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Abstract: This study investigates the interpretability of machine learning (ML) models applied
to cumulative damage prediction during a sequence of earthquakes, emphasizing the use of
techniques such as SHapley Additive exPlanations (SHAP), Partial Dependence Plots (PDPs), Local
Interpretable Model-agnostic Explanations (LIME), Accumulated Local Effects (ALE), Permutation
and Impurity-based technique. The research explores the cumulative damage during seismic
sequences, aiming to identify critical predictors and assess their influence on the cumulative damage.
Moreover, the predictors contribution in respect with the range of final damage is evaluated.
Nonlinear time history analyses are applied to extract the seismic response of an eight-story
Reinforced Concrete (RC) frame. The regression problem’s input variables are divided into two
distinct physical classes: pre-existing damage from the initial seismic event and seismic parameters
representing the intensity of the subsequent earthquake, expressed by Park and Ang damage index
(DIPA) and Intensity Measures (IMs), respectively. The study offers a comprehensive review of
cutting-edge ML methods, hyperparameter tuning, and ML method comparisons. A LightGBM model
emerges as the most efficient, among 15 different ML methods examined, with critical predictors
for final damage being the initial damage caused by the first shock and the IMs of the subsequent
shock: IFVF and SIH. The importance of these predictors is supported by feature importance analysis
and local/global explanation methods, enhancing the interpretability and practical utility of the
developed model.

Keywords: seismic sequence; interpretable machine learning; successive earthquakes; seismic
dama-ge prediction; seismic damage accumulation; machine learning; explainable machine learning

1. Introduction

A series of successive occurring earthquakes can cause additional damage to already damaged
buildings and consequently increasing the risk of collapse. Historical examples of such events include
the New Madrid earthquake series in the central United States from 1811 to 1812, and the 1960 Chilean
seismic sequence. The New Madrid sequence [1] comprised three primary shocks and numerous
aftershocks, causing widespread structural damage and affecting regions as distant as Canada and
the eastern United States. The 1960 Chilean earthquake sequence [2], initiated by a record-setting 9.5
magnitude mainshock, led to substantial destruction and casualties in Chile, as well as a series of
tsunamis. One notable example of an earthquake sequence occurred in central Italy in 2016 [3,4]. Over a
span of several months, a succession of earthquakes, with a 6.2 magnitude mainshock, affected the area,
leading to significant destruction and casualties. Experts studying the series of seismic events found
that they transpired on pre-existing fault lines that had been under stress for a considerable period.
Moreover, they ascertained that the earthquake sequence had shifted the stress distribution within the
region, potentially increasing the probability of subsequent seismic events. Another example is the
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2019 Ridgecrest earthquake sequence [5] in California, which included a 6.4 magnitude mainshock
followed by several aftershocks, including a 7.1 magnitude event. This sequence caused significant
damage to infrastructure and homes in the region, and it demonstrated the potential for aftershocks to
be almost as powerful as the mainshock. In February 2023, southeastern Türkiye and parts of Syria
were hit by two strong earthquakes that resulted in numerous aftershocks and significant loss of life
and injuries [6,7]. The earthquakes had magnitudes of 7.8 and 7.5 and occurred approximately nine hours
apart. As an outcome of all the above examples, it is important to assess the cumulative damage and
vulnerability of buildings to multiple earthquakes to prevent or minimize the potential losses.

Several studies focus on the effect of multiple earthquake events on the seismic performance of
Reinforced Concrete (RC) structures. Abdelnaby in his PhD thesis [8] examines the consequences that
successive seismic events have on RC buildings’ degradation. Later, Hatzivassiliou and Hatzigeorgiou [9]
investigate the effect of seismic sequences on the response of three-dimensional RC buildings, while
Kavvadias et al. [10] examine the impact of aftershock severity characteristics on the seismic damage
of a RC frame. Trevlopoulos and Guéguen [11] propose a framework to assess the vulnerability of
RC structures during aftershock sequences based on period elongation. Other studies in this area
include Shokrabadi et al. [12] who investigate the impact of mainshock-aftershock (MS-AS) ground
motion pairing on the seismic performance, and Furtado et al. [13] asses the damage of infilled RC
structures under MS-AS conditions. Di Sarno and Pugliese [14] study the seismic fragility of existing
RC buildings with corroded bars under earthquake sequences, while Iervolino et al. [15] examine the
accumulation of seismic damage in multiple MS-AS sequences. Rajabi and Ghodrati Amiri [16] develop
behavior factor prediction equations for RC frames under critical MS-AS sequences using Artificial
Neural Networks (ANNs). Soureshjani and Massumi [17] investigate the seismic behaviour of RC
moment-resisting structures with concrete shear walls under MS-AS seismic sequences. Khansefid [18]
studies the effect of structural nonlinearity on the risk estimation of buildings under MS-AS sequences
in Tehran metro city. Also, Hu et al. [19] propose a framework for the seismic resilience assessment of
buildings that considers the effects of both mainshock and multiple aftershocks. Finally, Askouni [20]
investigated how repeated earthquakes affect RC buildings with in-plan irregularities. Overall, the
research findings demonstrate the importance of considering the effects of multiple earthquakes in the
design and assessment of RC structures.

Machine learning (ML) has gained increasing attention in earthquake and structural engineering
due to its ability to predict the behaviour of structures. As a result, a number of studies have
focused on exploring the application of ML in this fields. The early papers, such as Zhao et al. [21],
used ANNs to predict the response of simple simulated structures, and Stavroulakis and Antes [22]
applied ANNs in nondestructive elastostatic identification of unilateral cracks. Later papers, such
as De Lautour and Omenzetter [23] and Lagaros and Papadrakakis [24], focused on predicting
the non-linear seismic response of 2D and 3D buildings, respectively, using ANNs. These papers
demonstrated the potential of this ML method to accurately predict the behaviour of complex structures.
Other papers have investigated the application of hybrid ML techniques, such as neuro-fuzzy
methods, in predicting structural damage under earthquake excitation, as shown in Sánchez Silva and
García [25], Alvanitopoulos et al. [26] and Vrochidou et al. [27]. Meanwhile, Mangalathu et al. [28]
used ML techniques to classified buildings based on data from post-earthquake observations and
Wang et al. [29] to predict the progressive building collapse. Recent papers also have explored the
use of deep learning, which have shown great promise in rapid seismic response prediction of
RC frames, as seen in Wen et al. [30]. In addition, Zhang et al. [31] proposed a physics-guided
convolutional Neural Network (NN) for data-driven seismic response modelling, while Muradova
and Stavroulakis [32] developed physics-informed NN for elastic plate problems with bending and
Winkler-type contact effects, furthermore, Katsikis et al. [33] used the same type of NN in static rod
and beam problems. Several papers explore the use of ML for seismic response prediction, including
Morfidis and Kostinakis [34], who used ANNs to predict the damage state of RC buildings, and Hwang
et al. [35], who used ML to predict the seismic demand and collapse of ductile RC building frames.
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Other papers focus on developing earthquake scenarios for building portfolios [36], rapid seismic
response prediction [37], and multivariate seismic classification [38]. Kazemi et al. [39] presented
a ML-based approach for classification of the structural behaviour of tall buildings with a diagrid
structure. Karbassi et al. [40] and Ghiasi et al. [41] proposed decision tree and support vector machine
algorithms, respectively, to predict damage in RC buildings. Thaler et al. [42] used ML techniques to
enhance tail-end prediction of seismic response statistics, while Chen et al. [43], and Jia and Wu [44]
investigated probabilistic ML methods for predicting the performance of structures and infrastructures.
The current knowledge also cover various application of ML on seismic fragility and vulnerability
prediction, including the development of seismic fragility curves, as in Kiani et al. [45], fragility and
vulnerability assessment of RC structures as in Kazemi et al. [46], fragility curve parameters prediction
for RC buildings as in Dabiri et al. [47], assessing seismic risk and fragility of underground structures
as in Yang et al. [48] and efficient and precise seismic vulnerability assessment of urban structures as
in De-Miguel-Rodríguez et al. [49]. Moreover, Morfidis et al. [50] developed a user-friendly software
application that leverages ANNs for rapid damage assessment of RC buildings in earthquake scenarios.
Lastly, Lazaridis et al. [51,52] presented studies on forecasting the structural damage experienced by a
RC frame subjected to both individual and successive seismic events using ML methods. Additional
information regarding the application of ML in the field of earthquake and structural engineering can
be found in the respective review papers [53–62].

