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Abstract: Attackers are perpetually modifying their tactics to avoid detection and frequently 
leverage legitimate credentials with trusted tools already deployed in a network environment, 
making it difficult for organizations to proactively identify critical security risks. Network traffic 
analysis products have emerged in response to attackers’ relentless innovation, offering 
organizations a realistic path forward for combatting creative attackers. Additionally, thanks to the 
widespread adoption of cloud computing, Device Operators (DevOps) processes, and the Internet 
of Things (IoT), maintaining effective network visibility has become a highly complex and 
overwhelming process. What makes network traffic analysis technology particularly meaningful is 
its ability to combine its core capabilities to deliver malicious intent detection. In this paper, we 
propose a novel darknet traffic analysis and network management framework to real-time 
automating the malicious intent detection process, using a weight agnostic neural networks 
architecture. It is an effective and accurate computational intelligent forensics tool for network 
traffic analysis, the demystification of malware traffic, and encrypted traffic identification in real-
time. Based on Weight Agnostic Neural Networks (WANNs) methodology, we propose an 
automated searching neural net architectures strategy that can perform various tasks such as 
identify zero-day attacks. By automating the malicious intent detection process from the darknet, 
the advanced proposed solution is reducing the skills and effort barrier that prevents many 
organizations from effectively protecting their most critical assets. 

Keywords: Darknet; Traffic Analysis; Network Management; Malicious Intent Detection; Weight 
Agnostic Neural Networks; Real-Time Forensics; Shapley Value; Power Predicting Score. 

 

1. Introduction 

Interconnected heterogeneous information systems [1] exchange huge amounts of data per unit 
of time. This information consists of data at rest and data in motion. In the continuous flow model, 
the data arrives in successive streams in a continuous manner, resulting in not being accessible by 
the storage mediums, either temporary or permanently. Flow data is usually large in size, difficult to 
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be processed in real-time, and when processed, it is either destroyed or archived, and is very difficult 
to be recovered again, because the system's memory is typically very small. 

The analysis, monitoring, and categorization of the Internet network traffic [2] is one of the most 
important tasks and characterised  as a specialised solution and a valuable tool that can be used not 
only to effectively deal with the design, management, and monitoring of the critical infrastructure of 
the system, but also for the monitoring of attacks and the study of cybercrime [3]. 

The information exchanged can be requests, responses, or control data, fragmented in the form 
of network packets. When looking at individual network packets, it is extremely difficult to draw 
conclusions and exclude safe conclusions, as the information transmitted between devices on the 
network is fragmented into a number of packets, which are interconnected, containing all the 
information. This arbitrary and occasional nature of the collection of network traffic, while providing 
some information for drawing statistical conclusions, makes the use of typical mathematical analysis 
methods a rather difficult task which favours the network traffic modeling approach [4].  
 Many organizations, in their efforts to improve and enhance their security, collect as much 
web traffic data as possible, analyze it, by correlating it with the services they represent, and compare 
it with historical log files in order to optimize their decision-making process. By analyzing network 
traffic, safe conclusions can be drawn about the network, the users, and the total data usage, making 
it possible to model traffic in order to optimize network resources according to the monitoring needs 
and the control for legal and security issues [5], [6].  More specifically, in cybersecurity, traffic analysis 
can be applied to secure services, guarantee critical data delivery, identify random sources of 
problems, adapt and optimize intrusion prevention and detection solutions, identify cybercriminals, 
and validate forensic data [7]. The two basic methods of network traffic analysis are: 

1. Conventional Packet Filtering (CPI). The basic, conventional way of analyzing network 
traffic, which is also called shallow analysis, is related to the encapsulation process by which 
information is exchanged on a network. This process is a strict way of separating the data 
and metadata contained in the network information. With this method,a complete 
examination of the web traffic can be performed, without any problem regarding privacy 
policy violations. However, the problem with this method is that  only the headers of the 
network packets (metadata) can be extracted, while the actual traffic data (payload of the 
packet), cannot be extracted and analyzed due to the large size, which is also required and 
necessary. The result is, that this method is not appropriate for environments, where the 
security of the transmitted information is an important operating factor. 

2. Deep Packet Inspection (DPI). In-depth packet inspection, also known as full packet 
inspection, is a type of filtering that evaluates the data segment (packet payload) along with 
the packet header that is transmitted, detecting any non-compliance, or redirection of the 
packet to another destination. In short, in-depth package inspection can detect, categorize, 
block, or recall packages that have a specific payload or data that is not detected, categorized, 
blocked, or redirected by the Conventional Packet Filtering. The most basic technique of deep 
packet inspection for the purpose of detecting digital attacks involves pattern or signature 
matching. This method performs packet analysis to detect patterns or signatures mapped 
from a database of known network attacks. The disadvantage of this approach is that it is 
effective only for known attacks, but not for attacks that have not yet been discovered. 

 
The major weaknesses associated with  traffic packet analysis technologies are the following [8]: 
 

1. While the techniques are very effective, especially the DPI method in preventing Denial of 
Service (DoS) - Distributed DoS(DDoS) attacks, buffer overflow attacks, and specific types of 
malwares, they can also be used to create similar attacks from the adversary side, depending 
on  their mode of operation. 

2. They add complexity to the operation of active network security methods and make them 
extremely difficult to manage. In additionThey increase the requirements for computing 
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resources and introduce  significant delays in online transactions, especially in encrypted 
traffic, since the latter requires the reconstruction of messages and entities at higher levels. 

3. Although there are many possible uses, an adverse situation is related to the ease with which 
someone can identify the recipient, or the sender of the content they are analyzing, raising 
privacy concerns. 

4. They do not offer protection against zero-day attacks. 
 

The ever-increasing need for an organization to manage security incidents requires specialized 
analysis services, in order to fully understand the network environment and potential threats. This 
information, combined with cyber threat intelligence from the global threat landscape, allows for an 
informed and targeted response to cyber-related incidents [9]. 

In essence, the information ecosystem and the importance of its applications require the creation 
of a cybersecurity environment with fully automated solutions. These solutions include real-time 
incident handling, analysis, and other security information to identify known and unknown threats 
and reduce the risk for the critical data through a scalable troubleshooting and logging approach [10], 
[11].  

2. Network Management   

In this context, the specialized network traffic analysis services that can be used to secure 
network applications and industrial confidentiality[12]are presented below. 

2.1 Traffic Classification  

Network traffic categorization, is the automated process that classifies network traffic into 
categories, based on evaluation criteria. Each resulting category can be treated differently in order to 
differentiate the services provided to the user and to implement the appropriate security policies. It 
is considered as a very important process in network management, as it is related with all applications 
and services running online, and affects the ways and policies applied for securing and evaluating 
the services in question. It also influences the methodologies associated with the  application rules 
defining  the Quality of Service (QoS) of the network in use [13]. 

There are two basic approaches to classify network traffic: 
1. Classification based on the network packet payload method, by which the packets are sorted 

by protocols and domains of that payload, such as Layer 2, for instance Medium Access 
Control (MAC) address, Layer 3, for instance Internet Protocol (IP)IP address, and Layer 4 
(source or destination ports, or both of them). 

2. Classification based on a statistical analysis of traffic behavior, such as arrival time, waiting 
time between network packets, session time, etc. 

 
The network traffic classification is accomplished by specialised software capable of  analysing 

the contents of the packets, detecting the absence of a packet and determining the basic relations that 
some packet metrics have, such as the Transmission Control Protocol (TCP) sequence and 
confirmation numbers, etc. This weakness is due to the fact that these tools provide only top-level 
information, without the corresponding ones coming from the metadata (packet headers) that can 
identify events and therefore deal effectively with network problems. 

For example, firewalls, and especially firewalls that incorporate Intrusion Detection System 
(IDS) and Intrusion Prevention System (IPS) capabilities into their operation [14], can be considered 
as network traffic classification software, they provide a variety of services such as Network Address 
Translation (NAT), Port Address Translation (PAT), Virtual Private Network (VPN) and Egress 
Filtering for traffic classification that does not comply with network security policies. 

Despite their potential, firewalls must also provide adequate capabilities for detecting and 
preventing intrusions, such as malware detection, instant messaging services analysis, and SSL 
(Secure Socket Layer) session inspection , in order to be considered an adequate and robust security 
solution [15]. 
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Finally, an important disadvantage that further complicates the procedures for categorizing 
network traffic, is that the processes in question are very demanding in computing resources, as their 
secure categorization requires the decryption of a session eg. SSL, and then the reconstruction of the 
session packets. 

