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Abstract. Developing a rapid, but also reliable and efficient, method for classifying the seismic damage potential of 

buildings constructed in countries with regions of high seismicity is always at the forefront of modern scientific research. 

Such a technique would be essential for estimating the pre-seismic vulnerability of the buildings, so that the authorities will 

be able to develop earthquake safety plans for seismic rehabilitation of the highly earthquake-susceptible structures. In the 

last decades, several researchers have proposed such procedures, some of which were adopted by seismic code guidelines. 

These procedures usually utilize methods based either on simple calculations or on the application of statistics theory. 

Recently, the increase of the computers' power has led to the development of modern statistical methods based on the 

adoption of Machine Learning algorithms. These methods have been shown to be useful for predicting seismic 

performance and classifying structural damage level by means of extracting patterns from data collected via various 

sources. The present paper attempts to compare and evaluate the capability of various Machine Learning methods to 

adequately classify the seismic damage potential of R/C buildings. A large training dataset is used for the implementation 

of the classification algorithms. To this end, 90 3D R/C buildings with three different masonry infills' distributions are 

analysed utilizing Nonlinear Time History Analysis method for 65 real seismic records. The level of the seismic damage is 

expressed in terms of the Maximum Interstory Drift Ratio. A large number of Machine Learning algorithms is utilized in 

order to estimate the buildings' damage response. The most significant conclusion which is extracted is that the Machine 

Learning methods that are mathematically well-established and their operations that are clearly interpretable step by step 

can be used to solve some of the most sophisticated real-world problems in consideration with high accuracy. 
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1. Introduction 
A large number of existing buildings were constructed in countries with regions of high seismicity. These 

structures were designed using older seismic codes that did not incorporate the most recent earthquake-resistant 

provisions, thus leading to high seismic vulnerability under earthquake excitations. For these buildings it is 

especially crucial to develop a rapid, but also reliable and efficient, method for classifying the seismic damage 

potential and for prioritizing the buildings with high seismic vulnerability, so that the authorities will be able to 

develop appropriate earthquake safety plans for seismic rehabilitation. Since now, several researchers have proposed 

such procedures, some of which were adopted by seismic code guidelines (e.g., see [1-8]). The most of these codes 

utilize simplified procedures in order to assess the seismic response and the structural damage level, based on certain 

input parameters such as structural configuration and seismic motion intensity measures. Additionally, to these 

methods, a number of researchers have developed techniques for the rapid estimation of the buildings' seismic 
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vulnerability based on the application of statistical theory, e.g., seismic fragility curves (e.g. [9-15]). These 

techniques are characterized by certain shortcomings (small number of input structural and seismic parameters, linear 

relationship between inputs and outputs, simple formulae for the estimation of the damage level based on the input 

variables), which make their use rather limited and, in many cases, not effective, as they are not able to capture the 

full complexity of the relationship between damage and input parameters. In order to overcome the abovementioned 

limitations, in the last decades, modern statistical methods based on the adoption of Machine Learning (ML) 

algorithms were developed (e.g. [16-19]). The up-to-date research on these methods has shown that they can provide 

a fast, reliable, and computationally easy way for classify the buildings' the seismic damage potential and that they 

can successfully identify structural performance under seismic motions by extracting patterns from data collected via 

various sources. Machine learning is one of the most important and widespread fields of artificial intelligence that 

includes those computational methods of studying and constructing algorithms which can learn from appropriate 

datasets. Their success is based on the thorough processing of the data that record the behavior of a system, so that 

by detecting the appropriate patterns valuable information can be extracted. Based on this experience the ML 

algorithms are able to make accurate future predictions. The concept of experience refers to the hidden knowledge 

contained in the data collected from the field and related to the type of damage suffered by the buildings under 

investigation. In recent years it has been proven that ML algorithms have the ability to be successfully applied in 

many areas of modeling engineering problems, giving a serious breakthrough to modern earthquake engineering.  

More specifically, several research studies have found that ML methods, mainly Artificial Neural Networks 

(ANNs), can effectively assess the seismic response of complex structures. A thorough literature review of the most 

commonly used and recently proposed ML methods for the buildings' seismic damage assessment has been made by 

Harirchian et. al [20], by Xie et al [21] and Sun et al [22]. Next, a brief review of some of the most significant 

relevant researches is given. Rafiq et al [23] adopted several different types of ANNs (Multi-layer Perceptron, Radial 

Basis Networks and normalized Radial basis Networks) in order to solve engineering problems. Aoki et al. [24] tried 

to assess the seismic vulnerability of chemical industrial plants with different topologies with the aid of probabilistic 

ANNs. In another research study, Lautour and Omenzetter [25] investigated 2D reinforced concrete frames that 

varied in topology, stiffness, strength and damping and were subjected to a suite of ground motions. They established 

the ability of the ANNs to reliably estimate the earthquake-induced damage level of these structures. Tesfamariam 

and Liu [26] studied eight different statistical damage classification techniques in order to estimate the reported 

seismic induced damage and proved the feasibility and effectiveness of the selected statistical approaches to classify 

the damage of R/C buildings. Similarly, Arslan [27] created a dataset for the training of ANNs by means of 

incremental static pushover analyses in order to estimate the ANNs' ability to predict the seismic damage level of 

medium and high-rise R/C buildings. Kia and Sensoy [28] used a combination of ANNs with SVM in order to 

classify the damage of R/C slab-column frames. Kostinakis and Morfidis carried out a number of research studies 

[30-34] in order to assess the efficiency of ANNs regarding the classification of R/C buildings' seismic damage. The 

same authors investigated also the number and the combination of the input parameters through which an optimum 

prediction for the damage state of R/C buildings can be achieved, the influence of the parameters which are used for 

the configuration of the networks' training on the efficiency of their predictions, as well as the impact of the presence 

of masonry infills on the results. More recently, Zhang et al. [35] used predictive models including classification and 

regression tree and Random Forests in order to probabilistically identify the structural safety state of an earthquake-

damaged building. The same research team, in another research work [36], adopted several ML techniques for the 

adequate estimation of the residual structural capacity of damaged tall buildings. A different approach was given by 

Harirchian E. and Lahmer T [37], who developed a novel method based on type-2 fuzzy for earthquake vulnerability 

assessment of buildings via Rapid Visual Screening. Mangalathu et. al. [38], using data from the 2014 South Napa 

earthquake, examined the ability of ML methods, such as discriminant analysis, k-nearest neighbors, decision trees, 

and random forests, to rapidly estimate seismic building damage. The same research team conducted also a number 

of works [39-42] in an attempt to thoroughly investigate the applicability of a series of ML techniques to predict the 

potential of structures for earthquake-induced damage. Similar scientific investigation was conducted by Harirchian 

and Lahmer and their research team [43-47]. The results of the most research works established the capability of ML 

methods in the successful seismic damage classification of structures. However, there is a rather limited number of 

researches that used a large number of ML methods, structures and seismic motions in order to comparatively 

evaluate the ML techniques' efficiency in estimating the seismic damage response with adequate reliability.  

In an attempt to further investigate the feasibility of adopting Machine Learning methods for the estimation of the 

earthquake-induced damage potential, the present paper attempts a comparative evaluation of a large number of 

Machine Learning algorithms for the reliable classification of R/C buildings' potential for seismic damage. For this 

aim, a training dataset consisting of 30 3D R/C buildings with different structural parameters was chosen. The 

buildings were designed based on the provisions of EC2 [48] and EC8 [49]. For each one of these buildings three 



different configurations as regards their masonry infills were considered (without masonry infills, with masonry 

infills in all stories and with masonry infills in all stories except for the ground story), leading to three different data 

subsets with 30 buildings each. Then, the buildings were analysed my means of the Nonlinear Time History 

Analyses method (NTHA) for 65 appropriately chosen real earthquake records. Both seismic and structural 

parameters widely used in the literature were selected as inputs in the process of Machine Learning methods. The 

quantification of the buildings' damage level was done by means of the well-documented Maximum Interstory Drift 

Ratio (MIDR). The methodology of the proposed assessment/information system uses and extends the most 

technologically advanced methods of forecasting, analysis and modeling of seismic engineering, as it extracts the 

hidden knowledge found in digital data, in order to add intelligence to the best decision support methods. At the 

same time, it gives the stimulus for the utilization of intelligent methods and their penetration in the development 

sector, for huge innovative leaps and development of activities that were previously impossible. 

