the cyber-physical 

systems communicate and collaborate in real time with each other and with people 

both internally and through organizational services which are offered and used by 

participants in the production chain. This vision enables the manufacturing sector 

to make tremendous breakthroughs, gain significant extroversion, and develop 

activities that were previously impossible.  

Cyber criminals can have access to the IIoT process with serious perhaps 

incalculable consequences, most stakeholders are demanding high-performance 

security solutions, to be able to cope with the dangers and to shield their 

infrastructures [19].  

Production facilities, industrial systems and smart city networks in general need 

a different kind of protection from company networks, as conventional security 

solutions, such as virus scanners or conventional firewalls, do not meet industry 

standards and requirements.  

The network systems that control the process and operation of smart cities have 

continuous access to the internet, to the IIoT that belong to them, and to the 

information and data of the company or organization they belong to. Such access, 
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digital communication and connectivity, improve the efficiency of their operation 

but at the same time, they pose significant challenges of safeguarding these 

infrastructures in terms of their digital identity and integrity [11].  

Internet interconnection and data exchange increase the risk of attacks, which 

may be aimed at stealing, manipulating and spying data or how to manipulate them. 

This can lead to the loss of sensitive company data, the sabotage of individual 

machines, or even the cessation of a whole production line. One very important fact 

that exacerbates the situation is that machines and devices in modern industrial 

facilities are not designed to be securely connected, making them particularly 

vulnerable to cybernetics. The growing number of such attacks in the production 

facilities confirms this fact.  

Smart city networks should be able to achieve its goals and it is particularly 

important to ensure procedures and to resolve cyber-security issues, in order to 

ensure the operational continuity and productivity of the systems related to that 

environment.  

IIoT security event monitoring and digital threat detection systems receive huge 

amounts of data per time unit from heterogeneous specialized equipment systems 

that are interconnected.  

Because in most cases it is not possible or inappropriate to centrally store all 

historical data, it is imperative to extract real-time knowledge over data flows that 

contain a small but recent percentage of observations of the overall set. In order to 

exploit these flows, and to achieve timely behavioral prediction and optimal 

decision-making in dynamic displacement and feedback environments, where the 

most up-to-date data is usually most important, it is necessary to process and 

analyze them using alternative, more active and more effective safety methods  

Algorithms that are employed to resolve data flow problems, should be 

dynamically adapted to new standards or data, or when the data itself is generated 

as a function of time. Specifically, and on the basis that the available data are 

staggered in a successive series by calculating the error in each iteration, the aim of 

these algorithms is to minimize the cumulative error for all iterations [20], [21].  

Intelligent real-time data flow analysis systems are able of displaying logical, 

empirical and human decision-making capabilities, when they are properly trained 

by representative historical datasets. Moreover, they are the most suitable to be used 

in industrial environments.  

However, even these intelligent algorithms are challenged and controlled by a 

variety of possible factors that are mainly related to the reliability and accuracy of 

their categorization. Some of the most significant problems encountered during 

knowledge mining from data flows, are related to the high speed at which 

information arrive and to the natural trend of data to evolve over time, resulting in 

classifiers' lability because of the constant information change (concept drift) [22], 

[23]. 

The solution proposed herein, in order to resolve the above problems, is the 

development of an intelligent active security system, for the classification of network 
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traffic derived from the IIoT. This can be achieved by using DCI methods and by 

performing anomaly detection. These potential anomalies are usually due to APTs 

attacks. The Federated Learning technique should be applied [24].  

Development of a model by using the centralized training learning approach, 

requires the gathering of training data in a machine or a data center.  

This central training approach is intrusive, since practically device users, should 

exchange their privacy or sensitive data by sending them to central entities for 

training.  

On the other hand, federated learning is a decentralized training approach that 

allows devices located in different geographic locations to benefit from the 

acquisition and use of a well-and-ever, upgraded, trained learning model. In 

addition, this learning approach, allows all personal data and personal information 

that may be contained in the device to be retained, as they do not have to send them 

to a central entity to provide training data [25]. 

In particular, the Federated Learning method, allows devices to download and 

operate a current, trained machine learning model, located in a central entity.  

They use it with the data available in their device, by improving learning from 

their data and then by sending it to the central entity, which summarizes the 

changes, creating a small focused update. The updated and improved version of the 

shared model, which is basically the average of user updates, is sent to users who 

constantly have access to a continuously upgraded model. There are various 

building blocks for which there should be trust and consensus among the parties 

involved in training of a machine learning model such as data acquisition, training, 

regularization and optimization [26]. 