2.2 Demystifying Malicious Traffic  

The application of malicious traffic detection refers to the capture, recording, and analysis of 
data in the form of packets, which are related to attacks on the network or a computer, attempts to 
breach security, or generally unusual activity. Given the multitude of modern attacks that have the 
ability to cover their tracks, or provide distorted or insufficient data to conduct research, identifying 
malicious traffic is an extremely arduous, difficult, and particularly important task of cybersecurity 
[16].In essence, this is the main method of preventing and detecting cyber attacks, as it detects 
command and control communications of malware. It should also be noted that it is the most 
important process in assessing the behavior of malicious software, revealing the purpose they serve 
and the potential damage they can cause. 

Malware, in particular, is a type of software used to gain unauthorized access to a computer, 
collect sensitive information, delete private data, or even shut it down. It can appear in the form of 
code, scripts, active content, or any other programming methodology. Recent malware developments 
have the potential to remain hidden during system infection and operation. They prevent analysis 
and removal using a variety of techniques, such as obscure filenames, modify file attributes or 
properties, or hiding and running legal processes or programs. Malicious software may also attempt 
to compromise security software by hiding running processes, network connections, and strings of a 
program or service with malicious Uniform Resource Locators (URLs) or registry keys. 

The most popular types of malware seek to retrieve and maintain communication on a regular 
basis with Command and Control servers (C&C servers) which are under the control of a malicious 
user, so that they can collect, transfer information, and upgrades to the infected devices (bots) [17], 
[18]. This communication is usually done using hardcoded addresses, or a pool of addresses 
controlled by the creator of the malware or network.Modern programming techniques enable 
malware developers to use thousands of alternating IP addresses to communicate with C&C servers. 
These IPs are relatively simple for network engineers or security analysts to detect, block and 
blacklist. 

2.3 Encrypted Traffic Recognition  

The categorization of encrypted traffic is considered as one of the most important processes of 
active security and protection of web applications, although it is one of the most serious challenges 
of modern computing.In particular, encryption is known to provide users with confidentiality and 
privacy protection, by hiding the flow of data and preventing their identification. At the same time, 
it introduces difficulties in  the identification and categorisation of the important business 
applications and prevents the immediate prioritisation of high-importance processes from achieving 
an optimal performance. In addition, it is hardly managable in cases of network congestion and does 
not easily allow for the  restriction of unauthorized applications to access  enterprise networks such 
as pornography, gambling, etc. [12][15]. 

Similarly, as most organizations use encryption as the primary method of securing the 
information they exchange, the rapid increase in the use of this service has changed the threat 
landscape, as cybercriminals use the same method to avoid detection of their malicious activities. A 
typical example is the use of the most important modern anonymity encryption service, such as Tor 
(The Onion Router), which is the most famous way of communicating with the latest, advanced 
generations of malware, such as Darknet communications are based on the creation of an encrypted 
communication channel based on chaotic architectures, in order to alter the traces, distort the 
elements that identify an attack and ultimately increase the complexity of malicious networks [20].  
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3. Tor hidden services on Darknet 

The visible layer of the web that users can access through search engines is only a small part of 
the internet. The part of the internet that is not accessible by search engines is also known as the Deep 
Web. Darknet is a subset of the Deep Web in the sense that it is also undetectable by search engines, 
but it also has one characteristic [21]. Anonymous communication networks - commonly referred to 
as Darknets - are becoming increasingly popular with criminals for trafficking drugs, weapons, fake 
IDs, theft, and child pornography. In fact, a completely illegal online marketplace has been developed 
which provides all kinds of illegal services which is facilitated by the use of cryptocurrencies and 
covered by anonymity. To achieve this anonymity, communication is done using special networks 
that pronounce anonymity such as Tor and I2P (Invisible Internet Project) [22]. 

Tor software routes web traffic through a peer-to-peer network. It is the implementation of onion 
routing, in which multi-layer encryption is being used, it ensures perfect forward secrecy between 
the nodes and the hidden services of Tor, while at the same time it routinely communicates through 
Tor nodes (consensus) operated by volunteers around the world. This is achieved by using virtual 
circuits or overlays, which change at regular intervals. Although the Tor network operates at OSI 
Level 4 (Transport Layer), the onion proxy software displays to clients the Socket Secure (SOCKS) 
interface that operates at Level 5 (Session layer). Also, in this network, there is the continuous 
redirection of requests between the retransmission nodes (entry guards, middle relays, and exit 
relays), with the sender and recipient addresses as well as the information being encrypted, so that 
no one at any point along the communication channel, can directly decrypt the information or 
identify both ends [23]. 
 The Tor network not only provides encryption, but is also designed to emulate the normal 
traffic of the HTTPS protocol, making the detection of Tor channels an extremely complex and 
specialized process, even for experienced network engineers or analysts. Specifically, the Tor network 
can use the TCP port 443, which is also used by Hypertext Transfer Protocol Secure (HTTPS), so 
monitoring and identifying a session solely by the port is not a reliable method of determining this 
type of traffic [24]. 
 A successful method for detecting Tor traffic involves statistically analyzing and identifying 
differences in the Secure Sockets Layer (SSL) protocol. SSL uses a combination of public-key and 
symmetric key encryption. Each SSL connection always starts with the exchange of messages from 
the server and the client until a secure connection (handshake) is achieved. The handshake allows the 
server to prove its identity to the client using public-key encryption methods and then allows the 
client and server to work together to create a symmetric key to be used to quickly encrypt and decrypt 
the data exchanged between them. Optionally, the handshake also allows the client to prove his 
identity on the server. Since each Tor client generates self-signed SSL, using a random 
Algorithmically Generated Domain that changes every 3 minutes or so, a network traffic statistical 
analysis based on the specifics and characteristics of SSL can identify Tor sessions on a network 
combined with HTTPS traffic [8], [18], [23], [24]. 

In this paper, we propose a novel darknet traffic analysis and network management framework 
to real-time automating the malicious intent detection process, using a weight agnostic neural 
networks architecture. It is an effective and accurate computational intelligent forensics tool for 
network traffic analysis, the demystification of malware traffic, and encrypted traffic identification in 
real-time. Based on Weight Agnostic Neural Networks (WANNs) methodology, we propose an 
automated searching neural-net architecture strategy that can perform various tasks, such as identify 
zero-day attacks. By automating the malicious intent detection process from the darknet, the 
advanced proposed solution is reducing the skills and effort barrier that prevents many organizations 
from effectively protecting their most critical assets. 

4. Literature Reviews 

Dark Web is considered as a segment of the Deep Web (see Fig. 1), an intentionally hidden 
content that can be accessed with special software like Torbrowsers. Tor enables users to route their 
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traffic through “users’ computers” so in order that traffic is not traced back to the originating users 
and conceal their identity. To pass the data from one layer to another layer, Tor OR has created 
“relays” on computers that carry information through its tunnels all over the world. The encrypted 
information is placed between the relays. Tor traffic as a whole goes through three relays and then it 
is forwarded to the final destination [25]. 

  

Fig. 1. The internet layers 

There is an increasing interest in research related to the Dark web.  A big part of the conducted 
literature review in cybersecurity is focused on anomaly-based network intrusion detection systems 
[9], [26]–[30]. In addition, there is research work dedicated in network traffic classification [31]–[33], 
whereas the Internet of Things (IoT) have recently attracted a significant amount of attention in 
machine learning and in network traffic analysis [34]–[37]. The yang et al. [21] introduce the current 
mainstream dark network communication system TOR and develop a visual dark web forum post 
association analysis system to graphically display the relationship between various forum messages 
and posters, and help law enforcement officers to explore deep levels. In addition this paper [38] 
designs a framework based on Hadoop is hidden threat intelligence. The framework uses a HBase-
based distributed database to store and manage threat intelligence information and a web crawler is 
used to collect data through the anonymous TOR tool in order to identify the characteristics of key 
dark network criminal networks, which is the basis for the later dark network research. 

Α survey of different techniques and intrusion classification on KDD Cup 99 dataset was presented 
In [9] and an effective technique was suggested which categorised and identified intrusions in these 
datasets.  In [26] a mapping of unlabeled trading data onto a set of two-dimensional grids and 
forming a set of bitmaps that identify anomalous and normal sessions. In the survey work of  [27] a 
review is conducted in various intrusion detection models and methodologies for classification and 
data volume reduction. Most of these works used KDD-Cup 1999 dataset [28], or its successor NSL-
KDD [6], which resolves some of the inherent issues of the first and has been widely adopted by the 
research community [29], [30]. However, the authors of [39] reported inefficiencies in most anomaly-
based network intrusion detection systems employing supervised algorithms and suggested an 
unsupervised outlier detection scheme as a measure to overcome these inefficiencies. Other 
researchers suggested hybrid approaches for intrusion detection systems, with promising results, like 
for instance the authors of [40], who combine a Random-Forest classification technique and K-Means 
clustering algorithms and the authors of [41] who propose a combination of a deep autoencoder and 
an ensemble k-nearest neighbor graphs, based anomaly detector. 