In general, ML models are utilized in earthquake engineering to deliver rapid and accurate seismic
vulnerability assessment. Despite this, the advanced of these methods have been criticized as “black
boxes”, due to lack of transparency and resonable explanation of their predictions, questioning their
reliability. To address this issue several techniques have been developed recently [63]. Global methods
focus on capture the general patterns and trends of models, whereas local approaches target specific
data points and provide insights for individual predictions. These kind of techniques have been applied
by Mangalathu et al. [64] for seismic performance assessment of infrastructure systems, by Wakjira et
al. [65] in flexural capacity prediction of RC beams strengthened with FRCM, by Junda et al. [66] in
seismic drifts estimation of CLT buildings and by Demertzis et al. [67] in damage prediction of RC
buildings following a single earthquake.

In this study, the expansion of interpretation techniques to the concept of cumulative damage
during a sequence of earthquakes is carried out, with the pre-existing seismic damage being taken into
account. The primary questions addressed in the present paper include: identifying the most important
predictors for damage accumulation, understanding how these variables impact the final damage,
and determining the range of cumulative damage in which their contributions lie. Furthermore, a
thorough review of employed cutting-edge ML methods is offered, with hyperparameter tuning and
ML methods comparisons being incorporated. To this end, the transformation of the problem from the
perspective of earthquake engineering to that of ML through the adopted workflow and methodology
is discussed.

2. Feature Selection and Dataset Configuration

The input variables for our regression problem fall into two distinct physical classes: the
pre-existing damage from the initial seismic event, along with the seismic parameters representing
the intensity of the subsequent earthquake, with the goal of forecasting the cumulative damage
occurred by two consecutive earthquakes. The first class of feature, as well as the target, is expressed
in terms of Park and Ang damage index (DIPA) [68]. For the second category, a preliminary feature
selection process has been conducted. During this process, the outcomes of several studies [34,69–77]
investigating the interdependence between seismic parameters and damage indicators of RC structures
has been taken into account. As a result, 16 prominent Intensity Measures (IMs) have been selected as
seismic damage predictors to express the severity of the second shock. The selected IMs, as well as the
damage index, are described in the following section.
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2.1. Ground Motion IMs and Damage Index

2.1.1. Ground Motion IMs

Seismic ground motion IMs are metrics employed to quantify the intensity or severity of seismic
acceleration signals. These measures play a crucial role in evaluating a site’s seismic hazard, predicting
seismic demand on structures, and designing earthquake-resistant structures. Various IMs have been
suggested over time, each with its own pros and cons. Peak Ground Acceleration (PGA) [78] is
among the most commonly used ground motion signal IMs. PGA represents the maximum absolute
acceleration of ground motion during an earthquake and is extensively used in seismic hazard analysis
and building design, as it offers a straightforward indication of ground shaking intensity. Furthermore,
our suit of IMs encompass amplitude parameters such as the maximum absolute values of ground
velocity (PGV), and ground displacement (PGD) signals. The Arias intensity (IA) [79] and Cumulative
Absolute Velocity (CAV) [78] are additional seismic ground motion IMs that supply information about
the overall amount of ground motion energy during an earthquake. Both IA and CAV are determined
as integrals of ground motion acceleration over time, offering a more comprehensive depiction of
the seismic signal compared to PGA or PGV, as they account for both the amplitude and duration of
the signal.

The frequency content of ground motion signals significantly influences a structure’s response.
This content can be assessed in a simplified manner using the corresponding frequency PGA/PGV or
by calculating the average zero-crossing count of the acceleration time history per unit time. If the
number of zero-crossings is denoted as uo, the fraction of IA over u2

o is recognized as the potential
destructiveness measure, according to Araya and Saragoni (IAS) [80]. The strong motion duration of
seismic excitation considering as the time interval during which most of the total intensity is released,
is another vital parameter. Two definitions of strong motion duration, Trifunac and Brady (SMDTB) [81]
and Reinoso, Ordaz, and Guerrero (SMDROG) [82], are based on the Arias intensity’s time evolution.
The bracketed duration after Bolt (SMDBolt) [83], which is calculated based on the initial and final
instances when the acceleration exceeds 5% of g, is also utilized.

Advanced measures can be obtained by merging the above parameters, such as power P90 [78],
arms [78], characteristic intensity (Ic) [78], the potential damage metric by Fajfar, Vidic, and Fischinger
(IFVF) [84], and the intensity measure by Riddell and Garcia (IRG) [85]. However, spectral values reliant
on the fundamental structural period are not applicable due to the increase in the fundamental period
during the initial earthquake. As an alternative, the Housner intensity (SIH) [86], which aggregates
the values of pseudo-velocity spectrum (PSV) to a constant interval of periods and exhibits a strong
correlation with seismic damage, is utilized. A brief depiction of the formulas for the studied IMs
is given in Table 1. IMs values are derived with Python [87] and NumPy [88] code, whereas the
computation of acceleration spectra is performed using OpenSeismoMatlab [89].
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Table 1. Mathematical Formulas of the examined IMs.

Num Name Expression Ref. Num Name Expression Ref.

1 PGA max|ag(t)| [78] 9 SMDROG t(Hd = 97.5%) – t(Hd = 2.5%) [82]

2 PGV max|vg(t)| [78] 10 SMDBolt t
ag>0.05g
last – t

ag>0.05g
1st [83]

3 PGD max|dg(t)| [78] 11 P90
IA(Hd=95%)–IA(Hd=5%)

SMDTB
[78]

4 IA
π
2g
∫ tend

0 a2
g(t)dt [79] 12 arms

√
1

SMDTB

∫ t95%
t5%

ag(t)2dt [78]

5 CAV
∫ tend

o |ag(t)|dt [78] 13 Ic a1.5
rms · SMD0.5

TB [78]

6 PGA/PGV PGA
PGV [78] 14 IFVF PGV · SMD0.25

TB [84]

7 IAS
IA
u2

o
[80] 15 IRG PGD · SMD

1
3
TB [85]

8 SMDTB t(Hd = 95%) – t(Hd = 5%) [81] 16 SIH
∫ 2.5

0.1 PSV(T, ξ = 0.05)dT [86]

* ag(t), vg(t) and dg(t): ground acceleration, velocity and displacement signals, Hd: Husid Diagram [90].