 

2. Dataset generation 
A large training dataset consisting of buildings with different structural characteristics was used to generate the 

database for the training and testing of the ML models. The structures have characteristics that are common to 

buildings designed and built on the basis of modern seismic codes and according to the construction practice in most 

european countries with regions of high seismicity. In particular, 30 R/C buildings with structural systems consisting 

of members in two perpendicular directions (axes x and y) were selected. The buildings are rectangular in plan and 

regular in elevation and in plan according to the criteria set by EC8 [49]. The structures differ in the total height Htot 

(Htot = (stories' number) x (stories’ height: 3.2m)), the value of structural eccentricity ecc_tot (i.e., the distance between 

the mass center and the stiffness center of stories) and the ratio of the base shear received by the walls along two 

horizontal orthogonal directions (axes x and y): Vw1 and Vw2.  A detailed description of the investigated buildings 

can be found in [31]. The influence of the masonry infill walls, the placement of which along the height of the 

buildings is part of the traditional building practice, on the structures' seismic response and damage was considered 

taking into account for each one of the 30 structures three different assumptions about their distribution. More 

specifically, three different training subsets were generated: (a) subset denoted as ROW_FORM_BARE consisting of 

the 30 buildings without masonry infills (bare structures), (b) subset denoted as ROW_FORM_FULL-MASONRY 

consisting of the 30 buildings with masonry infills uniformly distributed along the height (infilled structures) and (c) 

subset denoted as ROW_FORM_PILOTIS consisting of the 30 buildings with the first story bare and the upper 

stories infilled (structures with pilotis). Consequently, the total number of buildings studied herein is 30 different 

structural systems x 3 different distributions of masonry infills = 90. The three subsets of the buildings were trained 

separately by the same Machine Learning methods, in order to draw conclusions about the possible differences in the 

predictive ability of the ML techniques, resulting from the influence of the infill walls on the seismic response of the 

buildings. The 30 selected bare buildings (no infill walls) were modeled, analyzed and designed based on the 

provisions of EC2 and EC8. After the elastic modeling and design of the bare buildings, the three subsets mentioned 

above (bare, infilled, buildings with pilotis) were created and their nonlinear behavior was simulated, in order to 

analyze them by means of NTHA. Moreover, the masonry infills were modeled as single equivalent diagonal struts 

with stress-strain diagrams according to the model proposed by Crisafulli [50]. A detailed description and 

documentation of the design and modeling process of the investigated buildings can be found in [31]. 

A suite of 65 pairs of horizontal bidirectional earthquake records taken from the PEER [51] and the European 

Strong-Motion database [52] was chosen in such a way as to cover a large variety of conditions regarding tectonic 

environment, modified Mercalli intensity and closest distance to fault rapture, thus representing a wide range of 

intensities and frequency content. A detailed description and documentation of the selected earthquake records can 

be found in [31]. 
The 90 buildings (three subsets of 30 buildings each) were subjected to each one of the 65 earthquake ground 

motions, for which NTHA was conducted with the aid of Ruaumoko software [53]. As a consequence, a total of 

5850 NTHA (90 buildings x 65 earthquake records) were conducted herein. For each one of the analyses, the 

estimation of the seismic damage was determined using the Maximum Interstory Drift Ratio (MIDR), which 

corresponds to the maximum story's drift among the perimeter frames. A detailed description and documentation of 

the MIDR can be found in [31]. The MIDR is extensively adopted as an reliable indicator of structural and 

nonstructural global damage of R/C buildings (e.g. [54-55]) and has been used by many researchers for the 

assessment of the building' inelastic response. The values of MIDR have been classified by many researchers. 

Herein, the classification given by Masi et al. [56] (Table 1) has been adopted. Note that the number of the damage 

classes (three) was also selected in order to be compatible with the commonly used rationale of seismic damage 

classification in slight (green), moderate (yellow) and heavy (red) damage states which are utilized in case of the 

rapid seismic assessment of buildings after strong events. 



  

 

 
Table 1 Relation between MIDR and damage state. 

MIDR (%) 
<0.50 

Class 0 

0.50-1.00 

Class 1 

>1.00 

Class 2 

Degree of damage 

Slight  

(No damages or 

repairable slight damages) 

Moderate 

(Significant but 

repairable damages) 

Heavy  

(Non-repairable 

damages) 

 

3. Inputs and Outputs 
For real problem modeling situations such as the one under consideration, the input models come from the same 

boundary distribution or follow a common cluster structure. Thus, the classified data enable a learning process, 

providing useful information for exploring the data structure of the overall set and finding patterns capable of 

identifying the problem, thus creating an intelligent classification framework. The classification concerns the 

classification of each sample in one of the predefined classes after successful training. The training of a model of 

machine learning with the method of classification is called the process in which the function 𝑓: 𝑅𝑁 → 𝑇 is 

calculated, where T is a set of labels denoting the class. In this problem, the basic evaluation criterion was considered 

to be the error for a wrong prediction, which depends on the concept of the success of including a sample in the 

correct class. 

For the purposes of the study, both structural and seismic parameters were chosen as input features in the process 

of the ML methods. More specifically, the following structural parameters, that are considered crucial for the 

vulnerability assessment of R/C buildings, were selected: the total height of buildings Htot, the ratios of the base shear 

that is received by R/C walls (if they exist) along two horizontal orthogonal directions x and y (ratio nvx and ratio nvy) 

and the structural eccentricity e0. Regarding the seismic parameters, the 14 seismic parameters presented in Table 2 

were chosen (e.g. [57-58]). Regarding the output feature, the abovementioned MIDR was chosen, as a reliable 

damage measure that can adequately capture the damage level of the R/C buildings. 

 
Table 2 Examined ground motion parameters 

Ground Motion Parameter Calculation procedure Category 

Peak Ground Acceleration: PGA max|a(t)| 

 

Seismic parameters determined from 

the time histories of the records. 

Peak Ground Velocity: PGV max|v(t)| 

Peak Ground Displacement: PGD max|d(t)| 

Arias Intensity: Ia ( ) ( ) tott 2

a
0

I = π 2g a t dt   

Specific Energy Density: SED ( ) tott 2

0
SED = v t dt  

Cumulative Absolute Velocity: CAV ( )tott

0
CAV = a t dt  

Acceleration Spectrum Intensity: ASI ( )
0.5

a
0.1

ASI = S ξ = 0.05,T dT  

Seismic parameters determined from 

the response spectra of the records. 
Housner Intensity: HI ( )

2.5

0.1
HI = PSV ξ = 0.05,T dT  

Effective Peak Acceleration: EPA ( ) ( ) 
0.5

a
0.1

EPA = 1 2.5 S ξ = 0.05,T  

Vmax/Amax (PGV/ PGA) max|v(t)|/max|a(t)| 
Seismic parameters accounting for the 

earthquake's frequency content. Predominant Period: PP ( )a
PP = Τ maxS ξ = 0.05,T  

 

Time of Uniform Duration: TUD 
Special algorithm  

(e.g. SeismoSoft 2015) 
Seismic parameters based on the 

earthquake's duration. 
Time of Bracketed Duration: TBD 

Time of Significant Duration: TSD 

 

Where, a(t), v(t) and d(t) are the acceleration, velocity and displacement time history respectively, Sa is the acceleration 

spectrum,  



PSV is the pseudovelocity spectrum, ξ is the damping ratio, Time of Uniform Duration is the total time during which the ground 

acceleration is larger than a given threshold value (usually 5% of PGA), Time of Bracketed Duration is the total time elapsed 

between the first and the last excursions of a specified level of acceleration (usually 5% of PGA), Time of Significant Duration is 

the interval of time over which a proportion of the total Arias Intensity is accumulated (usually the interval between the 5% and 

95% thresholds). 