Concerning network traffic classification technologies, Bayesian Networks and Decision Trees 
algorithms were evaluated among others in [31] and found suitable for traffic flow classification at 
high speed. In [32] a systematic review of traffic classification approaches for machine learning was 
made, and a set of trends is derived from the analysis performed, whereas in [33] three major methods 
to classify different categories of Internet traffic are evaluated with their limitations and benefits. In 
[33] an hierarchical spatial-temporal features-based intrusion detection system (HAST-IDS) is 
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proposed, which initially learns the low-level spatial network features of network traffic using deep 
Convolutional Neural Networks (CNNs) and then learns high-level temporal features using long 
short-term memory networks. According to the authors the proposed scheme demonstrates low False 
Alarm Rate (FAR), high accuracy and detection rate. In [35] a fast and large-scale monitoring system 
is presented for monitoring the traffic on darknet consisting of two parts, pre-processing and 
classifier. In the pre-processing part, darknet packets are transformed into a feature vector consisting 
of 17 traffic features on darknet traffic.  In classifier data fast online learning is actualized by training 
with traffic features of known Distributed Denial of Service (DDoS) attacks. The authors presented 
measurements results showing the proposed solution detects with high accuracy backscatter packets 
caused by DDoS attacks. It also adapts very quickly to new attacks. 

On the other hand, recent research has demonstrated that the assumption that the data samples 
collected for training machine learning models are typically assumed to be independent and 
identically distributed can be problematic as it simplifies the manifold of structured data. This has 
motivated different research areas such as data poisoning, model improvement, and explanation of 
machine learning models [42]. The ability to explain in understandable terms, why a machine 
learning model makes a certain prediction is becoming immensely important, as it ensures trust and 
transparency in the decision process of the model. Shapley values provide accurate explanations, as 
they assign each feature an importance value for a particular prediction [43]. For example the authors 
of the [44] introduce a new metric, Top Similarity method, that measures the similitude of two given 
explanations, produced by Shapley values, in order to evaluate the Model-Agnostic Interpretability. 
Also the Florin [45]proposes a destructive method for optimizing the topology of neural networks 
based on the Shapley value, a game theoretic solution concept which estimates the contribution of 
each network element to the overall performance. More network elements can be simultaneously 
pruned, which can lead to shorter execution times and better results. An evolutionary hill climbing 
procedure is used to fine-tune the network after each simplification. 

5. Methodology and Dataset 

In recent years it has been shown that advanced Machine Learning Algorithms, such as neural 
networks, has the potential to be successfully applied in many areas of industry and the production 
process. Their success is based on the thorough processing of data that records the behavior of a 
system. By detecting patterns in the collected data, valuable information can be gleaned, future 
predictions can be made that automate a set of processes and provide serious impetus to the modern 
industry for value creation. 

For example, multilayer neural networks, which are considered to be the easiest learning 
architectures, contain several linear layers that are laid out next to each other. Each of them takes an 
input from the previous level, multiplies it by some weights, adds a vector of bias to them, and passes 
the total vector through an activation function to produce the output of the level. This promotion 
process continues until the classification process is completed receiving the result from the final level. 
The final output is compared to the actual sorting values, where the sorting error is calculated using 
an appropriate loss function. To reduce the loss, the weights for all levels are updated one by one, 
using some Stochastic Gradient Descent. 
 Nevertheless, their application to realistic problems remains a very complex and specialized 
case. This is because data scientists, based on their hypotheses and experience, coordinate their 
numerous parameters, correlating them with the specific problems they intend to solve, utilizing the 
available training data sets. This is a long, tedious and costly task. 
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5.1 MetaLearning 

MetaLearning is a recent holistic approach, which automates and solves the problem of 
specialized use of machine learning algorithms. It aims at the use of automatic machine learning to 
learn the most appropriate algorithms and hyperparameters that optimally solve a machine learning 
problem [46]. 

 In particular, machine learning can be seen as a search problem, approaching an unknown 
underlying mapping function between input and output data. Design options, such as algorithms, 
model parameters (weights), hyper-parametric characteristics, and their variability, limit or expand 
the scope of possible mapping functions, i.e. search space. 

It should be emphasized that the parameters of the model (weights) are implemented based on 
the data during the training, while the hyperparameters are determined by the developer before the 
training phase begins. They are not drawn from the data during training and this is the reason why 
they are usually stable. For example, the learning rate in a neural network is a hyperparameter. If this 
rate is too high, the network may exceed the local minimum, whereas if the learning rate is too low, 
the training may take a long time, as the steps taken during the descent are very small and also 
possible to be trapped in local minimums. 

This logic is similar to various machine learning algorithms. What separates and distinguishes 
the algorithms from each other are their individual structural elements (e.g. in neural networks the 
structural elements are layers, in random forests they are the decision trees, etc.). 

MetaLearning allows the training and comparison of one or more learning algorithms with 
different configurations of hyperparameters, data sets, optimization techniques, algorithm 
combinations, etc., in order to find the most appropriate learning model or set for a specific problem. 

It is a subfield of machine learning where advanced learning algorithms are applied to the data 
and metadata of a given problem so that the models are learning to learn from previous learning 
processes or from previous classification tasks they have completed. It is an advanced form of 
learning where computer models, usually consisting of multiple subtraction levels, can improve the 
ability to learn by learning some or all of their own building blocks through the experience they gain 
in handling a large number of tasks. Their building blocks can be optimizers, loss functions, 
initializations, learning rates, updated functions, architectures, etc. 

In general, for real physical problem modeling situations, input patterns with and without tags 
come from the same boundary distribution or follow some common cluster structure. Thus the data 
which has been already classified can contribute to the learning process, while respectively from the 
unclassified data can be extracted useful information for exploring the data structure of the general 
set, which can be combined with knowledge from previous learning processes or from previous 
classification tasks that have been processed [47]. 

Based on the above assumption, meta-learning techniques can discover the structure between 
data by allowing new tasks to be quickly learned using different types of metadata, such as the 
properties of the learning problem, the properties of the algorithm used (eg. performance measures), 
or patterns derived from data from a previous problem. In other words, they use cognitive 
information from unknown examples sampled from the distribution followed by the examples in the 
real world, in order to enhance the result of the learning process. In this way, it is possible to learn, 
select, change or combine different learning algorithms to effectively solve a given problem. 
    A meta-learning system should combine the following three requirements [47]–[50]: 

1. The system must include a learning subsystem. 
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2. Experience has to be gained by utilizing the knowledge extracted from metadata related to 
the data set under process or from previous learning tasks that have been completed in 
similar or different fields. 

3. Learning bias must be chosen dynamically. 
Taking a holistic approach, a reliable meta-learning model should be trained in a variety of learning 
tasks and optimized for better performance in generalizing tasks, including potentially unknown 
cases. Each task is associated with a set of data D, containing attribute vectors and class tags on a 
supervised learning problem. The optimal parameters of the model are: 

𝜃
∗

= 𝑎𝑟𝑔 𝐸 ~ ( )[𝐿 (𝐷)]   (1) 
which looks similar to a normal learning process, but a data set is considered a sample of data. 
Data set D is often divided into two parts, a training set S and a set of B predictions for testing and 
testing, 

𝐷 =  〈𝑆, 𝐵〉   (2) 
D datasets contain pairs of vectors and tags so that: 

𝐷 =  {(𝑥 , 𝑦 )}   (3) 
Each tag belongs to a known set of L tags.  
We assume a classifier 𝑓 . The parameter θ derives a probability of a data point belonging to the 

class y given by the attribute vector 𝑥, 𝑃  (𝑦|𝑥). Optimal parameters should maximize the likelihood 
of detecting true tags in multiple 𝛣 ⊂ 𝐷 training batches: 

𝜃
∗

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸( , )∈ [𝑃 (𝑦|𝑥)]  (4)  

𝜃
∗

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸 ⊂

( , )∈

𝑃 (𝑦|𝑥)   (5)  

The goal is to reduce the prediction error in data samples with unknown tags given that there is 
a small set of support for fast learning that works as fine-tuning. 