For example, if an organization shares a set of data with a group of scientists, 

there is a silent relationship of trust between them. If it is violated, it can affect the 

result of the project. Similarly, in a more technical context, learning algorithms must 

undergo multiple training, regularization, and optimization cycles, in which teams 

focus on setting the model’s hyperparameters. Basically, there is no clear way for the 

parties to collaborate in a sure and secure way, as there is no historical record or a 

complete record of the way they should act, so that users and data scientists cannot 

get information that is likely to concern them.  

In the introduced model, we propose the use of smart contracts, within the 

function of blockchain, thus ensuring unambiguous validation and control of the 

processes among stakeholders [27], [28]. This model, seeks to fully upgrade the 

mode of operation of passive intelligent systems, aiming at the development of an 

advanced mechanism of adaptive collaborative learning. It offers fully personalized 

solutions and is based on the most advanced methods of computational intelligence, 

while ensuring privacy and anonymity for the participants [29]. 

This research paper seeks to understand the interactions between smart cities 

assets and cyber-attacks and proposes a novel computational intelligence cyber-

threat defense system for smart city assets. The proposed approach builds a model 

that correlates a specialized smart city asset such as a smart energy grid and an APT 
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cyber-attack. Using state-of-the-art methodologies analyzes big data from city 

networks, identify and defense these attack patterns.   

More specifically, this paper proposes an intelligent Threat Defense system 

employing Blockchained Federated Learning, implementing an AACL mechanism 

that ensuring privacy and anonymity for participants and stakeholders on smart city 

networks. The proposed framework intelligently manage and classify IIoT traffic in 

order to identify anomalies and to defend against sophisticated cyber-attacks. 

3. Proposed Framework  

The proposed methodology is related to a Federated Learning architectural 

modeling. It aims to the development of a high quality and precision central model, 

where training data remains distributed over several ΙΙοΤ devices, with possibly 

unreliable and relatively slow network connections. Correspondingly, the training 

of the model is realized by employing smart contracts within the blockchain 

technology. The model involves the development of an intelligent, multilevel 

industrial network analysis and protection mechanism, which allows the following:  

1. The recognition of protocols and applications in DCI traffic.  

2. The analysis of extracted data.  

3. The depiction of anomalies in industrial IIoT devices.  

4. Preemptive protection of IIoT from APTs attacks.  

Respectively, it will provide real-time information about the state of the network 

and it will allow early detection of problems that may arise from infected machines, 

incorrect settings, or cyber-attacks.  

In particular, the proposed architecture is based on four fundamental building 

blocks: 

1. Blockchain Server – The consensus mechanism used by Blockchain Server: 

a. Every instance only has one authority validating transactions. 

b. Instead of one single central ledger, each authority controls their own 

instance. Instances can connect to each other. 

c. Different transactions will be validated by different authorities 

depending on the assets being exchanged. 

d. Every asset issuer has full control on the transactions relevant to that 

asset. 

2. Public_Key_Server – to create public and private keys to ensure the integrity 

of various components of an intelligent model. 

3. Federated_Learning_Server – it runs in blockchain and controls the execution of 

the different parts of an intelligent distributed learning application. The 

specific server will contain a suitable application that will communicate with 

the Public_Key_Server, in order to create keys and to deliver the respective 

ones. It also communicates with the Miners, selecting the upgrades and 

distributing the updated model.  

4. Miners – It is an application hosted in individual devices. It detects possible 

upgrades of the intelligent model and it communicates regularly with the 
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Federated Learning_Server, by sending the local upgraded model and by 

receiving the corresponding generic model. 

5. Machine_Leraning_Server – It contains the machine learning algorithms that 

can be trained from user data. It also includes the original model which is 

downloaded by the users.  

These five servers allow the implementation of an innovative communication 

channel in which data scientists, security and networks’ engineers can collaborate in 

implementing cooperative learning security applications. Moreover, this 

architecture ensures the privacy and integrity of data and existing models without 

having to rely on a centralized training learning architecture.  

4. Application Scenario 

An ΙIoT_Sender, wishes to interact by sending a datastream with stream_ ID 1029 

in the ΙIoT_ Receiver. The Data Streams receive a whereas while the specific action of 

the shipment is monitored by the IIoT rule on whether that particular transaction 

can take place. 