 

4.  Preprocessing of Data 

The preprocessing of the data refers to the preliminary checks and work carried out on the abovementioned dataset 

before the use of the ML algorithms, in order to determine if the initial data suffer from various types of problems 

and if so, then to select the appropriate procedure to deal with them. This process is particularly important because, 

in case that the quality of the data used is not guaranteed, the performance of the ML algorithms will not be 

satisfactory or will produce biased or untrue results. Finally, it should be noted that there are a number of techniques 

which can be used in the preprocessing procedures and that the choice of the best strategy depends on the nature of 

the examined problem and on the corresponding available data used. In detail, the data pre-processing procedures 

that were applied to the present dataset include the following checks: 

 

4.1 Missing Values 

A Missing Values check was performed and it was found that there is no unavailable information that could 

mislead the algorithms and produce untrue results. 

 

4.2 Outliers 

An extreme value is defined as a point that is very far from the mean value of the corresponding random variable 

representing a feature. Samples with feature values very different from the mean value produce significant errors, 

especially if they are the result of noise during the measurement process, something which has disastrous results for 

the training process. Distance is measured relative to a threshold, which is usually a multiple of the standard 

deviation. For a random variable following a normal distribution, a distance that equals twice the standard deviation 

covers 95% of the points and a distance which equals three times the standard deviation covers 99% of the points. If 

the number of extreme values is small, then either the values remain and are appropriately modified or these samples 

are simply discarded, which is the most popular tactic. 

One of the most popular methods for finding extreme values is the Interquartile Range (IQR) technique. IQR is the 

difference between the 3rd (Q3) and the 1st (Q1) quadrant, namely IQR = Q3 – Q1. Quadrants divide the data into 4 

equal parts (quarters), with the intra-quadratic range comprising an intermediate 50% of observations. The remaining 

50% is outside this range, with the 25% of the observations being smaller than Q1 and the remaining 25% being 

larger than Q3. A depiction of the IQR method is presented in the following Figure 1. 



 
Fig 1. Interquartile Range 

 

It should be emphasized that the extreme values in the case of the problem of seismic damage that is considered 

herein are important and consist the question of the problem, since, based on them, important decision-making 

mechanisms are activated (e.g., further detailed seismic evaluation of the building etc.), so it was considered 

appropriate to seek them, but not to isolate - remove them from the datasets. This decision was considered essential 

in order to create objective training samples, which will be able to generalize and to better respond to new data, as 

well as to be able to predict corresponding damage for future periods (forecasting). 

 

4.3 Νormalization 

Normalization is a process of transforming data, in which numeric values are replaced by corresponding ones, but 

which are in a certain range of values. This process is usually performed in order to address problems related to the 

operation or performance of the algorithms. For example, some algorithms perform better when the input values lie 

in the range [0,1], while in case of algorithms that calculate the distances among the observations, the normalization 

of values is required in order to deal with the problem that the variables with large values are those that mostly 

determine the distance of the observations, while small-value variables have very little effect on the distance and, 

consequently, play no role in calculating the result. In the present research study, the normalization was done with 

the aid of the method Max-Min. According to this method, all numerical values match with values that fluctuate 

within a predetermined range based on a linear transformation. Considering a variable A, with maxA and minA being 

the largest and smallest values respectively, we can match all the values with corresponding ones that fluctuate 

within a range with a lower limit of new_minA and an upper limit of new_maxA according to the relation 1: 

 

𝑥′ =
𝑥 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴

(𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 (1) 

 

where x is the value of the variable A and x΄ is the new value. 

This method has the advantage that the user predefines the value range, setting new_minA and new_maxA, while 

maintaining the ratio between the values that existed in the original data. On the other hand, the normalization of 

Max-Min is not appropriate in cases where the data contain extreme values, as they gather the vast majority of values 

in a minimal part of the value range and use the rest of the part for exceptions. 

 

4.4 Feature Reduction 



In most cases a set of data can contain too many features, which may be related to each other, provide irrelevant 

information to the specific problem or produce noise, something which reduces the efficiency of the algorithm used. 

Two depictions of the correlation matrix of the dataset used (regression depiction in left and heat map depiction in 

right) are presented in the following Fig. 2. 

 

  

Fig 2. Correlation Matrix. Regression depiction (left) and heat map depiction (right)  

 

Also, if the vector space of features has many dimensions (i.e., many features), the volume of this space increases 

very fast, so the data for the problem will be sparse, causing problems for the methods that try to achieve statistical 

significance. The amount of data needed in order to be considered dense increases exponentially in relation to the 

dimension of the feature space. This phenomenon is also known as the "curse of dimensionality". It should also be 

noted that a large number of features increases the number of parameters of the learning system, and, therefore, its 

complexity, without this meaning that it will have a correspondingly better performance. Because of these 

observations, the number of features should be kept as small as possible in order to achieve high system 

performance. 

The solution to these problems is provided with the aid of techniques of dimensional reducing, which offer an 

efficient solution to managing multidimensional data, as they seek for a low-dimensional structure in 

multidimensional data. These techniques are considered necessary pre-processing procedures in such cases, as the 

distances between the data in the reduced space are calculated faster, the size of the dataset is reduced, the data 

structure which remains hidden in the original multidimensional space is revealed and the efficiency of ML 

algorithms is significantly improved. The most well-known linear dimensional reduction technique is Principal 

Component Analysis (PCA). 

This method tries to calculate the axes in which the maximum data scatter is observed. For example, for the data 

{𝑋1, 𝑋2, … , 𝑋𝑛, } ∈ 𝑅𝐷 , the covariance table 𝑆 = 𝑋 ∙ 𝑋𝑇is calculated, then their average value μ is calculated, the 

eigenvalues Ιi and the eigenvectors ei are calculated through of the process of self-analysis of S, 𝛪𝑖 ∙ 𝑒𝑖 = 𝑆 ∙ 𝑒𝑖, and, 

finally, the d largest eigenvectors are selected and based on them the new variables are calculated by the equation 2: 

𝑌𝑖 = [𝑒1, 𝑒2, … , 𝑒𝑑]𝑇 × (𝑋𝑖 − 𝜇) (2) 

Subsequently, a PCA test was performed for the dataset considered in the present study, in order to detect data 

covariance and to apply, if necessary, a feature reduction. As can be seen from the scree plot in Fig. 3, the principal 

components retain less than 60% of the statistical data from the original data, so no feature reduction is required. 



 
Fig. 3. Principle Component Analysis 

 

4.5 Feature Selection 

This is the process of the optimal selection of a subset of existing features without transformation, in order to retain 

the most important of them reducing this way their number and at the same time retaining as much useful 

information as possible. This step is crucial because if features with low separating ability are selected, the resulting 

learning system will not have satisfactory performance, while if features that provide useful information are selected, 

the system that will be designed will be simple and efficient. 

One of the strategies that can be followed is to examine the characteristics one by one through a measure of class 

reparability and to reject those that have a low separating ability. The aim is to select these characteristics that lead to 

large distances between the groups of samples to and small variation among the same group. This means that the 

characteristics should get distant values for different classes and close values for the same class, a strategy known as 

filtering. One of the most popular filtering methods is Forward Selection, which starts with an empty set of selected 

features. Then, this method selects the most important of the other features, subtracts it from the original set and adds 

it to the set of selected features. Finally, from the remaining features, the most important one is selected and it is 

added to the set of selected features. The process is repeated until an output condition is satisfied. 

Also, another approach to feature selection is achieved by examining the various combinations of features available 

and controlling those combinations that lead to higher performance, regardless of the quality of the individual 

features, an approach which is called wrapping. These methods, in order to select the important features, use the 

same algorithm that will be applied to the final ML process. In other words, these are not independent methods the 

results of which can be separately dealt with, but methods that differ in terms of the learning algorithm and of the 

solution search technique. 

