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Abstract: Management approaches inspired by the variability of natural disturbances are expected 

to produce forests in the future that will be significantly more resilient and better adapted to local 

environmental conditions. Due to climate change, windstorms are becoming increasingly common 

resulting in the destruction not only of extensive forest areas but, quite often, of small-sized and 

scattered forest lands that can ultimately become home to insects and disease dissemination sites. 

In the present study, an attempt is made to identify and record areas in the northeastern forests of 

Greece covered by mixed stands of conifers and broadleaves that experienced massive windthrow 

following local storms. Based on tree-level data, local topographic features, forest characteristics 

and the mechanical properties of green wood, a reliable model, to be used for the prediction of 

similar disturbances in the future, has been created after a thorough comparative study of the most 

well-known intelligent machine learning algorithms. 

Keywords: wind damage; wind disturbance; Pinus sylvestris; Picea abies; machine learning; ran-
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1. Introduction 

Over the last years, windthrow has become an increasingly significant factor of nat-

ural disturbance. In recent decades, Europe has been hit by a series of severe storms. One 

such example is Cyclone Niklas, which, in March 2015, caused extensive damage to the 

forests of southern Germany. Severe storms are, unfortunately, predicted to become even 

more frequent in Europe as a result of climate change (Schelhaas et al. 2003; Seidl et al. 

2014).  

Research on the impact of windstorms on temperate forests has generally focused on 

the catastrophic disturbances related to the most severe winds (Dunn et al. 1983; Foster 

1988; Peterson and Pickett 1991; Cooper-Ellis et al. 1999; Canham et al. 2001). The range of 

disruptions they bring to the forest vegetation is an important parameter affecting in the 

long run the composition and structure of ecological systems in general (Pickett and White 

1985; Canham et al. 2001). 

Uprooting (windthrow) and breakage of the tree trunk (windsnap) may cause local 

disturbance to the soil, as well as the formation of canopy gaps; the latter triggers the 

competition in that area by shade-intolerant and early successional species (Jankowska-

Blaszcuk and Grubb 2006). According to Böhm (1981), the composition and ratio of au-

tochthonous to non-autochthonous species are altered, a fact that would entail a shift from 

deciduous trees to unstable conifers such as spruce (Schelhaas et al. 2003). 

The short-term consequences of these disturbances include the damage incurred by 

the resulting insect communities, mainly the European spruce beetle [Ips typographus (L.)], 

thriving in the affected trees. More generally in Europe, both abiotic factors (windthrow) 

and biotic (bark beetle infestations) are serious causes of disturbance (Seidl et al. 2014). 
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In a period of fifty years (1950-2000) the average annual damage to wood from storms 

in Europe amounted to 18.7 million m3, with most windthrow damage taking place in 

Central Europe and the Alps. For the same period, short-term wood damage from insect 

attacks amounted to 2.9 million m3 per year (Schelhaas et al. 2003). Taking the above into 

consideration, it becomes clear that windthrow forest areas must be identified as soon as 

possible in order to reduce the impact of the resulting biotic disturbance, as damaged trees 

yield substantial material for insect reproduction (Schelhaas et al. 2003; Seidl et al. 2014). 

More generally, delineating windthrow areas is deemed crucial both for the calculation of 

the damaged wood volume and in order to effectively schedule and plan the processing 

and marketing of the damaged wood to prevent its further degradation (Koloman 2013).  

Identifying damaged sites and determining the extent of a wind disaster by means of 

terrestrial methods is often problematic, especially in the case of multiple and smaller-

sized mosaic-like disturbed areas. For this reason, measurements conducted with the use 

of global navigation satellite systems (GNSS) are the most common for this task (Tomaštík 

2016). Data collection can also be performed using unmanned aircraft systems (UAS), 

which can provide more accurate and detailed data compared to the existing remote sens-

ing techniques (Tang 2015). UAS are characterized by high precision, flexibility, and abil-

ity to be used in various atmospheric conditions (Whitehead 2014). They have also been 

employed in a number of studies focusing on forest disturbance incidents, such as fires 

(Yuan 2015) and insect infestations (Näsi 2015). However, UAS have not been used to de-

termine windstorm disturbed areas (Mokroš 2017). According to Vaudour et al. (2017), 

images obtained from the Pléiades satellite could be an alternative to UAS imagery but 

are more expensive for small-sized areas. 