It could be said that fast learning is a trick in which a fake data set is created that contains a small 
subset of tags (to avoid exposing all the tags in the model) and various modifications are made to the 
optimization process in order to achieve the fast learning. A brief step-by-step description of the 
whole process is presented below: 

1. Creation of a subset of 𝐿 ⊂ 𝐿 tags. 
2. Creation of an 𝑆 ⊂ 𝐷 training subset and a 𝛣 ⊂ 𝐷prediction set. Both of these subsets 

include labeled data belonging to the subset 𝐿 , y∈𝐿 ,∀(x,y)∈ 𝑆 , 𝛣 . 
3. The optimization process uses the 𝛣  subset to calculate the error and update the model 

parameters via error backpropagation, in the same way, that it is used in a simple supervised 
learning model. 

In this way, it can be considered that each sample pair (𝑆 , 𝛣 ) is also a data point. Thus the model 
is trained so that it can generalize to new, unknown data sets. 
A modification of the supervised learning model is the following function, to which the symbols of 
the Meta-Learning process have been added: 

𝜃
∗

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸 ⊂ 𝐸 ⊂ , ⊂

( , )∈

𝑃 (𝑥, 𝑦, 𝑆 ) (6)  

It should be noted that retrospective neural networks with only internal memory, such as Long 
Short-Term Memory (LSTM), are not considered meta-learning techniques. On the contrary, the most 
appropriate meta-learning architecture for neural networks is Neural Architecture Search (NAS) [51].  
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5.2 Neural Architecture Search 

It is an automated learning technique for automating the design of artificial neural networks, the 
most widely used field in the field of machine learning. NAS has been used to design networks that 
are equivalent to or superior to hand-drawn architectures. 

NAS methods can be categorized according to the search space, search strategy, and 
performance estimation strategy used [51]–[53]: 

1. The search area determines the types of neural networks that can be designed and optimized 
in order to find the optimal type of neural network that can solve the given problem e.g. 
Forward Neural Network (FFNN), Recurrent Neural Network (RNN), etc. 

2. The search strategy determines the approach used to explore the search space, i.e. the 
structure of the architectural design in an internal search field of hyperparameters (levels, 
weights, learning rate, etc.). 

3. Performance appraisal strategy evaluates the performance of a potential neural network by 
designing it without constructing and training it. 

In many NAS methods, both micro and macro structures are searched hierarchically, allowing the 
exploration of different levels of standard architectures. The three NAS strategies and hierarchical 
search methods are shown in the Fig. 2. 

 

Fig. 2 The three Neural Architecture Search strategies 

In hierarchical search, the first level consists of the set of primitive functions, the second level of 
different patterns that connect primitive functions through a directed acyclic graph, and the third 
level of patterns that encode how the second level patterns are connected, and so on. 

NAS is closely related to hyper-parameter optimization and is a subfield of automated machine 
learning designed to follow best practices for reducing program load, providing stable and simple 
environments, minimizing the number of actions required for use, providing a clear methodology for 
discovering knowledge in unfamiliar environments [54]. 

Specifically, given a neural architecture search space F, where the input data D is divided into 
Dtrain and Dval and the cost function Cost (·) (eg accuracy, mean squared error, etc), the goal is to find 
an optimal neural network f* ∈ F, which can achieve the lowest cost in the data set D. 

Finding the optimal neural network f* is equivalent to: 
𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∈  𝐶𝑜𝑠𝑡(𝑓(𝜃∗), 𝐷 )  (7) 

𝜃
∗

= 𝑎𝑟𝑔𝑚𝑖𝑛  𝐿(𝑓(𝜃), 𝐷 )  (8) 
𝜃

∗is the learning parameter of the network. 
A simplified NAS procedure is described in the following code: 
 

def search(self): 
 # for the number of controller epochs  
      for controller_epoch in range(controller_sampling_epochs): 
 # sample a set number of architecture sequences 
 sequences=sample_architecture_sequences(controller_model, samples_per_controller_epoch) 
 # predict their accuracies using a hybrid controller 
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 pred_accuracies = get_predicted_accuracies(controller_model, sequences) 
  # for each of these sequences 
  for i, sequence in enumerate(sequences): 
   # create and compile the model corresponding to the sequence 
   model = create_architecture(sequence) 
   # train said model 
   history = train_architecture(model) 
   # log the training metrics 
   append_model_metrics(sequence, history, pred_accuracies[i]) 
  # use this data to train the controller 
  xc, yc, val_acc_target = prepare_controller_data(sequences) 
  train_controller(controller_model, xc, yc, val_acc_target) 

        
Given that there can be theoretically infinite possibilities for compiling different 

hyperparameters in the search space, it is legitimate to create the appropriate constraints that will 
lead to the optimization of the problem. For example, the number of neurons in each hidden level 
can only be a positive integer. Also, restrictions can be placed on the use of activation functions, as 
they serve different purposes and functions e.g. it is indicated the use of a sigmoid activation function 
if the classification problem is binary. 

In particular, the following should be considered for the precise design of the NAS strategy [51], 
[53]: 

1. How many neurons should it contain in each hidden level. There are countless options and 
it must be found which configuration will give the best categorization accuracy. 

2. Which activation function works best for each hidden level. There are many different 
activation functions, so finding the optimal one for a particular data set requires 
experimentation which should be automated. 

3. Addition of a drop layer. It should be investigated whether it helps or damages the 
performance of the architecture. 

4. What is the function of the final level. It should be investigated whether this is a multi-order 
problem or a binary classification problem. This determines the number of nodes in the final 
level, as well as the loss function that can be used in architectural training. 

5. The dimension of data. If two-dimensional or three-dimensional input is needed and if there 
is a need for normalization before linear levels are added. 

6. How many hidden layers will eventually be used. They rarely need more than two hidden 
levels in a neural network for optimal performance when the problem lies in 
multidimensional data analysis areas (photos, video, audio, etc.). 

The design of the NAS strategy has as its primary objective the definition of a neural network 
architecture that adapts to the nature of the data set under consideration and to the precise 
coordination of ideal hyperparameters that can lead to a model with high accuracy and 
generalizability to data outside of training and testing sets. 

Typical hyperparameters that can be optimized and need to be tuned include optimization 
algorithms (SGD, Adam, etc.), learning rate programming, regularization, etc [51]–[53]. Essentially, 
they enable the creation of the best learning techniques with high-performance success, with very 
little effort and minimal know-how. 

The way the NAS strategy works can be bidded with techniques based on the ways in which 
nature works, and in particular on finding proportions between techniques where instinct, as a sexual 
characteristic, prevails over education. For example, some species in biology have predatory 
behaviors from the moment of their birth, which allows them to perform complex motion and sensory 
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tasks without learning, which in many cases are completely satisfactory for the survival of the species. 
In contrast, in the training of artificial neurons to perform a task, an architecture that is considered 
suitable for modeling the task is usually chosen, and the search focuses mainly on finding the weight 
parameters using a learning algorithm. Inspired by social behaviors that evolved in nature, neural 
networks can be developed with architectures that are naturally capable of performing a given task 
even when their weight parameters are randomized, so they can perform well without training, while 
their performance can be further maximized through training. 

5.3 Proposed Method 

A Weight Agnostic Neural Networks (WANN) methodology [55] was used in this paper. It is an 
evolving strategy in neural network development techniques that can perform a specialized task 
regardless of the weights of the connections in the building blocks of the neural network, which 
equates to a lack of training [56]. The logic of using WANN is a basic investigation in the search for 
architectural neural networks with specific biases that can potentially categorize the given problem, 
even when using random weights. By exploring such architectures, it is possible to explore factors 
that can perform well in their interaction environment without the need for training, which is a digital 
security system that can create robust self-identifying systems capable of identifying zero-day 
attacks. 

The investigation of the WANN architectural structures used in this research, fully exploits the 
theoretical approach of Inductive Bias for the production of biased results, due to the 
assumptions/choices made either for the representation of the case space or for the definition of the 
search engine in the field of assumptions. The unrestricted space of cases is potentially infinite. By 
choosing the type of knowledge, i.e. the representation, this space is limited and the first level of bias 
is introduced. Even so, the search space is probably still too large to perform a full search. Thus the 
second level of bias is introduced, that of the search algorithm e.g. the algorithm used does not 
perform a complete search in the area of possible solutions but approaches it heuristically or 
probabilistically. However, without these options, a learning algorithm would not be better than a 
random selection algorithm. 

Also, the training data used is finite, so they do not accurately reflect the reality, as the selection 
process and the assumption that this data will have the same distribution as in all cases introduces 
another level of bias. So by reducing the inductive learning hypothesis, it is implied that the model 
produced by a limited set of training data will describe new, unknown cases just as well. 