In the present research work, taking into account the inability of classical correlation analysis methods to detect 

nonlinear correlations such as sinus wave, quadratic curve, etc., the Predictive Power Score (PPS) technique was 

chosen to summarize the most important features between available features. PPS can work with nonlinear 

relationships, but also with asymmetric relationships, explaining that variable A informs variable B more than 

variable B informs variable A. Technically, the score is a measurement in space [0, 1] of the success of a model in 

predicting a variable target with the aid of an off-sample variable prediction, something which practically means that 

this method can increase the efficiency of finding hidden patterns in the data and selecting appropriate prediction 

variables. The final process of capturing the predictive power of the individual characteristics was done with the PPS 

technique, where for the calculation of PPS in numerical variables the metric of Mean Absolute Error (MAE) was 

used, which is the measure of quantification of error between estimation or prediction and the observed values. MAE 

is given by the equation 3: 



𝑀𝐴𝐸 =
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖| =

1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

 

 

(3) 

where 𝑓𝑖 is the estimated value and 𝑦𝑖  the true one. The average of the absolute value of the ratio between these 

values is defined as the absolute error of their relation  |𝑒𝑖| = |𝑓𝑖 − 𝑦𝑖|. The following Figs 4, 5 and 6 illustrate the 

predictive power of the features used in the present investigation: 

 

 
Fig 4. Feature Importance plot for Row_Form_Bare dataset 

 

 



 
Fig 5. Feature Importance plot for Row_Form_Full-Masonry dataset 

 

 
Fig 6. Feature Importance plot for Row_Form_Pilotis dataset 

 

5. Methodology 

In order to carry out a thorough investigation of the ML algorithms' ability to model the given problem based on 

the existing data, an extensive comparison of the most well-known algorithms was made. This comparison includes 



metrics for evaluating the performance of each algorithm, its execution time, generalization error, as well as the 

inherent behavior of the algorithm, in order to gain a deeper understanding of its theoretical basis. 

 

5.1 Presentation of used machine learning algorithms 

In order to identify the most effective algorithm that is capable to predict the R/C buildings' seismic damage with 

high accuracy, an extensive comparison with the most widely used supervised ML models was made. A 

comprehensive review of the comparison models is summarized as follows: 

1. Support Vector Machines (SVMs): SVM is a supervised machine learning algorithm that can be used 

for both classification and regression problems. In the SVM algorithm, each data item is a point in n-

dimensional space with the value of each feature being the value of a particular coordinate. The 

classification is achieved by finding the hyper-plane that differentiates the two classes very well [59]. 

2. Random Forest Classifier: A Random Forest is a meta-learner that builds a number of classifying 

decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy 

and to control over-fitting [60]. 

3. CatBoost Classifier: CatBoost is an algorithm based on gradient boosted decision trees. Gradient 

boosting is a machine learning technique for regression and classification problems, which produces a 

prediction model in the form of an ensemble of weak prediction models, typically decision trees [61]. 

4. Light Gradient Boosting Machine: Light Gradient Boosting Machine a gradient boosting framework 

based on decision trees to increases the efficiency of the model and reduces memory usage [62]. 

5. Extreme Gradient Boosting: This method produces an ensemble prediction model by a set of weak 

decision trees prediction models. It builds the model smoothly, allowing at the same time the optimization 

of an arbitrarily differentiable loss function [63]. 

6. Extra Trees Classifier: Extra Trees is an information-based learning methodology. Specifically, it is an 

ensemble machine learning algorithm that combines the predictions from many decision trees [64]. 

7. Decision Tree Classifier: A decision tree is a tree-based model including chance event outcomes and 

resource costs, in order to displays conditional control statements. Each node represents an attribute, each 

branch represents the outcome of an attribute test and each leaf represents the decision taken after 

computing all attributes. The paths from the root to leaf represent the regression process [65]. 

8. Gaussian Process Classifier: The Gaussian process is a stochastic process (a collection of random 

variables indexed by time or space), such that every finite collection of those random variables has a 

multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. 

Gaussian Process classifier is a generalization of the Gaussian probability distribution and can be used as 

the basis for sophisticated non-parametric machine learning algorithms for classification and regression 

[66]. 

9. k-Neighbors Classifier: k-Nearest Neighbors is a similarity-based learning algorithm, according to 

which the target is predicted by local interpolation of the targets associated with the nearest neighbors in the 

training set [67]. 

10. Linear Discriminant Analysis (LDA):  LDA is a generalization of Fisher's linear discriminant, a 

method used in statistics and other fields to find a linear combination of features that characterizes or 

separates two or more classes of objects or events. The resulting combination may be used as a linear 

classifier, or more commonly, for dimensionality reduction before later classification [68]. 

11. Ridge Classifier: Ridge Regression is a regression method that does not provide confidence limits. It uses 

regularization L2-norm in order to solve a high covariance problem, even if the errors come from an 

abnormal distribution [69]. 

12. Quadratic Discriminant Analysis (QDA): QDA is a generative model that assumes that each class 

follows a Gaussian distribution. The class-specific prior is simply the proportion of data points that belong 

to the class. The class-specific mean vector is the average of the input variables that belongs to the class 

[70]. 

13. MLP Classifier: Multi-layer Perceptron (MLP) is a supervised learning algorithm that trains using 

Backpropagation. It can learn a non-linear function approximator for either classification or regression. It is 

different from logistic regression in that between the input and the output layer there can be one or more 

non-linear layers, called hidden layers [71]. 



14. Naive Bayes: Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the “naive” assumption of conditional independence between every pair of features given the 

value of the class variable [72]. 

15. AdaBoost Classifier: It is a meta-learner that begins by fitting a regressor on the original dataset and 

then fits additional copies of the regressor on the same dataset where the weights of instances are adjusted 

according to the error of the current prediction [73].  

16. Logistic Classifier: The logistic classifier model is a classification model in which the conditional 

probability of one of the two possible realizations of the output variable is assumed to be equal to a linear 

combination of the input variables, transformed by the logistic function [74]. 

 

5.2 Data Sampling 

In order to have an objective evaluation process of ML models, both as a way of self-evaluation and for their 

comparison with the corresponding alternative models, there are various statistical techniques of distribution and 

handling of datasets, which are also called validation techniques. K-Fold is the most common cross-validation 

method, according to which the dataset is randomly divided into k subsets, each of relatively equal population. Of the 

aforementioned k subsets, one is used as a test subset, while the all-theoretic compound of the remaining k-1 subsets 

is used as a training subset. A total of k computing cycles are performed, so that, in turn, each of the k subsets is used 

as a test subset. The advantage of this evaluation method is that each data is used for training and definitely once for 

examination. The parameter k can attain any positive integer value, while the most popular choice in practical 

applications is the case where k=10, which is called 10-Fold Cross Validation. A depiction of the 10-Fold Cross 

Validation method is presented in the following Fig. 7. 

 

 
Fig 7. 10-Fold Cross Validation 

 

5.3 Comparison Results 

For the thorough evaluation of the problem of buildings' seismic damage classification in the respective categories 

of damage level, a thorough investigation study was carried out with various machine ML. We should mention that 

the following comparison is based on different performance metrics that are used to evaluate the different machine 

learning algorithms for the specific classification problem. Specifically, the classification performance metrics which 

used are Accuracy, Receiver Operating Characteristic (ROC), Recall, Precision, F-Score, Cohen’s Kappa Statistics 

(CKS), and Matthews Correlation Coefficient (MCC). All metrics are the simple ratios between the number of 

correctly classified points to the total number of points, in the test dataset (unseen data points). The best performance 

is achieved by the model with a value near 1. An explanation of the classification metrices is depicted in the 

following Fig. 8. 



 
 

Fig 8. Classification metrices explained 

 

The results by descent performance (accuracy) order for each dataset are presented in the following Tables 3, 4 and 

5. 