The present study is part of a broader, long-term research effort whose objective is to 

spatially assess the climate change experienced by Greece due to its geophysical location 

and diverse climate. Its aim is twofold: on one hand, the investigation and understanding 

of the role local topographic agents play in windthrow events, in combination with the 

characteristics and mechanical properties of green wood species that experience wind-

throw damage; on the other, the creation of a machine learning model which, once trained 

over the real data collected, will be capable of carrying out accurate predictions of future 

windthrow disasters under similar environmental and topographic conditions and with 

similar mechanical tree characteristics. 

2. Materials and Methods 

In April 2020, for three consecutive days (5 to 7 April), moderate to strong winds 

developed in locations northeast of the Rodopi Mountains, Northern Greece. On April 5, 

maximum wind gusts reached 187.5 km/h, and in the next two days, maximum gusts of 

140.79 km/h and 155.23 km/h, respectively, were recorded (www.wunderground.com). 

The main area that was hit is located to the NE of the City of Xanthi. The strong winds 

caused a heterogeneous damage pattern including uprooting and trunk breakage mainly 

in small-sized mosaic-type sites.   

After the storm event, and in order to assess the extent of the damage and identify 

the storm-hit areas, an unmanned aircraft system (UAS) was used to scan an area of ap-

proximately 159 ha. Of the total of locations that were UAS-scanned, four sites were found 

to have been severely battered. These sites belonged to four mixed stands consisting of 

conifers and broadleaves located NE of the City of Xanthi. More specifically, in stand 27a 

(PsMxQu) (Table 1), where Pinus sylvestris trees occurred in mixtures with Quercus sp. 

(with neither of the two species being dominant), it was found that a specific plot, herein-

after referred to as ‘plot aPISY’, was seriously affected. In stand 26c (PsDomxQu), also 

made up of a mixed Pinus sylvestris and Quercus sp. community, the former being the 

dominant species, the corresponding damaged section was assigned the name ‘plot 

bPISY’. In the third stand, stand 7a (FsDomxPs), consisting of a mixed Fagus sylvatica and 

Pinus sylvestris assemblage, with Fagus sylvatica being the dominant species, the damaged 

location was named ‘plot aPIAB’. Finally, in the fourth stand, stand 7b (PsDomxFs), also 
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consisting of mixed Pinus sylvestris and Fagus sylvatica trees, with Pinus sylvestris being the 

dominant species, the damaged site was named ‘plot bPIAB’. To put it in a nutshell, the 

four stands were all mixed communities of conifers and broadleaves, in two of which (26c 

and 7b) conifers were the prevailing species, one (7a) was dominated by broadleaves, 

whereas in the fourth (27a) there was no dominant species. Plots aPISY and bPISY were 

composed solely of Pinus sylvestris, whereas the other two plots, aPIAB and bPIAB, were 

occupied by mixtures of Pinus sylvestris and Fagus sylvatica and also a number of Picea abies 

individuals as a secondary species. 

 

Table 1 Summary of the windthrow areas (stands and plots) 

Name Designation Dominant species Secondary 

species 

Name of plot Stand 

area 

(Ha) 

Wood 

volume 

m3 

(27a) Conifer-Hardwood 

mixed species 

PsMxQu   aPISY  

36.36 

 

4987 

(26c) Conifer-Hardwood 

mixed species   

PsDomxQu Ps dominated  bPISY  

38.23 

 

5496 

(7a) Hardwood-Conifer 

mixed species 

FsDomxPs Fs dominated Picea abies+ 

Prunus+Betula

+Populus   

aPIAB  

41.42 

 

16198 

(7b) Conifer-Hardwood 

mixed species 

PsDomxFs Ps dominated Picea abies+ 

Prunus+Betula

+Populus   

bPIAB  

42.98 

 

15275 

sum     158.99  

Ps=Pinus sylvestris, Fs=Fagus sylvatica 

 

After identifying the four windthrow plots, a series of field measurements were car-

ried out. These included: a) the totality of the damaged trees in all four locations, which 

were subsequently classified according to forestry species and type of damage per plot. It 

must be clarified here that in the current study, we took into account only the uprooted 

trees and not the broken ones; b) the diameter at breast height of the uprooted trees; and 

c) with the help of Garmin Dakota 20 GPS, the area, elevation, as well as the aspect of each 

affected plot. 

In order to draw conclusions pertaining to the properties of green wood and the 

strength and resilience of the species that were affected (Pinus sylvestris and Picea abies) as 

well as of those which were within the windthrow stands but did not experience any dam-

age (Fagus sylvatica and Quercus sp.), the Stuttgart Table of Wood Strength (Wessolly and 

Erb 1998) was taken into account for the species concerned. This list (Table 2) refers to the 

mechanical properties of green wood (i.e., standing wood) and not of wood in use.  