2.1.2. Damage Index

Seismic damage in structures manifests as a reduction in resistance to external forces, resulting in
instability. The Park and Ang damage index (DIPA) is a reliable seismic damage metric that represents
structural damage as a linear combination of excessive deformation and damage developed by repeated
cyclic loading effects. This index is calculated by summing the maximum bending responses and
the energy absorbed by plastic hinges during an earthquake, as shown in Equation (1). Kunnath’s
modified version of the index [91] is calculated using Equation (2). The total damage index (DIG,PA) is
obtained as an adjusted mean of sub-damage values, where each sub-damage belongs to each structural
member. The weight of each sub-damage is proportional to the energy used by its corresponding
structural member, according to Equation (3). A low value of DIG,PA, close to zero, indicates that the
structure has experienced minimal damage and exhibited an elastic response. Conversely, a value
around the unity and larger signifies that the structure is nearing collapse. Overall damage indices,
such as DIG,PA, offers a quantitative assessment of a structure’s seismic damage and has been utilized
in several studies [34,69–72,76,92] to evaluate the post-earthquake condition of buildings.

DIPA =
δm

δu
+

β

Qyδu

∫
dE (1)

DIPA, component =
θm – θr

θu – θr
+

β

θuMy
Eh (2)

DIG,PA =
∑ EiDIPA,component

∑ Ei
(3)

The damage index equation comprises several variables associated with structural element capacity
and response, such as the maximum displacement response (δm), the ultimate displacement capacity
(δu), the strength deterioration model constant (β) [93], the absorbed cumulative hysteretic energy
(
∫

dE), the yield strength (Qy), the maximum rotation of the member throughout the response (θm),
the member’s ultimate rotation capacity (θu), and the recoverable rotation during unloading (θr).

2.2. Dataset Configuration

For this study, a comprehensive dataset containing both artificial and natural seismic sequences is
used. The former are generated by randomly pairing 318 real acceleration records, while the latter
comprises 111 real pairs of sequential shocks. Further information about the suite of seismic sequences
can be found in [52]. All seismic records are sourced from the ESM [94] and PEER NGA West [95]
databases, with a 20-second intermediate time gap introduced between consecutive records (Figure 1)
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to eliminate overlapping structural responses. Nonlinear time history analyses are conducted on both
seismic sequences and individual ground motion records to investigate the seismic structural response.
The real seismic sequences are presented in Table A1 in Appendix A, while the histograms and the
probability density curves for all variables across the total dataset are provided in Figure A1 in the same
appendix. In this study an eight-story RC frame (Figure 2) designed by Hatzigeorgiou and Liolios [96],
without seismic provisions [97] or retrofitting [98–103] is examined. The finite element simulation
is performed using IDARC 2D [104], and the distributed plasticity concept with a three-parameter
Park hysteretic model [105] is employed. The concrete and steel materials are modeled based on their
effective strength and strain properties, and the structure’s initial elastic fundamental period is 1.27
seconds. GNU Octave [106,107] code is also written to automate the creation of IDARC 2D input files
and the subsequent processing of the results.
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Figure 1. Indicative seismic signal comprises two successive ground motions.

Figure 2. The examined RC frame.

3. Machine Learning Methods, Hyperparameter Tuning and Interpretation

Machine Learning (ML) is a branch of artificial intelligence that focuses on create algorithms
capable to learn from and make predictions based on data, with the ultimate goal to generalize
effectively to new and unseen examples. A subcategory of ML is the Supervised Learning which deals
with building models that predict a target output using input features. By leverage the training dataset,
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model parameters are adjusted to minimize the cost function and thereby achieving an effective model
fit. A loss function (L) measures the difference between the predicted and actual outputs for an
individual data point. Conversely, a cost function J computes the total error between the predicted
and true outputs for all data points in the training dataset. A general form of a cost function J provided
in Equation (4) in which the total error estimated as the average of total m data point losses (L).

The main two problems which the ML techniques could be suffered from are the high variance
and high bias problem or in other words overfitting and underfitting respectively. Overfitting define
the weakness of the model to generalize its prediction after training to new unseen data as those
of the test set, in case of high bias the model does not have the required complexity or the proper
input features and behave poorly both to train and test set. To address the variance problem, the
regularization technique is used in ML. It adds a penalty term to the cost function that discourages the
model from having too many parameters or from having parameters with large magnitude. This helps
to prevent overfitting and improve the generalization performance of the model.

J
(
model weights

)
=

1
m

m

∑
k=1

L
(
yk, ŷk

)
+ regularization terms (4)

3.1. Linear Models

In linear models, the output variable is determined by calculating the weighted average of the
input features and adding a constant, known as the bias term or intercept (Equation 5). Various types
of Linear Regression (LR) [108,109] exist, which are further explained below.

The most commonly used linear regression model based on Ordinary Least Squares (OLS), and
establishes the association between input features and the output variable by minimizing the sum
of squared differences between real and predicted values. As a fundamental and classic approach
to linear regression, OLS is often utilized as a baseline against which more advanced models are
evaluated. Lasso Regression [110] adds a l1 regularization term to the loss function J, which results
in sparse solutions, where many of the coefficients are exactly equal to zero. The regularization term
is defined as the sum of the absolute values of the coefficients. This can lead to feature selection and
interpretability, but can be too aggressive in shrinking the coefficients and result in a suboptimal
solution. Ridge Regression [111] (RR) adds a l2 regularization term to the loss function J, which
results in non-sparse solutions, where the coefficients are shrunk towards zero, but not necessarily
exactly equal to zero. The regularization term is expressed as the sum of the squared coefficients,
which contributes to achieving more stable solutions and prevent overfitting. Elastic Net [112] (EN) is
a combination of Lasso and Ridge Regression, which adds both l1 and l2 regularization penalties to
the loss function J (Equation (6)), weighted by a mixing parameter, ρ. The regularization parameter α

determines the strength of the penalty applied to the coefficients, with larger values of α leading to
stronger regularization. The mixing parameter ρ governs the balance between the l1 and l2 penalties
in the model. When ρ = 1, it results in the Lasso penalty, whereas when ρ = 0, the Ridge penalty is
applied. The adjustment of the mixing parameter, can fine-tuned the model and achieve the desired
balance between the two penalties.

ŷ
(
xj
)

= b +
n

∑
j=1

wjxj (5)

J(wj, b) =
1

2m

m

∑
k=1

(
ŷ(xjk) – yk

)2

︸ ︷︷ ︸
OLS

+ αρ
n

∑
j=1

∣∣wj
∣∣

︸ ︷︷ ︸
l1

+
α(1 – ρ)

2

n

∑
j=1

w2
j︸ ︷︷ ︸

l2

(6)
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3.2. Non-parametric Algorithms

The so-called non parametric algorithms have no trainable parameters and and as a result, they
get their name. An example of this kind of algorithm is the K-Nearest Neighbors [113] (KNN) is an
instance-based technique that depends on memorizing the training dataset. The "K" in the method’s
name signifies the number of training data examples nearest to the point being examined, which are
considered when making predictions. This is the primary hyperparameter of the method.

Decision Trees (DTs) [114] constitute a form of ML algorithm used to tackle classification and
regression issues. The algorithm constructs a tree-like model illustrating the connections between
input features and target variables. Every node in the tree represents a decision of input features, and
each branch corresponds to a possible outcome of that decision. The leaves of the tree denote the final
prediction or classification outcome. The algorithm’s objective is to identify the optimal set of splits
that most effectively separate the data, maximizing the homogeneity within each resulting subset. This
is accomplished by using criteria such as Information gain or Gini impurity to determine the most
suitable feature for data splitting at each node [114]. The depth at which a feature is used as a decision
node in the tree is indicative of its relative importance, as it reflects the degree to which the feature
contributes to the reduction of impurity. Additionally, a feature’s importance increases as it is more
frequently used in a tree’s split points resulting in a greater impurity reduction. DTs provide several
advantages such as interpretability, handling both continuous and categorical data, user-friendliness,
and fast prediction times. However, they also have some drawbacks, such as being susceptible to
overfitting and a tendency to generate complex trees that are challenging to interpret [114]. Addressing
these challenges, various algorithms have been devised, such as Random Forests, which is an ensemble
of DTs [115], and Gradient Boosted Decision Trees, a boosting technique for DTs [116].