 

Table 3. Performance Metrics in the Row_Form_Bare dataset 

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1.  SVM - Gaussian Kernel 0.8849 0.9739 0.8683 0.8844 0.8843 0.8205 0.8208 0.659 

2.  Random Forest Classifier 0.8772 0.9691 0.8578 0.8756 0.8758 0.8081 0.8087 0.567 

3.  CatBoost Classifier 0.8757 0.9747 0.8553 0.8744 0.8744 0.8056 0.8063 4.158 

4.  Light Gradient Boosting Machine 0.8664 0.9724 0.8467 0.8659 0.8657 0.7915 0.7920 0.246 

5.  Extreme Gradient Boosting 0.8649 0.9716 0.8455 0.8654 0.8645 0.7892 0.7898 6.954 

6.  Extra Trees Classifier 0.8633 0.9635 0.8450 0.8630 0.8626 0.7868 0.7873 0.526 

7.  Decision Tree Classifier 0.8548 0.8915 0.8388 0.8573 0.8552 0.7744 0.7751 0.022 

8.  SVM - RBF Kernel 0.8471 0.9384 0.8228 0.8467 0.8449 0.7604 0.7623 0.359 

9.  Gaussian Process Classifier 0.8402 0.9130 0.8192 0.8407 0.8395 0.7508 0.7517 2.553 

10.  k-Neighbors Classifier 0.8224 0.9366 0.7992 0.8228 0.8213 0.7232 0.7245 0.120 

11.  Linear Discriminant Analysis 0.8124 0.9479 0.7920 0.8172 0.8134 0.7098 0.7111 0.021 

12.  SVM - Polynomial Kernel  0.8008 0.9308 0.7718 0.7968 0.7981 0.6885 0.6892 1.002 

13.  Ridge Classifier 0.7985 0.0000 0.7452 0.7859 0.7773 0.6785 0.6895 0.020 

14.  Quadratic Discriminant Analysis 0.7923 0.9419 0.7928 0.8186 0.7968 0.6854 0.6933 0.022 

15.  MLP Classifier 0.7483 0.9023 0.7383 0.7781 0.7486 0.6158 0.6277 0.320 

16.  Naive Bayes 0.7320 0.9205 0.7387 0.7820 0.7421 0.5992 0.6124 0.020 



ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

17.  Ada Boost Classifier 0.6797 0.8178 0.6552 0.7575 0.6826 0.5124 0.5369 0.146 

18.  Logistic Classifier 0.6564 0.0000 0.5728 0.6130 0.5975 0.4246 0.4783 0.064 

 

 

Table 4. Performance Metrics in the Row_Form_Full-Masonry dataset 

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1.  SVM - Gaussian Kernel 0.8949 0.9777 0.8770 0.8970 0.8941 0.8197 0.8218 0.244 

2.  Extreme Gradient Boosting 0.8942 0.9759 0.8745 0.8976 0.8935 0.8187 0.8211 15.896 

3.  CatBoost Classifier 0.8926 0.9763 0.8710 0.8950 0.8921 0.8154 0.8172 4.328 

4.  Random Forest Classifier 0.8918 0.9739 0.8685 0.8961 0.8918 0.8145 0.8169 0.562 

5.  Light Gradient Boosting Machine 0.8864 0.9747 0.8635 0.8914 0.8861 0.8053 0.8082 0.665 

6.  Extra Trees Classifier 0.8834 0.9690 0.8577 0.8860 0.8830 0.7998 0.8018 0.516 

7.  Decision Tree Classifier 0.8749 0.8986 0.8550 0.8779 0.8743 0.7865 0.7887 0.021 

8.  SVM - RBF Kernel 0.8726 0.9498 0.8388 0.8765 0.8716 0.7806 0.7832 0.387 

9.  K Neighbors Classifier 0.8687 0.9494 0.8336 0.8700 0.8666 0.7727 0.7753 0.128 

10.  Gaussian Process Classifier 0.8656 0.9290 0.8358 0.8705 0.8658 0.7707 0.7731 2.605 

11.  Linear Discriminant Analysis 0.8324 0.9442 0.7966 0.8390 0.8340 0.7134 0.7150 0.023 

12.  Quadratic Discriminant Analysis 0.8184 0.9365 0.8051 0.8350 0.8235 0.6957 0.6994 0.021 

13.  SVM - Polynomial Kernel 0.8015 0.0000 0.7338 0.7896 0.7840 0.6453 0.6568 0.019 

14.  Ada Boost Classifier 0.7837 0.8572 0.7465 0.8123 0.7898 0.6342 0.6411 0.149 

15.  MLP Classifier  0.7443 0.8879 0.6845 0.7293 0.7322 0.5531 0.5577 0.988 

16.  Naive Bayes 0.7405 0.9160 0.7636 0.7944 0.7525 0.5876 0.6040 0.020 

17.  Logistic Classifier 0.6988 0.8728 0.6076 0.6877 0.6541 0.4719 0.5056 0.322 

18.  Ridge Classifier  0.5476 0.0000 0.4867 0.5936 0.5150 0.2506 0.2980 0.067 

 

Table 5. Performance Metrics in the Row_Form_Pilotis dataset 

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1.  SVM - Gaussian Kernel 0.8795 0.9744 0.8518 0.8823 0.8792 0.8109 0.8125 6.119 

2.  Light Gradient Boosting Machine 0.8772 0.9754 0.8456 0.8776 0.8759 0.8067 0.8080 0.246 

3.  CatBoost Classifier 0.8772 0.9749 0.8433 0.8776 0.8752 0.8064 0.8082 4.387 

4.  Extreme Gradient Boosting 0.8664 0.9710 0.8318 0.8673 0.8643 0.7895 0.7916 0.662 



ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

5.  Random Forest Classifier 0.8626 0.9677 0.8285 0.8658 0.8623 0.7841 0.7857 0.561 

6.  Extra Trees Classifier 0.8479 0.9622 0.8081 0.8505 0.8472 0.7607 0.7626 0.512 

7.  Decision Tree Classifier 0.8402 0.8820 0.8040 0.8432 0.8404 0.7493 0.7505 0.022 

8.  SVM - RBF Kernel 0.8370 0.9276 0.7900 0.8354 0.8326 0.7406 0.7440 0.363 

9.  Gaussian Process Classifier 0.8216 0.8974 0.7863 0.8269 0.8228 0.7207 0.7221 2.571 

10.  k-Neighbors Classifier 0.8162 0.9280 0.7772 0.8208 0.8161 0.7114 0.7135 0.122 

11.  Ada Boost Classifier 0.8162 0.8382 0.7897 0.8323 0.8213 0.7150 0.7179 0.146 

12.  SVM - Polynomial Kernel 0.8061 0.9375 0.7539 0.7991 0.8008 0.6927 0.6944 0.971 

13.  MLP Classifier 0.8054 0.9495 0.7777 0.8212 0.8111 0.6987 0.7008 0.024 

14.  Ridge Classifier 0.7976 0.0000 0.7111 0.7769 0.7710 0.6705 0.6826 0.020 

15.  Quadratic Discriminant Analysis 0.7807 0.9413 0.7845 0.8412 0.7962 0.6704 0.6851 0.020 

16.  Logistic Classifier 0.7374 0.9003 0.6757 0.7679 0.7126 0.5884 0.6144 0.229 

17.  Naive Bayes 0.7305 0.9251 0.7327 0.8013 0.7470 0.5977 0.6156 0.020 

18.  Linear Discriminant Analysis 0.6502 0.0000 0.5548 0.6278 0.5930 0.4302 0.4812 0.064 

 

 

5.4 Best Performance Algorithm 

In all three cases examined the Support Vector Machine (SVM) - Gaussian Kernel algorithm produced the highest 

classification results. The basic function of SVMs is to construct a super-level that plays the role of a decision-

making surface, so that the margin of separation of the categories is maximized. A key feature of SVMs that 

determines their function is the so-called support vectors, which consist a small subset of the training data used. 

Considering the problem of categorizing two categories, as described at one level in Fig. 9 (left), it is obvious that the 

two categories marked with the labels "+" and "o" are linearly separable. However, there are many lines ε1, ε2, ε3, ... 

which are multiple possible decision surfaces that can achieve the same result. The SVM algorithm seeks for the 

single line (ε*) that separates the categories in such a way that the margin between the categories is maximized, as 

shown in Fig. 9(right), and consists the optimal decision surface. 