 

Table 2 Stuttgart table of wood strength (Wessolly and Erb 1998) 

 

Species 

Modulus of elasticity 

(N/mm2) 

Comparable strength in 

longitude 

(N/mm2) 

Elastic limit 

(%) 

Proposed Aerodynamic 

drag factor (cw) 

Pinus 

sylvestris 

5800 17.0 0.29 0.15 

Picea abies 9000 21.0 0.23 0.20 
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 2.1 Intelligent Data Analysis 

In order to create a forecasting model for the prediction of storm disasters based on 

tree-level data, a comprehensive comparative study of the most well-known machine 

learning algorithms was carried out. Machine learning is one of the most important and 

most widely used fields of artificial intelligence that includes computational methods of 

studying and building algorithms that can learn from appropriate data sets and, based on 

this experience, carry out accurate future forecasts. 

In recent years, machine learning has been used in various environmental issues, 

such as the exploration of the impact of climate change on biodiversity (Demertzis and  

Iliadis 2018), the modeling of forest fires (Anezakis et al. 2018), the analysis of exhaust 

emissions generated by chainsaws (Dimou et al. 2018), and the prediction of interior 

spruce wood density utilizing progeny test information (Demertzis et al. 2017).  

The concept of experience mentioned above refers to the hidden knowledge included 

in the field data we collected, which are related to local topographic factors, forestry char-

acteristics as well as the mechanical properties of species in association with the type of 

damage they suffered. To be more specific, we used as independent variables the charac-

teristics related to the topographic area, the size of the damaged sites, the forestry species, 

diameter at breast height, slope and geographic orientation. The only dependent variable 

that we used was whether the tree was uprooted or not. Consequently, we came up with 

a binary classification problem (Bahel et al. 2020).  

Binary classification concerns the grouping of each sample into one of two predeter-

mined classes. The term ‘training’ of a machine learning model by means of the classifica-

tion method refers to the process that calculates the equation ��: �� → �, where T is a set 

of labels that indicate the class (whether the tree was uprooted or not). In this problem, 

we considered as a key evaluation metric the error corresponding to an incorrect predic-

tion, which depends on the concept of relative distance between the different classes 

(Canbek et al. 2017).  

In general, evaluation metrics are used to measure the performance of a machine 

learning method. Without these evaluation metrics, there can be no comparison between 

algorithms, nor is there the potential to select the appropriate tune hyperparameters that 

allow the model to maximize model performance. Evaluation is carried out only in the 

unknown data (test set) as an algorithm may be consistent with the training set but fail to 

perform well in the test set (Raschka 2014).  

3. Results and Discussion 

3.1 Results  

After scanning with the help of an UAS an area of approximately 159 ha (Table 1), 

four damaged plots were identified (aPISY, bPISY, aPIAB, bPIAB), each of which was lo-

cated in a different stand. In the first two plots (aPISY and bPISY), belonging to two mixed 

stands of conifers and broadleaves, namely Pinus sylvestris and Quercus sp., damage had 

only occurred in Pinus sylvestris. In the other two plots (aPIAB and bPIAB), also belonging 

to another two mixed stands of Fagus sylvatica and Pinus sylvestris, damage had only oc-

curred in the secondary species, i.e., Picea abies.  

Table 3 illustrates the topographic features as well as the size of each plot, the largest 

of them being aPIAB with 5.75 ha. These plots are located at altitudes ranging from 1000 

to 1300m. Table 4 shows the ranking of the severity of damage in these plots following the 

Fagus 

sylvatica 

8500 22.5 0.26 0.25-0.30 

Quercus  

robur 

6900 28.0 0.41 0.25 
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Bradford / Unwin damage scale (Unwin et al. 1988). According to this scale, damage equal 

to 1.5 is considered as serious disturbance. Plot aPISY, with a large number of trees being 

snapped or uprooted and the rest having undergone moderate disturbance, belongs to 

this class (Table 4). Damage equal to 1.0 corresponds to severe and extensive disturbance; 

plot bPISY falls into this class as all the trees it consisted of exhibited extensive disturb-

ance.  

Damage equal to 3 corresponds to moderate or minor disturbances; plot aPIAB be-

longs here, as fewer than 10% of the trees were damaged (Unwin et al. 1988; Metcalfe 

2008). In this plot, 160 Picea abies trees were affected, 88.75% of which were uprooted and 

the remaining snapped. Last, plot bPIAB belongs to scale 2.5, which is considered to rep-

resent instances of moderate disturbance, where fewer than 33% of the trees were found 

to be broken or uprooted. Table 4 also shows the diameters at breast height of the uprooted 

trees as well as the wood volumes of the uprooted trees per plot.  