3.3. Ensemble Trees

3.3.1. Random Forests

Random Forest [115] (RF) is an ensemble ML technique that relies on multiple DTs as its base
learners, creating a multitude of trees and fusing their predictions to deliver a final result. This
approach aims to tackle the overfitting issue often found in single DTs by aggregating the outputs
of several trees. In the RF algorithm, each DT is formed using a random portion of the training
data and a random set of features, expanding to its allowed full depth with the ultimate prediction
determined by averaging the predictions of individual trees. Employing random data and feature
subsets effectively addresses overfitting, as each tree has access to only a limited part of the data and
is less prone to fit the data’s noise. Nonetheless, random forests can be computationally demanding,
particularly when working with large datasets, and interpreting random forests can be more complex
than single DTs or linear models because the predictions are averaged across numerous DTs. Despite
these drawbacks, RFs have earned popularity and extensive use due to their simplicity, adaptability,
and impressive performance in a broad array of applications. An adaptation of RF algorithm is the
Extremely Randomized Trees (ERTs) which introduced by Geurts et al. [117] in 2006. This method aims
to further reduce the correlation between the trees in the forest to decrease overfitting and enhance the
stability of the predictions. In ERTs, the feature selection process at each split in the DTs is randomized
also, instead of using a greedy optimization algorithm like traditional DTs. Alongside random feature
selection, ERTs also employ random thresholds for each feature at every split [117]. By incorporating
randomness into the feature selection process, ERTs reduce the correlation between the trees in the
forest and make the final predictions more resilient to minor changes of the data. This can lead to
enhanced generalization performance, particularly when handling noisy data [117].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2023                   doi:10.20944/preprints202305.0737.v1

https://doi.org/10.20944/preprints202305.0737.v1


9 of 31

3.3.2. Boosted Trees

Boosted trees come in several variations, each with their distinct advantages and disadvantages.
Adaboost (Adaptive Boosting) [118,119] is among the earliest boosting algorithms. Its fundamental
principle is to assign higher weights to challenging to predict instances and lower weights to easily
predicted instances. The algorithm trains a weak learner on the weighted training data and adjusts the
weights based on the weak learner’s performance. This process iterates, with each iteration training a
weak learner and updating the weights. The final prediction is derived by combining all weak learners’
predictions through weighted majority voting.

Gradient Boosting (GBoost) [116] initiates by fitting a simple decision tree to the training data,
followed by fitting another decision tree to the residuals (the discrepancy between the actual target
values and the first tree’s predictions), and so forth. By integrating multiple trees’ predictions, the
algorithm strives to rectify previous trees’ errors and incrementally enhance the model’s overall
performance. The central concept of Gradient Boosting is to utilize gradient information to direct
model improvement. The gradient information stems from the loss function, which measures the
difference between the actual target values and the predictions. The algorithm fits the subsequent tree
to the loss function’s negative gradient concerning the prediction to minimize the loss. Equation (7)
explains the general idea behind Gradient Boosting.

F(x) = Fn–1(x) + βnTn(x) (7)

where F(x) is the final prediction of the model, Fn–1(x) is the prediction of the previous iteration,
Tn(x) is the n-th tree model in the ensemble, βn is the weight assigned to the n-th tree model.

The weights βn are optimized to minimize the cost function J (Equation (8)), which measures the
difference between the true values and the model’s predictions.

J(βn) =
m

∑
i=1

L(yi, Fn–1(xi) + βnTn(xi)) (8)

where Fn–1(x) is the prediction of the previous iteration, m is the number of samples, and L is the
loss function.

The learning rate, also referred to as shrinkage or step size, governs the increase of adjustment
in each iteration. A smaller learning rate results in slower convergence but generally produces more
precise models.

Gradient Boosting presents several benefits over other ML methods, including its ability to handle
complex non-linear relationships, work with both categorical and continuous variables, and perform
effectively with noisy and incomplete data. However, gradient boosting can be resource-intensive
and may overfit the training data if there are excessive trees or if the learning rate is excessively high.
Furthermore, interpreting gradient boosting models can be more difficult compared to linear models
or individual DTs.

With time, numerous variations of Gradient Boosting have arisen. Some of the most prominent
versions of Gradient Boosting include the following: Microsoft’s Light Gradient Boosting or
LightGBM [120] has gained recognition due to its speed and effectiveness. Created for large-scale,
high-dimensional datasets, LightGBM optimizes memory usage and training time. Its gradient-based
one-side sampling (GOSS) method, which randomly samples a subset of instances for training each
tree, is a key feature that minimizes model bias and improves performance. CatBoost [121,122]
employs multiple overfitting prevention techniques such as regularization and early stopping to
prevent the model from fitting data noise. XGBoost (eXtreme Gradient Boosting) [123], a gradient
boosting implementation, can manage missing values and outliers by partitioning data into smaller
segments and fitting trees to the subsets. XGBoost also uses regularization techniques to prevent
overfitting and leverages parallel processing for rapid and efficient performance on large datasets.
In contrast, Natural Gradient Boosting (NGBoost) [124] prioritizes model interpretability through a
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probabilistic framework for decision trees, enabling uncertainty estimation and generating meaningful
feature importances that are not easily achieved in conventional gradient boosting.

3.4. Feedforward Neural Networks

ANNs are information processing structures initially inspired by the functioning of the human
brain and biological neurons [125]. Specifically, the Multilayer Perceptron (MLP) [126–128], also
known as Feedforward Neural Networks, is a type of ANN that serves as a potent learning model for
addressing both classification and regression challenges. The MLP consists of artificial neurons called
perceptrons or units and organized in layers. Its architecture is composed of successive fully connected
layers, with the input layer containing the predictors or independent variables and the final output
holding the target variable. Layers and units placed between the input and output layers are referred to
as hidden layers and units. Within a hidden layer, each neuron obtains activations from every neuron
in the preceding layer and sends its activation to all units in the following layer. More specifically, each
neuron’s value is calculated by applying a non-linear function, known as the activation function, to
the previous layer units linear combination. The coefficients of the aforementioned linear combination
are divided into weights (Wl

ij) and biases (bl
i ), collectively so-called as the trainable parameters of

layer l. The process of mapping input features to the output target, called Forward Propagation of a
neural network and illustrated by Equation (9). The value ali of the ith neuron in the lth layer depends
on the jth neuron in the (l – 1)th layer, while the vector α0

j represent the input attributes. Initially,
random values and zeros assigned to weights and biases, respectively, at the beginning of training.
During training, the process of estimating the cost function (J) partial derivatives with respect to
trainable parameters (Wl

ij, bl
i ) is known as back-propagation (Equations (10)) [129,130]. It begins by

determining the error at the output layer through a comparison between the predicted target values ŷ
and the actual target values y. The error is then propagated backwards through the network. This
procedure is iterated for every layer until the error reaches the input layer. To minimize the losses
between the predicted and actual target values in the training set, these parameters are updated in
each step according to the gradient descent optimization algorithm. This algorithm operates by taking
incremental steps in the direction of the negative gradient of the cost function concerning the trainable
parameters. The update rules for weights and biases are provided by Equations (11). Furthermore,
the complexity of the MLP is influenced by the number of hidden layers and units, as well as the
regularization parameter (λ), which functions similarly to the explanation in subsection 3.1, resulting
in Equation (12) for the regularized cost function.

ali = σ

(
∑

j
Wl

ija
l–1
j + bl

i

)
︸ ︷︷ ︸

zli

(9)

∂J

∂Wl
ij

=

(
∂J

∂ali
� ∂ali

∂zli

)
al–1

j ,
∂J

∂bl
i

=
∂J

∂ali
� ∂ali

∂zli
(10)

where � denotes element-wise multiplication.