 

 
Fig 9. Problem of two linearly separable categories 



 

In this case the data are linearly separable, something which guarantees the error-free classification of the data. As 

a consequence, the problem is reduced to the simplest case of patterns' classification, since the decision-making 

surface has the following simple form: 

𝑤𝑇𝑥 + 𝑏 = 0 (4) 

 

where x is the input vector, w is the vector of the weights and b is the bias constant to be calculated. Because the data 

are linearly separable, the categorizer is described by the following equations 5 and 6: 

 

𝑤𝑇𝑥𝑘 + 𝑏 ≥ +1, 𝑓𝑜𝑟 𝑡𝑘 = +1 (5) 

          or 

𝑤𝑇𝑥𝑘 + 𝑏 ≤ −1, 𝑓𝑜𝑟  𝑡𝑘 = −1 (6) 

 

The above two equations can be described together, using the equation 7: 

 

𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) ≥ +1, 𝑘 = 1,2,3, … , 𝑁 (7) 

 

The goal of SVMs is to find the decision-making surface by maximizing the margin that separates the categories, 

which equals to 
2

‖𝑤‖2
. The vectors for which the equality of the above function applies are the so-called support 

vectors and are those vectors that lie closest to the decision-making surface and, therefore, those that are more 

difficult to categorize than all training vectors. Therefore, the problem of classification becomes an optimization 

problem, in which the optimal surface (𝑤∗, 𝑏∗) that reduces the cost 𝐽(𝑤) =
1

2
𝑤𝑇𝑤 satisfying some constraints is 

searched. This problem is defined as follows by the equation 8: 

 
𝑚𝑖𝑛

𝑤, 𝑏
{𝐽(𝑤) =

1

2
𝑤𝑇𝑤} (8) 

so that 𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) ≥ +1, 𝑘 = 1,2,3, … , 𝑁. 
 

In the above optimization problem, which is called primal, the cost function is convex and the constraints are linear 

with respect to w. The solution is achieved with the aid of the Lagrange multipliers method, based on which the 

following Lagrange function is formed by equation 8: 

 

𝐿(𝑤, 𝑏, 𝑎) =
1

2
𝑤𝑇𝑤 − ∑ 𝑎𝑘[𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) − 1]

𝑁

𝑘=1

 

 

(9) 

where the coefficients 𝑎𝑘 ≥ 0, 𝑘 = 1, … , 𝑁 are called Lagrange multipliers.  

The solution of the initial optimization problem with constraints becomes an L(w,b,a) saddle point optimization 

problem. In particular, this point should be maximized with respect to α and minimized with respect to w and b,  by 

equation 10: 
𝑚𝑎𝑥

𝑎

𝑚𝑖𝑛

𝑤, 𝑏
𝐿(𝑤, 𝑏, 𝑎) (10) 

 

Taking the derivatives of the function and setting them equal to zero, the following two equations 11 and 12 arise: 

 

      
𝜕𝐿(𝑤, 𝑏, 𝑎)

𝜕𝑤
= 0      (11) 

 
𝜕𝐿(𝑤, 𝑏, 𝑎)

𝜕𝑏
= 0 

 

(12) 

From the two conditions of the function the following equations 13 and 14 of a sigma point are derived: 

𝑤 = ∑ 𝑎𝑘𝑡𝑘𝑥𝑘

𝑁

𝑘=1

 (13) 



 

𝑤 = ∑ 𝑎𝑘𝑡𝑘 = 0

𝑁

𝑘=1

 (14) 

 

Substituting the above value of w into the function the dual optimization problem results, which is defined as 

follows by equations 15 and 16: 

𝑚𝑖𝑛

𝑎
𝑄(𝑎) = ∑ 𝑎𝑘 −

1

2
∑ ∑ 𝑎𝑙𝑎𝑚𝑡𝑙𝑡𝑚𝑥𝑙

𝑇𝑥𝑚

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

 (15) 

∑ 𝑎𝑘𝑡𝑘 = 0

𝑁

𝑘=1

 𝜇𝜀 𝑎𝑘 ≥ 0, 𝑘 = 1, … , 𝑁 (16) 

 

The above becomes a Quadratic Programming problem, resulting in several non-zero 𝑎𝑘 solutions which are the 

requested support vectors. 

By finding the optimal Lagrange multipliers 𝑎𝑘
∗ , the weights 𝑤∗ are calculated, while the corresponding bias 𝑏∗  is 

determined from one of the data separation cases. In the opposite case (which is the most probable as most problems 

are non-linearly separable due to uncertainty, inaccuracy of representation and noise) there is a classification error, 

so the purpose of SVMs is to minimize this error. For this purpose, a new set of positive numbers called slack 

parameters is introduced, which measure the deviation of the data from the correct classification. In this case, the 

decision-making surface has the form of equation 17: 

 

𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) ≥ 1 − 𝜉𝑘, 𝑘 = 1,2,3, … , 𝑁 (17) 

 

where 𝜉𝑘 ≥ 0 are the slack parameters, while the corresponding initial function optimization problem is transformed 

in the equation 18 as follows:  

𝑚𝑖𝑛

𝑤, 𝑏
{𝐽(𝑤, 𝜉) =

1

2
𝑤𝑇𝑤 + 𝑐 ∑ 𝜉𝑘

𝑁

𝑘=1

} 

 

(18) 

so that  𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) ≥ 1 − 𝜉𝑘 , 𝜉𝑘 ≥ 0,    𝑘 = 1,2,3, … , 𝑁 where c is a positive constant which is usually 

determined experimentally. The corresponding Lagrange equation 19 will take the form: 

 

𝐿(𝑤, 𝑏, 𝜉, 𝑎) =
1

2
𝑤𝑇𝑤 + 𝑐 ∑ 𝜉𝑘

𝑁

𝑘=1

− ∑ 𝑎𝑘[𝑡𝑘(𝑤𝑇𝑥𝑘 + 𝑏) − 1 + 𝜉𝑘] − ∑ 𝑣𝑘𝜉𝑘

𝑁

𝑘=1

𝑁

𝑘=1

 (19) 

 

where 𝑣𝑘 ≥ 0,    𝑘 = 1, … , 𝑁 is a second (in addition to 𝛼𝑘) set of Lagrange multipliers. 

In this case the sagmatics point optimization problem using slack parameters is described by equation 20 as 

follows: 

 
𝑚𝑎𝑥

𝑎, 𝑣

𝑚𝑖𝑛

𝑤, 𝑏, 𝜉
𝐿(𝑤, 𝑏, 𝜉, 𝑎, 𝑣) (20) 

 

Finally, the problem of Quadratic Programming with slack parameters is defined by following equations 21 and 22 

as follows: 

𝑚𝑖𝑛

𝑎
𝑄(𝑎) = ∑ 𝑎𝑘 −

1

2
∑ ∑ 𝑎𝑙𝑎𝑚𝑡𝑙𝑡𝑚𝑥𝑙

𝑇𝑥𝑚

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

 (21) 

∑ 𝑎𝑘𝑡𝑘 = 0,

𝑁

𝑘=1

0 ≤ 𝑎𝑘 ≤ 𝑐, 𝑘 = 1, … , 𝑁 (22) 

 

with the additional restriction 𝑎𝑘 ≤ 𝑐. The bias 𝑏∗ is calculated for those 𝑎𝑘 ≤ 𝑐 for which 𝜉𝑘 = 0.  



A major boost to the implementation of real problems was the development of nonlinear SVMs, which are based 

on the assumption that a nonlinearly separable pattern recognition problem can be transformed into a linearly 

separable one in a multidimensional space. The transformation from a space with few dimensions (input space) to a 

multi-dimensional space (feature space) can be achieved by applying a non-linear mapping 𝜑(𝑥). In this case, the 

decision-making surface is defined by equation 23 as follows: 

 

∑ 𝑤𝑖𝜑𝑖(𝑥) + 𝑏 = 0

𝑚

𝑖=1

 (23) 

 

where m is the dimension of the whole set of the nonlinear transformations 𝜑(𝑥), i.e. the dimension of the feature 

space, which is typically much larger than the dimension n of the input space. Assuming that 𝜑0(𝑥) = 1, ∀𝑥, 𝑤0 =
𝑏 𝜅𝛼𝜄  𝜑(𝑥) = [𝜑0(𝑥), 𝜑1(𝑥), … , 𝜑𝑚(𝑥)]𝑇, the function can be written with the following form of the equation 24: 

 

∑ 𝑤𝑖𝜑𝑖(𝑥) = 𝑤𝑇𝜑(𝑥) = 0

𝑚

𝑖=1

 (24) 

 

Considering that by using the mapping functions 𝜑(𝑥) the problem has been reduced to a linear one with separable 

data in the space of the features, the solution of the Lagrange function for the whole set of the weights takes the form 

of the equation 25: 

 

𝑤 = ∑ 𝑎𝑘𝑡𝑘

𝑁

𝑘=1

𝜑(𝑥𝑘) 

 

(25) 

And so, it is transformed into equation 26: 

 

∑ 𝑎𝑘𝑡𝑘

𝑁

𝑘=1

𝜑𝛵(𝑥𝑘)𝜑(𝑥) = 0 (26) 

 

The quantity 𝜑𝛵(𝑥𝑘)𝜑(𝑥) describes the interior product of two vectors in the feature space. This quantity is called 

the kernel and is denoted by equation 27: 

 

𝛫(𝑥𝑘 , 𝑥) = 𝜑𝛵(𝑥𝑘)𝜑(𝑥) (27) 

 

Based on Mercer's theorem, the kernel can be represented by equation 28 as: 

 

𝛫(𝑥𝑘 , 𝑥) = ∑ 𝜑𝑖(𝑥𝑘)𝜑𝑖(𝑥), 𝑘 = 1,2, … , 𝑁

𝑚

𝑖=0

 (28) 

a technique which is called kernel trick. A depiction of the kernel trick method is represented in the following Fig. 