In conclusion, each learning algorithm has a specific bias in its elements such as representation, 
algorithm, or data and this is a fundamental, necessary feature, which is taken seriously into the 
investigation of appropriate architectural neural networks. 

Another very important process that will allow the identification of appropriate architectures to 
solve the given problem, concerns the interpretability of the methods used. Global interpretability 
offers a holistic picture of the model. It is about understanding how the model makes decisions, what 
its most important features are and what interactions take place between the features. A full 
understanding is very difficult to achieve in practice therefore, the explanations at the universal level 
concern a general global representation of the model, which is not detailed and accurate. Similarly, 
when the explanations focus on a small area of data, then there is local interpretability, where a single 
example of the data set is analyzed and it is explained why the model made a specific decision about 
it. In small areas of data, the prediction may depend only linearly or monotonously on certain 
features, instead of having a more complex dependence on them. 

Shapley values [42], [43]are a very effective way of generating explanations from Cooperative / 
Calitional Game Theory. The payoff/gain of the players of a cooperative game is given by a real 
function that gives values to sets of players. The Shapley value is the only payoff function that 
satisfies 4 key properties: 
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1. Anonymity: The axiom of anonymity states that the order of the players does not affect the 
amount allocated to them by the Shapley value. In other words, the above relation says that if we 
shift the players, then the Shapley value of the new game does not result from the corresponding shift 
of the Shapley value coordinates of the original game. A consequence of the axiom of anonymity is 
the axiom of symmetry, which states that the Shapley values of two symmetric players 1 and 3 are 
equal. 

2. Efficiency: The axiom of efficiency determines that the distribution of social wealth according 
to the Shapley value is collectively rational. 

3. Zero-Useless: This axiom determines that if a player has zero contribution to social wealth, 
then his Shapley value is 0. 

4. Additionality: This axiom specifies that the Shapley value of the sum game is the sum of the 
Shapley values. 

The connection of Shapley values to the problem of explaining WANN architectural structures 
is done in the following way. We consider the problem of WANN architectural structures as a 
cooperative game, whose players are the characteristics of the data set, the profit function is the neural 
network model under consideration and the model predicts the corresponding profits. In this context, 
the Shapley values show the contribution of each feature and therefore the explanation of why the 
model made a specific decision. 

In conclusion, the Shapley value of characteristic i of a neural network model f is given by the 
following equation [57]: 

𝜑 =

∈ \{ }

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
𝑓 ∪{ } 𝑥 ∪{ } − 𝑓 (𝑥 )  

where F is the set of attributes, S is a subset of F and Μ = |𝐹| is the sum of the set F. This relation 
measures the weight of each attribute by calculating its contribution when it is present in the 
prediction and then subtracts it when it is absent, 
More specifically:: 

1. 𝑓 ∪{ } 𝑥 ∪{ } : is the output when the i∞ attribute is present.  
2. 𝑓 (𝑥 ): is the output when the i∞ attribute is not present.  
3. ∑ ∈ \{ }

| |!( | | )!

!
: is the weighted mean of all possible subsets S in F. 

The SHapley Additive exPlanations (SHAP) [58] method explains model decisions using 
Shapley values [59]. An innovation of SHAP is that it works as a linear model and more specifically 
as a method of additional contribution of features. 

Intuitively with the SHAP approach, an explanation is a local linear approach to model behavior. 
In particular, while the model can be very complex as an integrated entity, it is easy to approach a 
specific presence or absence of a variable. For this reason, the degree of linear correlation of the 
independent and dependent variables of the set with dispersion 𝜎 and 𝜎 , respectively, and the 
covariance 𝜎 = 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋, 𝑌) − 𝐸(𝑋)𝐸(𝑌), which is measured by calculating the Pearson R 
correlation table, and is defined as follow: 

𝑅 =
𝜎

𝜎 𝜎
 

However, given the inability of the above method to detect nonlinear correlations such as sinus 
wave, quadratic curve, etc. or to explore the relationships between the key variables, the Predictive 
Power Score (PPS) technique [60] was selected and used in this study for the predictive relationships 
between available data. PPS, unlike the correlation matrix, can work with non-linear relationships, 
with categorical data, but also with asymmetric relationships, explaining that variable A informs 
variable B more than variable B informs variable A. Technically, scoring is a measurement in the 
interval [0, 1] of the success of a model in predicting a variable target with the help of an off-sample 
variable prediction, which practically means that this method can increase the efficiency of finding 
hidden patterns in the data and the selection of appropriate forecast variables. 

The use of the PPS method also focuses on the fact that a local explanation must be obtained of 
the models that are initially capable of operating without training and after being reinforced at a later 
time with training. However, the sensitivity of the SHAP method to explain the models in their hyper-
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parameter values, as well as the general inability to deal with the high data dimension, requires the 
implementation of feature selection before the application of the technique. In particular, the 
complexity of the problem in combination with the large number of explanations that must be given 
for the predictions of the model, is significantly more difficult, as the distinction between relevant 
and irrelevant features, as well as the distances between data points, can not be fully captured. 

Taking this observation seriously, feature selection was performed to optimally select a subset 
of existing features without transformation, in order to retain the most important of them, in order to 
reduce their number and at the same time retaining as much useful information as possible. This step 
is crucial because if features with low resolution are selected, the resulting learning system will not 
perform satisfactorily, while if features that provide useful information are selected, the system will 
be simple and efficient. In general, the goal is to select those characteristics that lead to long distances 
between classes and small variations between the same class. 

The process of feature selection was done with the PPS technique, where for the calculation of 
PPS in numerical variables the metric of Mean Absolute Error (MAE) was used which is the 
measurement of the error between the estimation or prediction in relation to the observed values and 
is calculated below [61]: 

𝑀𝐴𝐸 =
1

𝑛
|𝑓 − 𝑦 | =

1

𝑛
|𝑒 | 

where 𝑓  is the estimated value and 𝑦  is the true value. The average of the absolute value of the 
quotient of these values is defined as the absolute error of their relation |𝑒𝑖| = 𝑓

𝑖
− 𝑦

𝑖
. 

Rescue and Precision F-Score (Harmonic Mean) was used for the categorical variables, respectively, 
implying that the higher the F-Score, the higher the two metrics respectively. The calculation is 
accomplished from the following relation [61]: 

𝐹 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

2𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

In conclusion, to create a cybersecurity environment with fully automated solutions capable of 
recognizing content from the Darknet, a NAS development strategy was implemented, based on the 
WANN technique which is reinforced with explanations with Strapley values, having first preceded 
feature selection process with the PPS method 

5.4 Dataset 

Darknet, as an overlay network, is only accessed with specific software, configuration, or 
licenses, often using non-standard communication protocols and ports. Its address space is not 
accessible for interaction with familiar web browsers and any communication with Darknet is 
considered skeptical due to the passive nature of the network in managing incoming packets. 

The classification of Darknet traffic is very important for the categorization of real-time 
applications, while the analysis of this traffic helps in the timely monitoring of malware before the 
attack, but also in the detection of malicious activities after the outbreak. 

The data set used in this study is based on CICDarknet2020, which includes Darknet traffic as 
well as corresponding normal traffic from Audio-Stream, Browsing, Chat, Email, P2P, Transfer, 
Video-Stream, VOIP, Files, Session and Authentication, which are implemented or not over Tor and 
VPN infrastructures. The following Table 1 provides details of the final categories used and the 
applications that implement them [62]. 