Wl
ij ←Wl

ij – α
∂J

∂Wl
ij

, bl
i ← bl

i – α
∂J

∂bl
i

(11)

where α is the learning rate, and← denotes assignment.

Jreg(Wij, bi) = J(Wij, bi) + λ
L

∑
l=1

n

∑
i=1

m

∑
j=1

(
Wl

ij

)2
(12)

where L is the number of layers, n is the number neurons of layer l, m is the number neurons of layer
l – 1, and λ is the regularization parameter.
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3.5. Hyperparameter Tuning and K-fold Cross Validation

The trainable parameters of every parametric ML model could be calibrated after minimization of
the cost function on the training set, however this is not the case about the hyperparameters which
should be set before the training. Consequently, each variation of hyperparameters’ values configured
a different instance of a ML method and by comparing the performance of multiple fitted models
their optimized values are determined. Fine-tuned hyperparameters could be significantly reduce
the bias, variance effects and results in a model with high generalization ability. Hyperparameter
tuning is frequently performed using the Grid Search method [131]; however, the Randomized Search
Cross-Validation (CV) method [132] can be more efficient when dealing with a large number of
hyperparameters and their possible values, as it reduces computational expense. This method select
randomly a subset of the possible hyperparameters values combinations and utilizing K-fold CV [133]
to assess their performance. According to K-fold procedure, the dataset would be divided in K sections
and every ML algorithm should be fitted K times in different every time training set constituted by
K-1 parts and evaluated using the remaining Kth part. Afterward, for all of the examined models, the
mean cross-validation predicting capacities, which have emerged from the K-fold cross-validation
procedure, will be compared, enabling a conclusion to be reached concerning the best performing
model for the given problem. All of the above processes are implemented using scikit-learn [134]
which is an open source and freely accessible ML library built in Python.

3.6. Interpretation Methods

While interpreting a single decision tree can be relatively straightforward by analyzing its
structure, including the impurity decrease at each node, gradient boosting models encompass
numerous regression trees, making understanding them through individual tree examination more
challenging. Moreover, the complexity of ANNs exacerbates interpretability difficulties of high-level
ML methods. To address this issue, model-agnostic interpretation approaches have been developed
recently [63]. This kind of techniques could be used to explain the predictions of any previous described
ML method, without consider the internal structure of the model. In this section, several methods
that have been developed to distill and interpret advanced and complex ML models, such as gradient
boosting models or ANNs, are described.

3.6.1. Global Interpretation Methods

Contrary to local methods, which emphasize in particular instances, global interpretation
approaches elucidate the mean performance of ML models. By employing expected values contingent
on data distributions, these approaches facilitate the identification of prevailing trends. An illustrative
example is the Partial Dependence Plot (PDP) [116,135], a type of feature effect plot that presents the
projected outcome whilst marginalizing extraneous features. In essence, the PDP can be seen as the
anticipated target response based on the input features of interest. Due to human perceptual constraints,
the set of input features of interest should be limited, typically encompassing one or two features. For a
single selected feature, the partial dependence function, at a specific feature value, indicates the average
prediction when all data points are assigned that particular value. Additionally, Accumulated Local
Effects (ALE) [136] plots extend the concept of PDP by accounting for potential feature interactions and
correlations. Also, the Permutation feature importance, introduced by Breiman [115], is another global
method that assesses the impact of individual features by measuring the change in model performance
when the feature values are randomly shuffled, thereby breaking the relationship between the feature
and the target.

3.6.2. Local Interpretation Methods

In contrast, local interpretation methods such as Local Interpretable Model-agnostic Explanations
(LIME) [137] and SHapley Additive exPlanations (SHAP) [138] focus on explaining individual
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predictions. More specifically, these methods clarify each feature’s contribution to an individual
prediction, which can be positive, negative, or neutral. LIME creates an artificial dataset in the vicinity
of the examined data point, using the predictions of the complex model as ground truth. In the next
step, fit an interpretable model (e.g., linear or decision tree) to the artificial dataset, to approximate the
complex model locally with a simpler one. This process offers insights into the model’s behaviour for
a specific data instance. SHAP is an approach for interpreting ML models that provides a unified and
scalable framework for explaining any ML model’s output. SHAP values, rooted in cooperative game
theory [139], offer a unified measure of feature importance that represent the contribution of each
feature to a specific prediction. This technique assess a feature’s influence on a prediction by taking
into account all possible combinations of feature values and aggregating the resulting predictions.
SHAP values quantify a feature’s contribution to the prediction while considering feature interactions,
and the sum of contributions for all features in a prediction is equal to the difference between the
prediction and the average prediction. Choosing between SHAP and LIME depends on the context, as
no consensus exists on which is universally better.

4. Results and Discussion

4.1. Hyperparameter Tuning and ML Models Comparison

An extensive examination of 10,000 distinct variations for the majority of ML methods outlined
in Section 3 was conducted, utilizing the Randomized Search CV procedure. Each variation, also
referred as an instance of an ML method, was configured with different values and combinations of
hyperparameters. A total of 15 ML methods were assessed to determine the most efficient method for
predicting the cumulative seismic damage under MS-AS sequences. The best performing instances
for each of the examined ML methods are presented in Figure 3, which showcases their performance
in terms of the determination coefficient R2. This coefficient was calculated for both the training and
CV sets during the K-fold process, as well as for the final test set, which was reserved for unbiased
evaluation and comprised 15% of the overall dataset. An absolute improvement of 10% in R2 values
was observed when comparing linear models to the most recently developed and advanced ML
methods (ensemble, MLP). Our results highlight the high efficiency of the majority of ensemble
methods, including both boosted and randomized trees, for predicting the cumulative seismic damage.
The MLP model exhibits a slightly more effective bias-variance balance, as it achieves more similar
performance across training, CV, and test sets in comparison with the other advanced models. The
most efficient model showcased an instance of the LightGBM method which demonstrate the better
CV and test performance, while the the poorest performance demonstrated by KNN, with R2 ≈ 0.4 .
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Figure 3. Side-by-Side Bar Plot Comparing the Performance of Different ML Methods on Training
(10-fold), CV (10-fold), and Test Sets.

In the case of linear models (Section 3.1), regularization factors ranging from 0 to 1 were employed
as hyperparameters. For DT, the splitting criterion options included Squared Error, Friedman MSE,
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Absolute Error, and Poisson, while the maximum tree depth ranged from 0 to 100, both serving as
hyperparameters. In the context of random forests, the number of trees varied from 0 to 200, with
the splitting criterion, maximum tree depth, and maximum number of features for selection during
the splitting procedure all functioning as hyperparameters. In contrast, the splitting criterion is not
an individual hyperparameter for boosted trees, and consequently, exploration regarding this aspect
is not conducted for this ML method family. However, the learning rate, a hyperparameter which
controls the magnitude of updates during the training process of boosted trees, is included.