10. 

 



 
Fig 10. Kernel Trick 

 

Therefore, the decision-making surface will have the form of equation 29: 

 

∑ 𝑎𝑘𝑡𝑘

𝑁

𝑘=1

𝐾(𝑥𝑘 , 𝑥) = 0 (29) 

 

The corresponding dual quadratic programming optimization problem is defined by equations 30 and 31 as 

follows: 

 

𝑚𝑖𝑛

𝑎
𝑄(𝑎) = ∑ 𝑎𝑘 −

1

2
∑ ∑ 𝑎𝑙𝑎𝑚𝑡𝑙𝑡𝑚𝐾(𝑥𝑙 , 𝑥𝑚)

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

 (30) 

∑ 𝑎𝑘𝑡𝑘 = 0,

𝑁

𝑘=1

𝑎𝑘 ≥ 0, 𝑘 = 1, … , 𝑁 

 

(31) 

By finding the Lagrange multipliers from the above optimization problem the set of optimal weights 𝑤∗  is 

calculated by the equation 32: 

𝑤∗ = ∑ 𝑎𝑘
∗ 𝑡𝑘

𝑁

𝑘=1

𝜑(𝑥𝑘) 

 

(32) 

where the first weight of the vector 𝑤∗ corresponds to the optimal bias 𝑏∗.  

It is worth noting that the selection of the appropriate kernel plays an important role in the performance of SVM. The 

only limitations that a kernel should satisfy are that the kernel must be symmetric. 

The kernels that were used in the present investigation are the following (equations 33, 34 and 35): 

 

𝛫𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝑥𝑘 , 𝑥) = (𝜏 + 𝑥𝑘
𝑇𝑥)𝑑 (33) 

𝛫𝑅𝐵𝐹(𝑥𝑘 , 𝑥) = 𝑒𝑥𝑝 (−
1

2𝜎2
‖𝑥 − 𝑥𝑘‖2

2) (34) 

𝛫𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥𝑘 , 𝑥) = 𝑒𝑥𝑝(−𝛾||𝑢 − 𝑣||2) (35) 

 

 



5.5 Results and discussion  

When building and optimizing a classification model, measuring how accurately it predicts the expected outcome 

is crucial. However, one metric alone can offer misleading results. There are several performance evaluations metrics 

to help tease out more meaning in a model. The metrics to evaluate a machine learning model are very important as 

the choice of metrics influences how the performance of machine learning algorithms can be compared. 

Appropriate classification metrics were used in order to confirm the comparison results and to demonstrate the 

superiority of the machine learning algorithm that achieved the highest performance during the classification process. 

Specifically, given a pair of training vectors {xi, yi}, a classification model learns the parameters θ for an unknown 

function f(x), which can match each input vector xi to the estimated output f(xi). Successful training means the 

optimal adaptation of the internal parameters θ, in order to minimize an error or cost function, which evaluates the 

performance of the categorizer based on some efficient and sound measures. The most popular evaluation measures, 

which are able to evaluate and compare with clarity, completeness and objectivity the classification algorithms are 

presented below: 

 

5.5.1 Confusion Matrix 

Because incorrect classifications of different classes  have different costs, it is important to assess the predictor's 

ability to predict each class. To evaluate the performance for each class, the following terminology is used: 

1. Positive: The observations which belong to a value of the class. 

2. Negative: The observations which belong to the other value of the class. 

3. True Positive (TP): The number of successful predictions for positive observations. 

4. True Negative (TN): The number of successful predictions for negative observations. 

5. False Positive (FP): The number of failed predictions for negative observations. 

6. False Negative (FN): The number of failed predictions for positive observations. 

The evaluation of a classification model is based on the number of records in the control set that are correctly or 

incorrectly predicted by the model. This number is placed in a confusion matrix, which is a two-dimensional table, 

where the columns correspond to the predictions and the rows correspond to the actual values of the class. 

 

Table 6. Confusion Matrix 

 Predicted Class 

Class 1 Class 0 

True Class Class 1 f11 TP f10 FN 

Class 0 f01 FP f00 TN 

 

The principle of the Confusion Matrix is that it recognizes the nature of the errors, as well as their quantity. Each 

snapshot fij shows the number of records from class i that are expected to belong to class j. The f01 snapshot is the 

number of records from class 0 that were incorrectly predicted to be placed in class 1. Based on the snapshots, the 

number of records correctly predicted is the sum of f00 και f11, while those predicted incorrectly are f01 and f10. 

Although the Confusion Matrix provides the exact information needed to evaluate a model, this information can be 

expressed with aid of a unique number that is easy to use for comparisons between different models. Most 

performance measures can be expressed in relation to the number of TP, TN, FP and FN classifications for each 

class.  

In the following Figs 11, 12 and 13 are presented the confusion matrices of the seismic datasets by the SVM - 

Gaussian Kernel algorithm which produced the highest classification results. The Confusion Matrices visualizes the 

prediction score that takes a fitted classifier and a set of test X and y values and returns a report showing how each of 

the test values predicted classes compare to their actual classes. We use confusion matrices to understand which 

classes are most easily confused. Also, they provide deeper insight into the classification of individual data points.  

 



 
Fig 11. Confusion Matrix of the Row_Form_Bare dataset (for classes' definition see Table 1) 

 

 
Fig 12. Performance Metrics of the Row_Form_Full-Masonry dataset (for classes' definition see Table 1) 

 



 
Fig 13. Performance Metrics of the Row_Form_Pilotis dataset (for classes' definition see Table 1) 

 

The above confusion matrices show each combination of the true and predicted classes for each test data set. The 

true mode is selected, 100% accurate predictions are highlighted in green. Is the fact that the line from the True 

Positives which are at the top-left corner to True Negatives which are at the down-right corner, includes in the three 

confusion matrices most of the correct predictions in comparison to the actual values of the class. 

  

5.5.2 Accuracy  

It is calculated by the following relation 35: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(35) 

and expresses the percentage of classification of control plots that are correctly categorized. 

 

5.5.3 Precision 

It is calculated by the following relation 36: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(36) 

and expresses the percentage of classification of the positive results that the categorizer has correctly classified as 

positive and are indeed positive. The higher the percentage of precision, the lower the corresponding percentage of 

FP. 

The following Fig. 14, is a depiction of the purpose of the precision metrics. 

 

 
 

Fig 14. Accuracy vs Precision 



 

5.5.4 Recall 

It is calculated by the following relation 37: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
(37) 

and expresses the percentage of classification of the positive examples that the categorizer was able to classify. The 

higher its percentage, the fewer positive examples have been incorrectly classified. 

 

5.5.5 F-Score or F-measure or F1 

In an attempt to objectively deal with cases where a categorizer has disproportionately distributed classification 

errors, the metric F-Score was introduced, which is the harmonic mean between precision and recall and is calculated 

by the following relationship 38: 

 

𝐹𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(38) 

The higher the percentage of the metric F-Score, the higher the respective two metrics. 

In the following Figs 15, 16 and 17 are presented the classification reports plots by the SVM - Gaussian Kernel 

algorithm which produced the highest classification results.  

 

 
Fig 15. Classification report of the Row_Form_Bare dataset 

 



 
Fig 16. Classification report of the Row_Form_Full-Masonry dataset 

 

 
Fig 17. Classification report of the Row_Form_Pilotis dataset 

 

Each classification report visualizer displays the precision, recall, F1, and support scores for the model. In order to 

support easier interpretation and problem detection, the report integrates numerical scores with a color-coded 

heatmap. All heatmaps are in the range (0.0, 1.0) to facilitate easy comparison of classification models across 

different classification reports. 