 

Table 3 Topographic features and size of plots 

Plots Latitude Longitude Geology Aspect Altitude Slope (%) Area (Ha) 

aPISY* 41° 15΄ 46΄΄ N 024° 45΄ 48΄΄ E granite SW 1000 10 1.20 

bPISY 41° 15΄ 32΄΄ N 024° 46΄ 06΄΄ E granite S 1000 40 4.10 

aPIAB** 41° 20΄ 37΄΄ N 024° 42΄ 21΄΄ E rhyolite NW 1300 20 5.75 

bPIAB 41° 20΄ 40΄΄ N 024° 42΄ 22΄΄ E rhyolite NW 1300 20 0.26 

sum  11.31 

* Pinus sylvestris, ** Picea abies 
 

Table 4 Damage severity according to Bradford/Unwin damage scale, number of damaged trees per plot, type of dam-

age, damage in m3 

Plot Bradford/Unwin 

damage scale 

Level of 

damage 

Number 

of stems 

assessed 

% 

uprooting 

DBH (SD) Damage 

m3/species ** 

aPISY(27a) 1.5 (95%)* Severe 26 65.38 23.33 (4.43) 4.69 

bPISY(26c) 1 (100%) Severe 237 39.66 21.46 (2.28) 33.08  

aPIAB(7a) 3 (9%) Moderate 160 88.75 26.07 (8.00) 77.88  

bPIAB(7b) 2.5 (20%) Moderate 34 52.94 25.27 

(8.28) 

9.19  

sum   457   124.84 

(%)*percentage of damaged trees, **uprooted trees (m3) 

 

Table 5 Number of damaged trees per species 

 Number of all stems assessed (%) Number per forestry species assessed (%) 

PISY uprooting 111/457 (24.29) 111/263 (42.20) 

PIAB uprooting 160/457 (35.01) 160/194 (82.47) 

 

 

Table 5 depicts the total number as well as the percentage of the uprooted trees per 

species (111 Pinus sylvestris, 160 Picea abies) compared to the total number of damaged 

trees (457), which includes both the uprooted and snapped trees; the latter, however, were 

not taken into consideration in the present study. The table also shows (3rd column) the 

number and percentage of the uprooted trees per species (263 Pinus sylvestris, 194 Picea 

abies) compared to the total number of uprooted trees.   
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3.1.1 Machine Learning Performance Comparison Results  

In the present study, the following machine learning methods were evaluated and 

compared: Random Forest Classifier, k-Neighbors Classifier, Decision Tree Classifier, 

Light Gradient Boosting Machine, Gradient Boosting Classifier, Ada Boost Classifier, 

Ridge Classifier, Linear Discriminant Analysis, Logistic Regression, Naive Bayes, SVM - 

Linear Kernel and Quadratic Discriminant Analysis. In order to get the best predictive 

model, the different machine learning algorithms were evaluated based on six perfor-

mance metrics (confusion matrix, accuracy, precision, recall, F-score, and ROC). Table 6 

illustrates the results of the comparative study. 

 

Table 6 Machine Learning Performance Comparison Results 

ID Algorithm Accuracy ROC Recall Precision F-Score TT (Sec) 

1. Random Forest Classifier 0.8851 0.9476 0.8677 0.8975 0.8820 0.610 

2. k-Neighbors Classifier 0.8838 0.9433 0.8719 0.8917 0.8811 0.126 

3. Decision Tree Classifier 0.8827 0.9030 0.8573 0.9019 0.8785 0.020 

4. Light Gradient Boosting Machine 0.8745 0.9450 0.8407 0.8997 0.8689 0.121 

5. Gradient Boosting Classifier 0.8468 0.9221 0.7874 0.8909 0.8356 0.192 

6. Ada Boost Classifier 0.7662 0.8480 0.6655 0.8288 0.7376 0.160 

7. Ridge Classifier 0.7559 0.0000 0.6634 0.8091 0.7286 0.016 

8. Linear Discriminant Analysis 0.7559 0.7625 0.6634 0.8091 0.7286 0.020 

9. Logistic Regression 0.7542 0.7687 0.6565 0.8110 0.7253 0.359 

10. Naive Bayes 0.7391 0.7773 0.6856 0.7635 0.7220 0.018 

11. SVM - Linear Kernel 0.6370 0.0000 0.7686 0.6947 0.6735 0.030 

12. Quadratic Discriminant Analysis 0.5146 0.4607 0.1215 0.8495 0.1078 0.018 

 

The algorithm with the best predictive performance as reflected in Table 6 above was 

found to be Random Forest (RF) (Prinzie and Poel 2007). RF uses decision trees as predic-

tive models, to which it assigns comments and conclusions regarding the target value of 

the dependent variable. Each decision tree is calculated by induction, based on the rec-

orded data, using the divide-and-conquer technique. More specifically, for the data set 

considered in the present paper, each data includes seven independent variables and there 

are a total of two classes (C1, C2) as independent variables (uprooted vs. not uprooted). 