In Figure 4, the evolution of R2 against the number of trees is compared for different types of boosted
trees. The colored bands represent the influence of other hyperparameters on the performance of each
method, with a 95% confidence interval. The AdaBoost method exhibits the poorest performance and
lacks the ability to control overfitting as the number of trees increases. In contrast, LightGBM and XGBoost
demonstrate the most optimized and robust performance, with higher R2 values and lower variability
as the number of trees increases. Additionally, CatBoost, GBoost, and NGBoost, in descending order,
present intermediate R2 values, with GBoost exhibiting more robust behavior in response to changes in
the number of trees. In summary, the majority of boosted trees display instances with high prediction
performance, exceeding 0.9. The comparison between the two examined methods of randomized trees, is
illustrated in Figure 5. The figure presents the evolution of the mean determination coefficient versus the
number of base learner trees, with the hatched band depicting the uncertainty introduced by the other
hyperparameters with the same as in case of boosted confidence interval.
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Figure 4. The evolution of R2 versus the number of base learner trees for Boosted Trees.
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Figure 5. The evolution of R2 versus the number of base learner trees for Random Forest Algorithms.
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In the case of Multi-Layer Perceptrons (MLPs), the regularization parameter ranged from 0 to 1.
MLPs consisted of one, two, or three hidden layers, each containing between 1 and 200 neurons. The
activation function of the hidden neurons varied among identity (no activation function), hyperbolic
tangent, and ReLU (Rectified Linear Unit); however, no activation function was consistently applied to the
output neuron because the examined problem was being addressed as regression. The sigmoid function
was not investigated, as it is more appropriate for use in the output neuron of an MLP classifier.

In Figure 6, the mean R2 score, calculated in the CV sets using the K-fold validation procedure
with K equal to 10, is depicted as being plotted against the total number of hidden neurons composing
the MLP. The MLPs utilizing the ReLU activation function appear to exhibit better performance, followed
by those with the Tanh activation function. The MLPs with no activation function essentially represent
linear mapping, and their R2 scores are similar to the results from linear models (Figure 3). Additionally,
increasing the number of hidden units beyond 100 seems to have little impact on the method’s performance,
as the R2 score plateaus around a constant value for each activation function after this point.
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Figure 6. The evolution of R2 versus the total number of neurons, for each activation function.

4.2. Interpretation of the Best ML Model

Generally, input features have varying levels of contribution to predicting the target outcome, and
many of them may not be significant. The primary goal in model interpretation is to identify the key features
and grasp how they influence the prediction of the target outcome. In this section, the interpretability of
the devised ML model is explored, beginning with a discussion of feature importances.

4.2.1. Features Importances

Many past studies in earthquake engineering have been conducted to identify the most critical
seismic parameters causing structural damage after an individual earthquake [34,69–77]. However,
only a few [10,140,141] consider the accumulation of damage due to successive earthquakes and
employ classical statistics to achieve this.

As the hyperparameter tuning and comparison of the examined ML methods are concluded, 8 of
them are demonstrated to have high efficiency with R2 > 0.9. The best ML models are instances of the
ensemble and MLP methods and more specifically the more efficient is shown to be the LightGBM
model with 195 trees, a maximum depth of 4, a maximum of 17 features (all) and learning rate equal to
0.1589. The Permutation technique, a global model-agnostic interpretation method, is implemented
to extract the feature importances for the best models. The relative feature importances of the most
efficient models, are presented in Figure 7. As observed, the majority of models agree that the most
crucial predictor of the final damage is the pre-existing damage DIG,PA,1st, followed by IFVF, SIH

and PGA
PGV .
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Figure 7. Feature Importances for the ML methods with R2 > 0.9, according to Permutation method.

Individual DTs inherently perform feature selection by choosing suitable split points based on
impurity reduction, which can be utilized to assess the significance of each feature. By measuring
the decrease in impurity contributed by each feature throughout the tree, we can estimate its relative
importance in the decision-making process. Since the most suitable ML method for our problem
turned out to be LightGBM, a tree-based ensemble method, the notion of significance can be applied
to our model by averaging the impurity-based feature importance across all trees. In Figure 8, the
importances of input features, computed using three model-agnostic methods (LIME, SHAP, and
Permutation) and the impurity-based method, which is only applicable to decision tree-oriented
ML models, are presented. The y-axis of each subplot displays the features in descending order of
importance according to the respective interpretation method. Both LIME and SHAP, as previously
described, calculate the contributions of each feature for every data point individually. To obtain
comprehensive importances, the mean absolute attribution and value for each method are calculated,
respectively, over the entire dataset. As depicted in Figure 8, all interpretation methods identify the
initial damage DIG,PA,1st as the most significant feature. The majority of interpretation methods indicate
the second most important feature and the most significant among intensity measures (IMs) to be IFVF,
except for the impurity-based explanation, which identifies SIH. LIME and SHAP rank SIH as the third
most important IM (third input feature), while Permutation suggests PGA

PGV and Impurity proposes IAS.
The examined methods also, do not agree on the third most important IM: LIME identifies it as CAV,
SHAP as PGA

PGV , Permutation as SIH, and Impurity as PGD.
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Figure 8. Feature Importances for the LightGBM best model, using different interpretation methods.

However, feature importances does not provide insights into whether a positive or negative
change in an input variable leads to a corresponding positive or negative influence on the output
variable, or the contrary.
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4.2.2. Local Explanation Methods (LIME, SHAP)

On the other hand, local interpretation methods offer numerous advantages over other methods
for explaining model predictions, including being model-agnostic, enabling explanation of individual
predictions, and providing a unified approach for interpreting both linear and non-linear models.
By considering each feature’s contribution and its interactions with other features, deliver accurate
explanations of the model’s prediction. The sum of SHAP values for a given instance is equal to the
difference between the prediction and the expected prediction value over the entire dataset, ensuring
the model’s overall behaviour is considered. For a model f(x) that maps input x to a prediction, the
SHAP value of feature i for a specific sample x is defined in Equation (13).

φi(x) = ∑
S⊆T

|S|!(|T| – |S|)!
|T|!

[f(xS ∪ xi) – f(xS)] (13)

where T is the set of all feature indices and xS is the input vector with only the features in S present.
The formula represents the average difference that adding feature i to the input makes over all possible
combinations of the remaining features.

LIME assesses the impact of each input variable on an individual example basis. The distribution
of LIME attributions across the entire dataset is depicted in Figure 9a. On the y-axis, the input features
are arranged in descending order based on their mean absolute LIME per feature, as discussed in the
previous section. Features such as DIG,PA,1st, IFVF, and SIH appear to have a positive impact, while the
PGA
PGV ratio suggests a negative impact on the final damage outcome. The distribution of SHAP values
for each predictor throughout the overall dataset is depicted in Figure 9b. The x-axis values display
the SHAP values for each contributing variable, signifying their impact on the final damage in terms
of DIG,PA, while the y-axis arranges the predictors according to their importance. The colors in the
figure represents the values of the input features. For instance, increased values of DIG,PA,1st, IFVF, SIH,
and PGV lead to a higher estimated final damage, DIG,PA. On the other hand, lower values of PGA

PGV
and PGA result in higher SHAP values, which negatively influence the final damage. To examine the
contribution variation of pre-existing damage and consequent seismic shock severity characteristics
across different levels of the final damages, the dataset and the corresponding LIME attributions and
SHAP values were grouped according to the following damage states: Minor (0 < DIG,PA ≤ 0.3), Moderate
(0.3 < DIG,PA ≤ 0.6), Severe (0.6 < DIG,PA ≤ 0.8), Collapse (0.8 < DIG,PA). The mean absolute values for
each of the above-mentioned interpretation methods were calculated per damage state. The contributions
of all the IMs are summarized and compared to those of the initial damage. In Figure 10, the results of the
above process are displayed, with values normalized to unity. This illustration highlights the comparison
between the contributions of seismic parameters and those of initial damage across each damage state.
Quite different results emerge for each interpretation method, but both agree that the contribution of IMs
is larger than that of DIG,PA,1st for minor damages. According to LIME, both IMs and established damage
contribute equally for the three higher damage states. In contrast, SHAP estimates a larger impact for IMs,
which is maximized for moderate damage and decreases as the damage level increases.