 
Table 1. Darknet Network Traffic Details 

ID Traffic Category Applications Used 
0 Audio-Stream  Vimeo and Youtube 
1 Audio-Stream Crypto streaming platform 
2 Browsing Firefox and Chrome 
3 Chat ICQ, AIM, Skype, Facebook and Hangouts 
4 Email SMTPS, POP3S and IMAPS 
5 P2P uTorrent and Transmission (BitTorrent) 
6 File Transfer Skype, SFTP, FTPS using Filezilla and an external service 
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7 File Transfer Crypto transferring platform 
8 Video-Stream Vimeo and Youtube 
9 Video-Stream Crypto streaming platform 
10 VOIP Facebook, Skype and Hangouts voice calls 

6. Experiments and Results 

Initially and in order to have a level of comparison of the proposed methodology, the above 
dataset was used in the investigation of solutions through the most well-known machine learning 
methods, in the identification and categorization of network traffic in Tor, Non-Tor, VPN, and Non-
VPN of the Table services. 1. The results of the categorization process are presented in detail for each 
algorithm, in the following Table 2 

 
Table 2. Classification Performance Metrics 

Classifier Accuracy AUC Recall 
Precisio

n 
F1 Kappa MCC TT (Sec) 

Extreme Gradient Boosting (XGB)  0.9012 0.9953 0.7500 0.9014 0.8990 0.8751 0.8756 441.61 

CatBoost  0.8927 0.9942 0.7227 0.8936 0.8894 0.8642 0.8648 606.07 

Decision Tree  0.8858 0.9477 0.7406 0.8845 0.8849 0.8561 0.8562 1.90 

Random Forest  0.8846 0.9848 0.7245 0.8829 0.8835 0.8545 0.8545 19.83 

Gradient Boosting  0.8801 0.9916 0.7106 0.8797 0.8764 0.8482 0.8488 645.38 

Extra Trees  0.8775 0.9677 0.7201 0.8756 0.8762 0.8455 0.8455 11.61 

K Neighbors  0.8504 0.9663 0.6748 0.8462 0.8466 0.8105 0.8108 7.45 

Light Gradient Boosting Machine  0.7826 0.8986 0.5387 0.7911 0.7808 0.7247 0.7259 17.41 

Ridge Classifier  0.6664 0.0000 0.3276 0.6672 0.6221 0.5659 0.5727 0.40 

Linear Discriminant Analysis  0.6497 0.9136 0.4400 0.6439 0.6231 0.5535 0.5575 2.01 

Quadratic Discriminant Analysis  0.3858 0.8710 0.4026 0.6325 0.4394 0.2936 0.3144 0.71 

Logistic Regression  0.3174 0.6756 0.1226 0.3089 0.2753 0.1237 0.1433 126.46 

Naïve Bayes  0.2974 0.6328 0.1281 0.2303 0.2278 0.0960 0.1120 0.13 

SVM – Linear Kernel  0.1937 0.0000 0.1037 0.2419 0.1248 0.0379 0.0485 130.74 

Ada Boost  0.1626 0.7142 0.1521 0.0501 0.0713 0.0788 0.1193 14.27 

*AUC=Area Under the Curve, MCC=Matthews Correlation Coefficient, TT=Training Time 
 
Also, the Receiver Operating Characteristic (ROC) curves, the Confusing Matrix, and the Class 

prediction error diagram of the XGBoost method, which achieved the highest success results 
(Accuracy 90%), are presented in Figs 3-5. 

    

 
Fig. 3. Receiver Operating Characteristic curves of the XGBoost classifier 
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Fig. 4. Confusing Matrix of the XGBoost classifier 

 
Fig. 5. Class prediction error of the XGBoost classifier 

 
As evidenced by the above results, the problem of analysis and categorization of network traffic 

is a rather complex problem, which although can not be considered multidimensional, the distinction 
between the characteristics of the data set, as well as the distances between points are considered 
very dense, which makes it significantly difficult to implement distinct levels of decision and 
therefore categorization with very high results. 

The automated creation of network architectures that encode search solutions through NAS can 
produce architectures that, once trained, go beyond human-designed ones. With the architecture in 
question and specifically with the methodology based on the Autokeras NAS library [59], which is 
designed to provide stable and simple interface environments, minimizing the number of user 
actions, the following Table 3 architecture was implemented, which is shown in the figure. 4, with 
the results of Table 4. 

Table 3. AutoKeras Model 
Layer (type) Output Shape               Parameters 

input_1 (InputLayer)          [(None, 61)]               0 
multi_category_encoding (Mul (None, 61)                 0 

normalization (Normalization (None, 61)                123 
dense (Dense)                 (None, 512)                31744 
re_lu (ReLU)                  (None, 512)                0 

dense_1 (Dense)               (None, 128)                65664 
re_lu_1 (ReLU)                (None, 128)                0 

dense_2 (Dense)               (None, 11)                 1419 
classification_head_1 (Softm (None, 11)                 0 

Total params: 98,950 
Trainable params: 98,827 
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Non-trainable params: 123 
 

Fig 4. Depiction of the AutoKeras Model 

 
 

Table 4. Classification Performance Metrics of the AutoKeras Model 

Classifier Accuracy AUC Recall 
Precisio

n 
F1 Kappa MCC TT (Sec) 

AutoKeras Model  0.9268 0.9976 0.7915 0.9280 0.9105 0.8972 0.8977 917.23 

 
The networks in question created by NAS, although much slower and more complex (Trainable 

parameters: 98,827), prove to be excellent after training, as evidenced by the results of the table above. 
In no case, however, can we assume that they are able to solve the given problem without 

training their weights. To produce architectures that satisfactorily encode solutions, the importance 
of weights must be minimized. Instead of judging networks by their performance with optimal 
weight values, they should be evaluated by their performance when their weight values come from 
a random distribution. Replacing weight training with weight sampling ensures that performance is 
only a product of network topology and not training. 

The architecture chosen to solve the given problem by a random selection of weights involves a 
recurring neural network with input, some sparsely connected hidden layers of reservoirs in which 
the choice of architecture is based on the NAS strategy, and a simple linear readout output. The 
connection weights in each reservoir, as well as the input weights, are random and scaled in such a 
way as to ensure the Echo State Property property which is defined as a state so that the reservoir is 
an "echo" of the entire input history and which is partly determined by its architecture. 

The discrete levels are only those of the u(n) input and the  y(n), output, while the hidden levels 
(reservoirs) are grouped so that the neurons are connected to each other by a percentage that 
determines how sparsity the network is. The synaptic compounds that unite the levels with each 
other are characterized by a value that determines the weights. Each input neuron is connected via 
Winij weights (i-input neuron, j-neuron to the reservoir) with weights that although normal, are 
determined randomly prior to training and their values are final as they do not change during 
training. Also, each neuron from the reservoir is connected via Wjk weights (j-neuron in the reservoir, 
k-neuron in the reservoir, and j≠k) to any other neuron in the reservoir. The weights of these neurons 
although normal are determined randomly before training and their values do not change. Finally, 
each neuron from the reservoir is connected via Woutjm weights (j-neuron in the reservoir, m-output 
neuron) to the output plane neurons. These weights that are in the readout layer, are the only ones 
that are trained in order to get their final values [64]. 
  The network architecture is characterized by a stacked hierarchy of reservoirs, where at each 
time step t,, the first repeating layer is fed by the external input u(t), while each successive layer is 
fed by the output of the previous one in the stack [65]. Although their architectural organization 
allows for general flexibility in the size of each layer, for reasons of complexity we consider a 
hierarchical installation of reservoirs with repeating layers NL,, each of which contains the same 
number of  NR units. In addition, we use x(l)(t) ∈ 𝑅 to declare the state of the plane l at time t. By 
omitting the bias conditions, the first level state transition function is defined as follows [66]: 

𝑥( )(𝑡) = 1 − 𝑎( ) 𝑥( )(𝑡 − 1) + 𝑎( ) 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ 𝑊 𝑢(𝑡) + 𝑊( )𝑥( )(𝑡 − 1)   
For any level greater than l>1 the equation is as follows: 

𝑥( )(𝑡) = 1 − 𝑎( ) 𝑥( )(𝑡 − 1) + 𝑎( ) 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ 𝑊 𝑥 (𝑡) + 𝑊( )𝑥( )(𝑡 − 1)   

where 𝑊  ∈ 𝑅 ×  is the input weight table, 𝑊
(𝑙)

∈ 𝑅 × is the recurrent weight table for level l, 
𝑊( )∈ 𝑅 ×  is the table relative to the connection weights between the levels from level  l-1 to level 
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l, 𝑎( )is the leaky parameter at level l and 𝑡𝑎𝑛ℎrepresents the elementary application of the tangent 
[67]–[70]. 

Random weights improve the generalization properties of the solution of a linear system 
because they produce almost rectangular (weakly correlated) features. Since the output of a linear 
system is always correlated with the input data, if the range of solution weights is limited, rectangular 
inputs provide a wider range of solutions than those supported by weights. Also, small weight 
fluctuations allow the system to become more stable and noise resistant, as input errors will not be 
amplified at the output of a linear system with little correlation between input and output weights. 
Thus the random classification of weights that produces weakly correlated characteristics at the latent 
level allows achieving a satisfactory solution and a good generalization performance. 