The ΙΙοΤ rule activates the Smart_Contract ID (9009). The particular Smart 

Contract ID (9009), routes Stream IDs (6006) to a cloud service, where features 

extraction is performed, and then the trained Machine Learning classifier checks 

whether the DataStream is normal or abnormal. This specification results defined in 

the training process for the characterization of the network’s traffic and it is 

measured in RMSE. If the traffic is considered normal, then there is communication 

with the IIoT_Receiver, otherwise the communication is hidden and an alert is sent 

to further inspection. The following figure presents the communication process 

between the devices, based on the DCI Contract. 

The proposed scenario in pseudocode format is described in the following 

algorithm 1: 

Algorithm 1. The proposed approach 

#MachineAccount 

ΙIoT_thing; 

#MachineAddress 

FE80:0000:0000:0000:0202:B3FF:FE1E:8329; 

#MachineInternals 

Energy (GeV) = 1.320 | Lifetime (hours) = 9658.150 | Current (mA) = 4.210 

Last Refill = 23 May 22:11 | Mode = standby | Feedback Status = On 

#MachineStatus 

Publisher; Sender; 

#DataStream 

Size = 125 kb; TimeStamp = 201802305221100; 

#DataStreamID 

ID = 1029; 

# FeaturesOfTrafficFlow 

command_address;  

response_address;  

command_memory;  

response_memory;  

command_memory_count;  
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response_memory_count;  

comm_read_function;  

comm_write_fun;  

resp_read_fun;  

resp_write_fun;  

sub_function;  

command_length;  

resp_length;  

control_mode;  

control_scheme;  

pump;  

crc_rate;  

measurement;  

#Functions 

 function DataSender (MachineAccount, MachineAddress, MachineStatus); 

 function DataReceiver (MachineAccount, MachineAddress, MachineStatus); 

 function DataTransaction (DataStream, DataStreamID); 

 function DataFlow (TrafficFlow, TrafficFlowID); 

 function TransactionSession (Session, SessionID); 

 function FeaturesOfTrafficFlow; 

 function AnomalyDetection; 

#Loop 

 start 

 if   

  DataSender to DataReceiver a DataTransaction 

 then DataFlow process to FeaturesOfTrafficFlow 

           and FeaturesOfTrafficFlow to AnomalyDetection 

      else if 

 AnomalyDetection normal then TransactionSession 

 end  

 

Some applications that can take advantage of the proposed architecture are 

presented below.   

1. Machine to Machine Transactions. Can be involved in organizing the 

production process by automatically interacting with the machines and 

exchanging messages about the products' readiness to move to the next stage 

of production. 

2. Machine Maintenance. It will be able to perform autonomous scheduling of 

spare parts’ requests, rebooting of equipment, shutdowns to replace 

problematic or obsolete hardware, software upgrades, and maintenance 

works’ automation in general. All of the above will be easily and safely 

allowed. 

3. Traceability. This architecture is also suitable for the development of 

traceability applications, related to industrial products and supply chain. 

Specifically, within an intelligent industrial environment, production logs can 

be kept between consumers and producers so that it is known, for example, 

which factory and in particular which machines at the plant were used to 

manufacture a particular product.  
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4. Product Certification. This can eliminate the need for physical certificates that 

may be prone to falsification. 

5. Predictive Manufacturing. The proposed architecture ensures the integrity of 

provided services and the professional confidentiality of the parties involved. 

6. f. Reputation. It can contribute significantly, in the management of reputation, 

related to a variety of performance parameters such as delivery times, 

customer reviews and supplier ratings. 

5. Conclusions 

This research paper presented an innovative blockchained federated learning 

for threat defense framework, based on sophisticated computational intelligence 

methods [30]. The most important innovation of the proposed system is the 

strengthening of the blockchain network by deploying federating learning, which 

does not behave as a supporting framework, but as an active structural component 

of the smart city networks. It is a threat defense framework, which programmatically 

implements the bi-directional agreement, based on federated learning. Another very 

important innovation is the employment of a machine learning implementation of 

an anomaly detection system, solving a multidimensional and complex security 

problem related to the IIoT ecosystem.  

It would be important for the proposed framework to be expanded by 

employing methods of self-improvement and automatic redefinition of its 

parameters. In this way, the full automation of APT attacks detection, will become 

possible. 
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