 

5.5.6 Receiver Operating Characteristic (ROC) 

This metric can be applied to categorizers that have as output trust. In this case, the categorizer predicts one class if 

its confidence for it exceeds a threshold. For the formation of the ROC Curve, various threshold values are used and 

the True Positive Rate (TPR) and False Positive Rate (FPR) percentages are noted for each of them. These value 

pairs are plotted on a graph where the y-axis corresponds to the TPR and the x-axis to the FPR. The performance of 

each categorizer is represented by a point on the ROC curve. The advantages of this metric are that it gathers 

information about the prediction quality of the categorizer for different threshold values and is also independent of 

the class imbalance in the data. The following Figs 18, 19 and 20 are presented the ROC curve plots by the SVM - 

Gaussian Kernel algorithm.  

 



 

 
Fig 18. ROC curve of the Row_Form_Bare dataset 

 

 
Fig 19. ROC curve of the Row_Form_Full-Masonry dataset 

 



 
Fig 20. ROC curve of the Row_Form_Pilotis dataset 

 

The above ROC curves are the measure of the SVM - Gaussian Kernel classifier predictive quality that compares 

and visualizes the tradeoff between the model’s sensitivity and specificity. The higher the ROC, the better the model 

generally is. However, it is also important to inspect the “steepness” of the curve, as this describes the maximization 

of the true positive rate while minimizing the false positive rate. 

 

5.5.7 Error Functions 

Estimator function or estimator is a function of the random sample used to estimate an unknown parameter of a 

distribution function. The estimators in the case of classification refer to cost or error functions, which are able to 

quantify the classification variance achieved by an algorithm. The two cost or error functions used to categorize this 

method are the following: 

1. Cohen’s Kappa Statistics (CKS): This is a statistical measurement that provides information about the amount 

of agreement between the truth map and the final ranking map. It is the percentage agreement between two 

raters, where each classifies N items into C mutually exclusive categories. The definition of CKS calculate by 

the following equation 39: 

 

κ=
𝑝0−𝑝𝑒

1−𝑝𝑒
= 1 −

1−𝑝0

1−𝑝𝑒
 (39) 

 

where po is the relative observed agreement among raters (identical to accuracy), and pe is the hypothetical 

probability of chance agreement. The observed data are used to calculate the probabilities of each observer, to 

randomly see each category. More specifically, 0 = agreement equivalent to chance, 0.1 – 0.20 = slight 

agreement, 0.21 – 0.40 = fair agreement, 0.41 – 0.60 = moderate agreement, 0.61 – 0.80 = substantial 

agreement, 0.81 – 0.99 = near perfect agreement and 1 = perfect agreement. 

2. Matthews Correlation Coefficient (MCC): MCC is used in machine learning as a measure of the quality of 

classifications. It is considered a balanced measure that can be used even if the sizes of the classes are very 

different, as it calculates a correlation coefficient value of [-1, +1] with +1 representing a perfect prediction, 0 

an average random prediction and - 1 a reverse prediction. It is calculated by the formula 40: 

 

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (40) 

 

The class prediction error chart provides a way to quickly understand how good the classifier is at predicting the 

right classes. The following Class Prediction Error plots show the support (number of training samples) for each 

class in the fitted classification model as a stacked bar chart. Each bar is segmented to show the proportion of 

predictions (including false negatives and false positives, like the Confusion Matrix) for each class. We use each 



Class Prediction Error plot to visualize which classes of the classifier is having a particularly difficult time with, and 

more importantly, what incorrect answers it is giving on a per-class basis. This enables us to better understand the 

strengths and weaknesses of each model and particular challenges unique to each dataset. The Figs 20, 21 and 22 are 

presented the Class Prediction Error plots by the SVM - Gaussian Kernel algorithm. 

 

 
Fig 21. Class Prediction Error of the Row_Form_Bare dataset (for classes' definition see Table 1) 

 

In the above example, while the classifier appears to be fairly good at correctly predicting classes 0 and 2 based on 

the features of the Row_Form_Bare dataset, it often incorrectly labels in class 1. 

 

 
Fig 22. Class Prediction Error of the Row_Form_Full-Masonry dataset (for classes' definition see Table 1) 

 

Similar, in the above example, the classifier it often incorrectly labels in class 1. 



 
Fig 23. Class Prediction Error of the Row_Form_Pilotis dataset (for classes' definition see Table 1) 

 

In the above example, the classifier appears to be fairly good at correctly predicting class 2. Also, it often 

incorrectly labels in class 0 and 1. 

 

6. Conclusions 
The present paper investigates the Machine Learning techniques' ability to reliably classify the seismic damage 

potential of R/C buildings. For this aim, a training dataset consisting of 30 3D R/C buildings with different structural 

parameters was chosen. The buildings were designed based on the provisions of EC8 and EC2. For each one of these 

buildings three different configurations as regards their masonry infills were considered (without masonry infills, 

with masonry infills in all stories and with masonry infills in all stories except for the ground story), leading to three 

different data subsets with 30 buildings each. Then, the buildings were analysed my means of the Nonlinear Time 

History Analyses method for 65 appropriately chosen real earthquake records. Both seismic and structural 

parameters widely used in the literature were selected as inputs in the process of Machine Learning methods. The 

quantification of the buildings' damage level was done by means of the well-documented Maximum Interstory Drift 

Ratio. As proved, the Machine Learning methods that are mathematically well-established and their operations that 

are clearly interpretable step by step can be used to solve some of the most sophisticated real-world problems in 

consideration. 

The findings of the present work can be summarized as follows:  

1. Different Machine Learning algorithms running on the same data set can lead to different predictions with 

little or no overlap between them and, also, different parameters of the same algorithm can affect the results 

of the buildings' damage assessment. 

2. The SVM method used is not prone to overfitting to a specific data set compared to other methods and is 

also a robust method against data noise and outliers. 

3. The important advantage of the SVM is that the optimization method that is used by the algorithm presents 

a total minimum, giving a unique optimal choice, which does not happen in other methods such as Neural 

Networks that can be trapped in local minima. 

4. Τhe performance of the SVM classifier depends not only on the algorithmic mechanism of the classifier 

itself (decision method) but also on the kernel to be applied to it, as its performance varies with the use of 

different kernels. Adjusting a kernel suitable to improve alignment with the samples of the training set 

which are labeled, significantly increases the fit with the samples of the test set, giving quite improved 

classification accuracy. Therefore, choosing the right kernel is a vital issue for the performance of the final 

classification model.  

5. The SVMs have significant generalizability to non-linearly separable data by incorporating the kernel trick. 

By applying kernel functions it is possible to produce nonlinear models that lead to linearity in larger 

spaces. In addition, the number of parameters to be configured in SVMs is smaller compared to several 

corresponding methodologies. Also, for the classification of a new element in a class, the classification 



process is based only on the similarity of the element unknown to the algorithm and the most important 

elements of each class (support vectors), so the method reduces significantly the computational cost and the 

requirement resources. 

6. The results confirm the need for further and in-depth exploration of the results related to the thorough 

evaluation of similarity measures and/or distance functions used in statistical approaches to implement 

features of the similar issues, in order to reduce the uncertainty in the decisions that include the data used to 

predict seismic damages. 

Future work on this topic could focus on applying all of the above learning and prediction methods/models to 

different data sets, in order to assess whether they perform equally well on different data. This is also a way to test 

the insides of other methods of experts in terms of their robustness, i.e. to compare their performance for different 

data and to see if their accuracy is around the same percentages, so that they can be considered reliable as models. 

Also, ensemble methods could be applied with different combinations of individual classifiers, in terms of the 

number and nature of the latter, for further analysis of their function. In addition, other Machine Learning or Deep 

Learning models could be considered, such as the method based on the expectation-maximization algorithm, LSTM 

Neural Networks, etc. Finally, it will be important to look at different ways of selecting features, as well as mixing 

different selection methods, where it is expected very little overlap of insides indicators, in order to see if mixing 

methodology can statistically or mechanically lead to increased performance of the methods. 
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