4.2.3. Global Explanation Methods (PDP and ALE)

Both PDPs and ALE, as global model-agnostic interpretation methods, can describe the general
trends of our ML model with respect to input variables and depict the relationship between the
cumulative seismic damage and a group of relevant predictors.

Figure 11 summarizes both PDPs and ALE results for the majority of the damage predictors. In
each subplot, the y-axis depicts the expected value of the dependent variable, which in our case is
the final damage (DIG,PA), while the x-axis represents the value of the examined damage predictor.
The positive impact of the initial damage on the final damage across its entire range of values can be
observed. There is a sharp increase to the point of unity initial damage, and beyond that, the trend
levels off horizontally. IFVF has a positive impact for values between 50 and 150 cm · s–0.75, and zero
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impact for smaller and larger values. The corresponding final damage ranges from 0.25 up to 0.56
by PDP and 0.25 to 0.65 by ALE. As observed, a larger cumulative damage range affected by IFVF is
identified by ALE. The SIH has a positive impact for values between 80 and 180 cm, which appear to
be responsible for a greater increase in the final damage. Also, final damage values between 0.3 and
0.45 seem to be influenced by this parameter. Subsequently, values of PGA

PGV smaller than 15 s–1 appear
to have a negative impact on the final damages and larger values present zero impact. CAV has an
increasing outcome in the interval of 500–1500 cm

s , increasing the damage from 0.3 to 0.4, and zero effect
outside of this range. IRG appears to have a predominantly negative influence on damage in the range
of [0.2, 0.4]. Other seismic parameters (PGD, PGV, IAS, PGA, SMDBolt, IA) seem to have less influence
on shaping the final damage, affecting its values between 0.3 and 0.4. All the other input parameters
appear to have very small or zero impact on the prediction of final damage, predicting values around
0.33, which is the mean output of our total sample. As a general observation, ALE indicates wider
ranges of the dependent variable affected in comparison with PDP for every input feature.
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Figure 10. Stacked bar plot of grouped a) LIME Atributions b) SHAP values for IMs and DIG,PA,
normalized to unity.
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Figure 11. The expected value of DIG,PA in respect with each examined input feature, according to
PDP and ALE methods.

In summary, this section explored the interpretability of the devised ML model by discussing
feature importances, local explanation methods (LIME and SHAP), and global explanation methods
(PDP and ALE). The results showed that initial damage, IFVF, and SIH are among the most crucial
predictors of the final damage. Additionally, the local explanation methods provided insights into the
positive or negative influence of each input variable on the cumulative seismic damage, while the global
explanation methods described the general trends of the ML model with respect to damage predictors.

5. Conclusions

In this study, interpretable ML models to estimate the cumulative damage of an eight-story RC
frame subjected to earthquake sequences were presented and analysed. Through the application of
local and global explanation methods, a more profound understanding of the impact of individual
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features and their interactions in the context of ultimate seismic damage was achieved. Local
explanation techniques, LIME and SHAP, delivered in-depth insights into how each feature influences
the prediction on an individual level, while global explanation approaches, PDP and ALE, facilitated
comprehension of the general trends of the ML model concerning input variables. The utilization
of these interpretation methodologies contributes to the creation of more transparent and interpretable
models, which is of paramount importance for the implementation of ML methods in earthquake
engineering problems. Our research investigated the accumulation of damage during a sequence of
earthquakes, identifying crucial predictors and understanding their impact on the final damage (DIG,PA).
The input variables for the regression problem were divided into two distinct physical classes: pre-existing
damage from the initial seismic event and the characteristics of the subsequent ground motion expressed
using the Park and Ang damage index (DIG,PA,1st) and 16 Intensity Measures (IMs), respectively.
The main outcomes are:

• The most efficient model for predicting final seismic damage under MS-AS sequences was an
instance of the LightGBM method with R2 greater than 0.95, while the method with the poorest
performance was KNN, with an R2 value of approximately 0.4.

• Among the examined boosted trees, LightGBM and XGBoost demonstrated the most optimized
and robust performance even against small changes in their hyperparameters. Moreover, they
present great resistance to overfitting as the number of trees increases.

• In the case of Multi-Layer Perceptrons (MLPs), the ReLU activation function appeared to yield
better performance, followed by the Tanh activation function. Also the MLP model present slightly
better bias-variance balance than the other advanced ML models.

• All the interpretation methods identified the initial damage DIG,PA,1st as the most significant
feature followed by the IMs of the subsequent seismic shock. However, the ranking of the
IMs importance is varying between the adopted approaches. The majority of interpretation
methods indicate the IFVF as the most important IM, except for the impurity-based explanation,
which identified SIH. As the second most important IM, LIME and SHAP ranked SIH, although
Permutation ranked PGA

PGV , and Impurity ranked IAS.
• In case of examining the effect of all the IMs in total, both LIME and SHAP local explanation

methods show that the contribution of the subsequent ground motion is larger than that of initial
damage DIG,PA,1st. In general, the effect of the initial damage tends increase as the final increases.
However, they differ in their estimation of contributions for higher damage states.

• The analysis of PDPs and ALE reveals key insights into the effects of damage predictors on the
final damage. The pre-existing damage demonstrates a positive influence across the entire range
of cumulative damage. Additionally, IFVF and SIH present a notable positive impact on moderate
final damages. In contrast, PGA

PGV values smaller than 15 s–1 seems to have a negative impact on
moderate final damages, while CAV and IRG demonstrate more complex effects in narrower range
of the final damage.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine learning
RC Reinforced Concrete
IM Intensity Measure
NN Neural Network
ANN Artificial Neural Network
MLP Multi-Layer Perceptron
LIME Local Interpretable Model-agnostic Explanations
SHAP SHapley Additive exPlanations
ALE Accumulated Local Effects
PDP Partial Dependence Plot
ag(t) ground acceleration signal
vg(t) ground velocity acceleration signal
dg(t) ground displacement signal
Hd Husid Diagram
PSV Pseudo-velocity spectrum
PGA Peak Ground Acceleration
PGV Peak Ground Velocity
PGD Peak Ground Displacement
IA Arias intensity
CAV Cumulative Absolute Velocity
IAS Seismic intensity after Araya and Saragoni
SMDTB Strong motion duration after Trifunac and Brady
SMDROG Strong motion duration after Reinoso, Ordaz and Guerrero
SMDBolt Strong motion duration after Bolt
arms Root-mean-squared of ground acceleration signal
Ic Characteristic Intensity
IFVF Potential damage measure after Fajfar, Vidic and Fischinger
IRG Intensity measure after Riddel and Garcia
SIH Spectral intensity after Housner
DIG,PA,1st The overall Park and Ang damage index after the first seismic shock (input feature)
DIG,PA The overall Park and Ang damage index after the second seismic shock (target)
CV Cross-Validation
AdaBoost Adaptive Boosting
DT Decision tree
ERT Extremely Randomized Trees
GBoost Gradient boosting
KNN K nearest neighbors
LightGBM Light Gradient Boosting Machine
LR Linear Regression
Lasso Lasso Regression
RR Ridge Regression
EN Elastic Net
RF Random forest
NGBoost Natural Gradient Boosting
XGBoost eXtreme Gradient Boosting
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CatBoost Categorical Boosting
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Figure A1. Histograms of Input Features (DIG,PA,1st and IMs) and Target (DIG,PA).