Essentially for a random forward propagation architecture with a hidden plane and random 
representation of hidden plane neurons, the input data is mapped to a random L-dimensional space 
with a distinct set of training Ν where (𝑥 , 𝑡 ), 𝑖 ∈ ⟦1, 𝑁⟧  𝜇𝜀  𝑥 ∈ 𝑅  𝜅𝛼𝜄  𝑡 ∈  𝑅 . The network output 
is represented as follows[68], [71]: 

𝑓 (𝑥) = 𝛽 ℎ (𝑥) = ℎ(𝑥)𝛽    𝑖 ∈ ⟦1, 𝑁⟧ 

where 𝛽 = [𝛽 , … , 𝛽 ] is the output of the weight table between the hidden nodes and the output 
nodes, ℎ(𝑥) = [𝑔 (𝑥), … , 𝑔 (𝑥)]are the outputs of the hidden nodes (random hidden attributes) for 
input x, and 𝑔 (𝑥) is the exit of i hidden node. The basis of an N set of training {(𝑥 , 𝑡 )} , can solve 
the learning problem Ηβ = Τ, where 𝛵 = [𝑡 , … , 𝑡 ] the target labels and the output table of the hidden 
level𝐻 as below: 

𝛨 𝜔 , 𝑏 , 𝑥 = [𝑔(𝜔 𝑥 + 𝑏 ) ⋯  𝑔(𝜔 𝑥 + 𝑏 )  ⋮ ⋱ ⋮  𝑔(𝜔 𝑥 + 𝑏 ) ⋯  𝑔(𝜔 𝑥 + 𝑏 ) ] ×  

Prior to training, the input weight table ω and the bias vectors b are randomly generated in the 
interval [−1, 1], with 𝜔 = 𝜔 , 𝜔 , … , 𝜔  and 𝛽 = 𝛽 , 𝛽 , … , 𝛽 . The output level table of the 
hidden level H is calculated from the activation function and the use of the training data based on the 
following function:  

𝛨 = 𝑔(𝜔𝑥 + 𝑏) 

Respectively the output weights β can be calculated from the relation: 

𝛽 =
𝛪

𝐶
+ 𝐻 𝐻 𝐻 𝑋 

where 𝐻 = [ℎ , … , ℎ ]are the outputs of the hidden level and is the input data. β can be calculated 
from the generalized inverse Moore-Penrose table: 

𝛽 = 𝛨 𝑇 

where 𝛨 is the generalized inverse Moore-Penrose table for table H. 
In this case, the proposed standardization offers the possibility of managing multiple 

intermediate representations, as the hierarchical organization of random reservoirs architecture in 
successive layers, naturally reflects the structure of the dynamics of the developed system. This 
scaling allows the progressive classification and exploration of input data interfaces across the levels 
of the hierarchical architecture, even if all levels share the same weight values. Furthermore, the 
multilevel architecture represents a transitional state of how the internal representations of the input 
signals are determined, which guarantees high performance even for problems that require long 
internal memory intervals. It also has higher performance in cases where short-term network 
memory capabilities are required than the corresponding architectures, which would have to work 
with the same total number of iterative or retrospective units in order to achieve corresponding 
results. In addition, in terms of computational efficiency, the multilevel construction of reservoirs in 
the design of a neural system also results in a reduction in the number of non-zero repetitive 
connections, typically associated with other types of retrospective architectures. This implies low 
complexity and time savings required to perform specialized tasks. 

These conclusions are reflected in Table 5 below, which shows the very high categorization 
results (Accuracy 94%) in combination with the very short processing time (290sec which is 66% faster 
than the corresponding AutoKeras Model) : 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2021                   doi:10.20944/preprints202102.0404.v1

https://doi.org/10.20944/preprints202102.0404.v1


 19 of 29 

 

 Table 5. Classification Performance Metrics of the Reservoir Model 

Classifier Accuracy AUC Recall 
Precisio

n 
F1 Kappa MCC TT (Sec) 

Reservoir Model (13-11-09)  0.9451 0.9988 0.8122 0.9317 0.9242 0.9108 0.9094 290.08 

 
But even in this case, there was weight training and therefore the result of the process is a 

product of training. Unlike WANN, weight training is avoided. Focusing exclusively on exploring 
solutions in the field of neural network topologies, using random common weights for each network 
level, and recording the cumulative result during the test, reservoir architecture was used, without 
weight training. To identify the number of resulting solutions, the process is assisted with 
explanations using the Shapley value methods, after first selecting features with the PPS method. The 
resulting network population is then ranked according to their performance and complexity so that 
the highest-ranking networks are selected to form a new solution population. The process is repeated 
until the best architecture is found. The architectures are modified either by inserting a node by 
separating an existing connection, by adding a connection by connecting two previously unconnected 
nodes, and by changing the activation function which reassigns activation functions. 

Initially, the predictive power of the problem variables was analyzed to identify the variables 
with the highest PPS, in order to identify the most important ones that can solve the problem, 
simplifying the process and at the same time without reducing the effectiveness of the method. From 
the total of variables, 19 were selected with a significant score greater than 0.3, while the rest had a 
predictive capacity of less than 0.1. A summary of the 19-variable PPS capture table is presented in 
Table 6. 

Table 6. Predictive Power Score 
Idle_Max Idle_Mean Idle_Min Packet_Length_Max 

0.471 0.444 0.430 0.399 
Packet_Length_Mean Average_Packet_Size Flow_IAT_Max Fwd_IAT_Max 

0.383 0.379 0.372 0.363 
Bwd_Packet_Length_Ma

x Fwd_Packet_Length_Max 
Total_Length_of_Bwd_Packe

t 
Bwd_Packet_Length_Mea

n 
0.349 0.345 0.340 0.338 

Bwd_Segment_Size_Avg 
Total_Length_of_Fwd_Packe

t Packet_Length_Std Packet_Length_Variance 
0.338 0.338 0.330 0.330 

Fwd_Header_Length Subflow_Bwd_Bytes Fwd_Packet_Length_Mean  
0.328 0.320 0.313  

 
Extensive research was then conducted on evaluating the values of the variables, how they 

contribute to the prediction, and explaining each decision of the implemented models, using the 
Shapley values. Figure 4 shows the classification of the values of the variables used in the bar plot. 
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Fig. 6. Shap value impact on model output (bar plot) 

 
Respectively in the following image is presented the summary beeswarm plot, which is the best 

way to capture the relative effect of all the features in the whole data set. Characteristics are classified 
based on the sum of Shapley values in all samples in the set. The most important features of the model 
are shown from top to bottom. Each attribute consists of dots, which symbolize each attribute of the 
package, while the color of the dot symbolizes the value of the attribute (blue corresponds to a low 
value, while red to a high value). The position of the dot on the horizontal axis depends on its Shapley 
value. 

 
Fig. 7. Shap value impact on model output 

We see that the Average_Packet_Size attribute is the most influential for the model predictions. 
Also for its high values (red dots), the Shapley value is also high so it has a great positive effect, i.e. 
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it increases the probability that the package under consideration comes from Darknet. On the 
contrary, for its low values (blue dots), the Shapley value is low so it has a negative effect on the 
forecast, i.e. it increases the probability that the package under consideration does not come from 
Darknet. 

In the image below a sample, selection is used from the data set to represent the typical attribute 
values and then 10 samples are used to estimate the Shapley values for a given prediction. This task 
requires 10 x 1 = 10 evaluations of the model. 

 
 

 
Fig. 8. Explain a single prediction (10 evaluations) 

 
In this diagram a local explanation is presented, where the base value refers to the average value 

of the model forecasts, i.e. in this case the model predicts with a probability of 12% the data package 
analyzed to come from Darknet. For this package, the forecast value is 89%, so the Shapley values 
show the change from the average forecast to the specific forecast. The red arrows push the prediction 
to the right, that is, they help to increase the probability that this package comes from Darknet, while 
the blue arrows push to the left, helping to reduce the probability that it comes from Darknet. The 
length of each arrow symbolizes the magnitude of the effect on the prediction. In this example, we 
see that the Fwd_Packet_Length_Mean attribute helps to increase the likelihood that the package will 
come from Darknet (Shapley value 96.73), while the Total_Length_of_Fwd_Packet (Shapley value 
20.31) and Fwd_Packet_Length_Mean (Shapley value 376.1), decrease this likelihood, etc. 

Staplery values also have universal explanation capabilities, summing the values of a set of 
samples. In the image below you use a selection of 100 samples from the data set to represent the 
standard attribute values and then 500 samples are used to estimate the Shapley values for a given 
prediction. This task requires 500 x 100 = 50,000 model evaluations. 

 

 
Fig. 9. Explain a single prediction (50,000 evaluations) 

 
Respectively in figure 10 there is the diagram of the above process of 50,000 validations, but with 

an explanation of multiple predictions and their fixation in relation to their similarity 

 
Fig. 10. Explain many predictions by similarity 
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Respectively in Fig.11 the same procedure is captured based on the output values of the model.  
 

 
Fig. 10. Explain many predictions by output value 

 
In both cases, sampling is used to implement the explanation. 
It should be noted that for the evaluation of the architectures that were finally selected, thorough 

and long-term research was carried out on the effects of the features used in each prediction, taking 
into account local and universal explanations from the Shapley values methodology. 

The resulting architectures are presented in the table below with the corresponding 
categorization performance metrics. The values in parentheses indicate the size and depth of the 
reservoirs, eg the Reservoir model (11-17-09) that performed and the highest results have a depth of 
3, ie it includes 3 reservoirs, which include 11, 17, and 09 neurons respectively. 
 

Table 6. Classification Performance Metrics of the Proposed Reservoir Models 

Classifier Accuracy AUC Recall 
Precisio

n 
F1 Kappa MCC TT (Sec) 

Reservoir (11-17-09)  0.8392 0.9904 0.7502 0.8910 0.9004 0.8973 0.8807 59.35 

Reservoir (06-11-05-12)  0.7961 0.9892 0.7483 0.8884 0.8798 0.8657 0.8623 68.16 

Reservoir (15-10-06-08)  0.7504 0.9879 0.7469 0.8534 0.8419 0.8479 0.8588 53.22 

Reservoir (21-18-13)  0.7492 0.9809 0.7450 0.8511 0.8415 0.8468 0.8501 72.38 

Reservoir (05-12-16-07)  0.7262 0.9654 0.7203 0.8397 0.8402 0.8414 0.8428 64.04 

 
By attempting an evaluation of the above results it is easy to conclude that the proposed 

Framework is a particularly remarkable learning system that in all evaluation cases achieved 
remarkable results in relation to the respective competing systems, always taking into account that 
the proposed system competes with corresponding systems which received training, while the 
proposed not. 

The characteristic of this is that the Reservoir model (11-17-09) that gave the highest results, 
surpassed the algorithms Light Gradient Boosting Machine, Ridge Classifier, Linear Discriminant 
Analysis, Quadratic Discriminant Analysis, Logistic Regression, Naïve Bayes, SVM - Linear Kernel, 
and Ada Boost. This observation can be interpreted in the non-linearity that generally characterizes 
neural networks, especially in the case where it is examined where the mechanism of production of 
input signals is non-linear. Respectively, the resistance to structural errors of neural networks and 
especially the sparse architecture of reservoirs, guarantees that the malfunction or destruction of a 
neuron or some connections is not able to significantly disrupt their function as, the information they 
contain is not located in a specific point but diffuse throughout the network and especially in cases 
where the ESP property that characterizes reservoir architectures is achieved. 

Another important observation is that the method produces extremely accurate results without 
recurring problems of an undetermined cause because all the features in the data set in question are 
handled very efficiently, based on the original features selection processes performed on the basis of 
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PPS. This resulted in the removal of insignificant features in the network, which under certain 
conditions can be characterized as noise, with very negative effects on the final result. 

In addition, one of the main advantages gained from the results is the high reliability resulting 
from kappa prices (high reliability if k≥0.70) [61], which can be considered as the result of data 
processing that allows the retention of the most relevant data for the forthcoming forecasts. 

Finally, the use of the reservoir technique in this work is related to the fact that very often in 
multifactorial problems of high complexity such as the one under consideration, the prediction 
results are multivariate, which can be attributed to the sensitivity of the correlational models in the 
data. The two most important advantages of this technique focus on the fact that it offers better 
predictability and stability, as the overall behavior of the model is less noisy while reducing the 
overall risk of a particularly poor choice that may result from modeling. The above view is also 
supported by the dispersion of the expected error, which is concentrated close to the average error 
value, a fact that categorically states the reliability of the system and the generalization ability that it 
presents. 

Obviously, a major drawback of the methodology followed, and perhaps the most serious is the 
highly specialized and time-consuming preprocessing process that must be followed to identify the 
appropriate architectures that can perform satisfactorily, which adds research complexity to data 
analysis and explanation. models used.  

7. Discussion and Conclusions 

An extremely innovative, reliable, low-demand, and highly efficient network traffic analysis 
system, based on advanced computing intelligence methods, was presented in this paper. The 
proposed framework implements and utilizes in the best possible way the advantages of meta-
learning methodology, in order to identify malfunctions or deviations of the normal mode of 
operation of the network traffic, which in most cases, come from cyber attacks. The proposed digital 
security system was tested on a complex data set that responds to specialized operating scenarios of 
normal and malicious network behavior. 

Our motivation in this work was to explore the processes to which only neural network 
architectures, without prior learning, can codify solutions and model a given task. The holistic 
approach proposed, which automates and solves the problem of specialized use of neural network 
finding algorithms without the need for human experience or intervention, is a promising approach 
to capture an unknown underlying mapping function between input and output data in a given 
problem, without requiring system training. 

The methodology followed to create architectural neural networks capable of solving a given 
problem concerns the delimitation of the search space, which includes virtually all possible 
architectures that can be used in a neural network based on the data used. 

As it turned out, design options, such as topology search algorithms, hyperparametric features, 
and their variability, the field of possible mapping functions, i.e. search space, offer an indisputable 
solution that optimally solves the problem under consideration. It should be emphasized that the 
logic of the proposed automated architecture is synonymous with the ongoing research of solutions 
to identify unknown digital security threats. 

Under this consideration, this paper proposes an innovative and highly effective Weight 
Agnostic Neural Networks framework for darknet traffic, big-data analysis, and network 
management to real-time automating the malicious intent detection process. The proposed 
architecture, which is first implemented and presented in the literature, creates serious conditions for 
even more specialized pattern recognition systems without prior training, which are capable of 
responding to changing environments. It is important to emphasize that the proposed method 
facilitates and removes complexity from the way NAS strategies work, utilizing multiple functions 
of specialized methods for extracting useful intermediate representations in complex neural network 
architectures. The initial utilization of the predictive power of the independent variables significantly 
reduces the computing, producing improved training stability and remarkable categorization 
accuracy. 
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Respectively, the reservoir technology used leads to remarkable forecasting results, 
implementing a robust forecasting model capable of responding to highly complex problems. This 
ability is found in the high convergence speed of the proposed architecture which is calculated by a 
simple array calculation, in contrast to reciprocating stochastic gradient descent models. 

To prove the validity of the proposed methodology, the SHAP methodology was used which 
is based on the evaluation of solutions based on Shapley values. This technique provides an 
understanding of how the model makes decisions and what interactions take place between the 
features used. Also for the precise design of the specific search space of the best architectural 
prototypes that can optimally solve the problem, the relationships between the variables were 
explored and feature selection was implemented with the Predictive Power Score technique, in order 
to briefly measure the predictive relationships between the available data. 

It should also be emphasized that this methodology with the contribution of spatial reservoirs, 
deals with great precision the noisy scattered data that other spectral classification methods cannot 
handle. 

In conclusion, the paper presents a method for the development of interpretable neural networks 
by encoding the solution directly in the network architecture and not in the training of its weights. 
Compared to other learning methods, the proposed architecture is strong in changes to node inputs, 
which could be the foundation for a strong defense against adversarial attacks or even damaged 
networks. 

Providing non-zero intelligence from the beginning of the implementation of a learning system 
could allow the use of inherent characteristics or experience, much faster than otherwise possible, as 
is the case with many species in the animal kingdom. 

The operation scenarios that have been proposed and simulated, implement in the most realistic 
way the operation of modern networks and model in a realistic way the modern harmful behaviors 
related to cyber-attacks. This creates possibilities for a well-defined configuration of the target 
database model, for high-precision categorization or correlation. It should also not be overlooked that 
a significant innovation lies in the fact of adding artificial intelligence to digital security mechanisms, 
which significantly enhance the active defense mechanisms of information systems. The proposed 
system, and the philosophy of active security in general, significantly enhances the ways of 
controlling online behavior, which can be the main means of controlling advanced cyber attacks. 

Proposals for the development and future improvements of this framework should focus on the 
automated optimization of the appropriate parameters of the method pre-training, so as to achieve 
an even more efficient, accurate, and faster categorization process. It would also be important to 
study the expansion of this system by implementing more complex architectures with Siamese 
Neural Networks in an environment of parallel and distributed systems [72] or over blockchain [73], 
[74]. Finally, an additional element that could be studied in the direction of future expansion, 
concerns the operation of the network with methods of self-improvement and redefining of its 
parameters automatically, so that it can fully automate the process of selecting architectural 
hyperparameters. 
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