Table A1. Seismic Metadata for the Real Sequences.
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1st Shock 2nd Shock

Region Date M Date M Station Code / Name Component PGA1st PGA2nd
(g) (g)

Ancona 1972-06-14 4.2 1972-06-21 4.0 ANP N-S 0.220 0.410
Friuli 1976-09-11 5.8 1976-09-15 6.1 BUI N-S 0.233 0.110

E-W 0.108 0.093
GMN N-S 0.328 0.324

E-W 0.299 0.644
Montenegro 1979-04-15 6.9 1979-04-15 5.8 PETO E-W 0.304 0.089

1979-05-24 6.2 BAR N-S 0.371 0.201
E-W 0.360 0.267

HRZ N-S 0.215 0.066
E-W 0.254 0.076

ULO N-S 0.282 0.033
E-W 0.236 0.030

Imperial Valley 1979-10-15 6.5 1979-10-15 5.0 Holtville Post Office 315 0.221 0.254
Mammoth Lakes 1980-05-25 6.1 1980-05-25 5.7 Convict Creek 90 0.419 0.371
Irpinia 1980-11-23 6.9 1980-11-24 5.0 BGI N-S 0.129 0.031

E-W 0.189 0.033
STR N-S 0.224 0.018

E-W 0.320 0.032
Gulf of Corinth 1981-02-24 6.6 1981-02-25 6.3 KORA Trans 0.296 0.121

Logn 0.240 0.121
Coalinga 1983-07-22 5.8 1983-07-25 5.2 Elm (Old CHP) 90 0.519 0.677

0 0.341 0.481
Kalamata 1986-09-13 5.9 1986-09-15 4.8 KAL1 Trans 0.269 0.140

Logn 0.232 0.237
KALA Trans 0.296 0.152

Logn 0.216 0.334
Spitak 1988-12-07 6.7 1988-12-07 5.9 GUK N-S 0.181 0.144

E-W 0.182 0.099
1989-01-08 4.0 1989-01-08 4.1 NAB E-W 0.206 0.217

Georgia 1991-05-03 5.6 1991-05-03 5.2 SAMB N-S 0.354 0.208
E-W 0.504 0.122

Erzican 1992-03-13 6.6 1992-03-15 5.9 AI 178 ERC MET N-S 0.411 0.032
E-W 0.487 0.039

Ilia 1993-03-26 4.7 1993-03-26 4.9 PYR1 Logn 0.109 0.100
Northridge 1994-01-17 6.7 1994-01-17 5.9 Moorpark - Fire Station 90 0.193 0.139

180 0.291 0.184
1994-01-17 5.2 Pacoima Kagel Canyon 360 0.432 0.053
1994-03-20 5.3 Rinaldi Receiving Station 228 0.874 0.529

Sepulveda Hospital 270 0.752 0.102
Sylmar - Olive Med 90 0.605 0.181

Umbria Marche 1997-09-26 5.7 1997-09-26 6.0 CLF N-S 0.276 0.197
E-W 0.256 0.227

NCR N-S 0.395 0.502
Kalamata 1997-10-13 6.5 1997-11-18 6.4 KRN1 Trans 0.119 0.071

Logn 0.118 0.092
Bovec 1998-04-12 5.7 1998-08-31 4.3 FAGG N-S 0.024 0.023

Continued on next page
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1st Shock 2nd Shock

Region Date M Date M Station Code / Name Component PGA1st PGA2nd
(g) (g)

E-W 0.023 0.026
Azores Islands 1998-07-09 6.2 1998-07-11 4.7 HOR N-S 0.405 0.082

E-W 0.369 0.092
Izmit 1999-08-17 7.6 1999-11-12 7.3 ARC N-S 0.210 0.007

E-W 0.132 0.007
ATK N-S 0.102 0.016

E-W 0.167 0.016
DHM N-S 0.090 0.017

E-W 0.084 0.017
FAT N-S 0.181 0.034

E-W 0.161 0.024
KMP N-S 0.102 0.014

E-W 0.127 0.017
ZYT N-S 0.119 0.021

E-W 0.109 0.029
Athens 1999-09-07 5.9 1999-09-07 4.3 SPLB Trans 0.324 0.059

Logn 0.341 0.071
Chi-Chi 1999-09-20 7.6 1999-09-20 6.2 TCU071 N-S 0.651 0.382

E-W 0.528 0.193
TCU129 N-S 0.624 0.398

E-W 1.005 0.947
1999-09-25 6.3 TCU078 N-S 0.307 0.387

E-W 0.447 0.266
TCU079 N-S 0.424 0.626

E-W 0.592 0.776
Duzce 1999-11-12 7.3 1999-11-12 4.7 AI 010 BOL E-W 0.820 0.060
Bingöl 2003-05-01 6.3 2003-05-01 3.5 AI 049 BNG N-S 0.519 0.147

E-W 0.291 0.068
L Aquila 2009-04-06 6.1 2009-04-07 5.5 AQK N-S 0.353 0.081

E-W 0.330 0.090
AQV N-S 0.545 0.146

E-W 0.657 0.129
AVZ N-S 0.069 0.021

2009-04-09 5.4 AQA N-S 0.442 0.057
Darfield 2010-09-03 7.0 2011-02-21 6.2 Botanical Gardens S01W 0.190 0.452

N89W 0.155 0.552
Cashmere High School S80E 0.251 0.349
Cathedral College N26W 0.194 0.384

N64E 0.233 0.478
Christchurch Hospital N01W 0.209 0.346

S89W 0.152 0.363
Emilia 2012-05-20 6.1 2012-05-29 6.0 MRN N-S 0.263 0.294

E-W 0.262 0.222
2012-06-03 5.1 2012-06-12 4.9 T0827 N-S 0.490 0.585

E-W 0.263 0.234
Central Italy 2016-08-24 6.0 2016-08-24 5.4 AQK E-W 0.050 0.010

2016-08-26 4.8 AMT N-S 0.375 0.336
E-W 0.867 0.325

2016-10-26 5.4 2016-10-26 5.9 CMI N-S 0.341 0.308
E-W 0.720 0.651

CNE E-W 0.556 0.537
2016-10-30 6.5 CIT N-S 0.052 0.213

Continued on next page
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1st Shock 2nd Shock

Region Date M Date M Station Code / Name Component PGA1st PGA2nd
(g) (g)

E-W 0.092 0.325
2016-10-26 5.9 2016-10-30 6.5 CLO N-S 0.193 0.582

E-W 0.183 0.427
CNE N-S 0.380 0.294
MMO N-S 0.168 0.188

E-W 0.170 0.189
NOR E-W 0.215 0.311

2016-10-30 6.5 2016-10-31 4.2 T1213 N-S 0.867 0.185
E-W 0.794 0.212

2017-01-18 5.5 2017-01-18 5.4 PCB N-S 0.586 0.561
E-W 0.408 0.388

Dodecanese Islands 2019-08-08 4.8 2020-10-30 7.0 GMLD N-S 0.450 0.899
E-W 0.673 0.763
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