The objective is the partition of the set into subsets, each of which comprises data 

belonging to a single class. In particular, a suitable test is selected, which typically uses a 

single feature, with only one output in the set {O1,O2,…,On}. In this way, the set is parti-

tioned in subsets Τ1,Τ2,…,Τn, where subset Ti includes all the data of the initial set for 
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which the Οi output has been derived. So, the decision tree includes a decision node where 

the test selected is performed and a branch for each O1,O2,…,On  output. It should be 

stressed that the RF algorithm uses a large number of decision trees in order to correctly 

achieve the final categorization of the problem at hand. 

 

 
Fig. 1 Operation of Random Forest 

  

As proof of the supremacy of the algorithm over the other candidates, the following 

schematic diagrams (Fig. 2-4 and Fig. 6-13 see appendix) are presented confirming the 

efficiency of the said algorithm. The most popular performance metrics that are capable 

of evaluating and comparing with clarity, thoroughness, and objectivity the classification 

algorithms used in this paper are presented below (Talingdan 2019): 

1. Confusion Matrix 

The evaluation of a classification model is based on the number of records in a test 

set that are predicted correctly or incorrectly by the model. This number is placed in a 

confusion matrix, a two-dimensional table, in which columns correspond to the predicted 

and rows to the actual values of each class. 

 

 
Fig. 2 Confusion Matrix 

 

2. Accuracy  
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Accuracy is calculated via the following equation: 

�������� =
�� + ��

�� + �� + �� + ��
 

and expresses the percentage of correct predictions. 

3. Precision 

Precision is calculated as follows: 

��������� =
��

�� + ��
 

and expresses the percentage of the correct positive results predicted by the classifier. 

4. Recall 

Recall is calculated by means of the following equation:  

������ =
��

�� + ��
 

and expresses the classification percentage of all positive results classified by the clas-

sifier. 

 

 
Fig. 3 Precision vs Recall 

 

5. F-Score 

In order to effectively deal with instances in which a classifier has high recall but low 

precision, the F-Score metric has been introduced, which is the harmonic mean between 

precision and recall and is calculated through the following equation:  

������ =
2 × ������ × ���������

������ + ���������
=

2��

2�� + �� + ��
 

The greater the F-Score, the higher are recall and precision and the better is the per-

formance of a given model.  
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Fig. 4 Classification performance report 

 

6.  Receiver Operating Characteristic (ROC) 

This metric can be applied in classifiers that have confidence as output. In this case, 

the classifier predicts a class if confidence in this class exceeds a given threshold. For the 

formation of the ROC curve, various threshold values are used and, each time, the rates 

[True Positive Rate (TPR) and False Positive Rate (FPR)] are recorded. These pairs of val-

ues are plotted in a graph, in which y axis corresponds to TPR and x axis corresponds to 

FPR. The performance of each classifier is represented as a point in the ROC curve (Alam 

et al. 2011). 

 

 
Fig. 5 ROC plots 

 

3.2 Discussion  

The Fujita (F) Scale is used to estimate tornado wind speeds based on the level of 

damage left behind by a tornado. The scale ranges from F0, assigned to tornadoes which 

generate "light damage", to F5, which is assigned to tornadoes causing "incredible 
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damage". According to Canham et al. (2001), severe tornadoes rated F3-F5 on the Fujita 

scale with winds blowing at >70m/s (Godfrey et al. 2017) may cause uniform and complete 

windthrow in a location with relatively distinct boundaries between the damaged area 

and an adjacent minimally disturbed site. The majority of tornadoes (almost 75%) corre-

spond to an F-scale rating of F0-F1 and are characterized by moderate winds (<50m/s); 

however, they are likely to bring about a wide range of catastrophic impacts on the af-

fected trees. In the current research, carried out in an area NE of the City of Xanthi, on 

April 5, wind speeds were well below 50m/s (9.4m/s) and blew constantly without pause 

for the next two days (6 and 7 April), on which speeds amounted to 11.8m/s and 10.7m/s, 

respectively. These winds produced damage rated between F0-F1 on the Fujita scale (God-

frey et al. 2017). 

In plots aPISY and bPISY, consisting solely of Pinus sylvestris, 95% - 100% of the trees 

were blown down. However, the greatest extent of uprooting measured in m3 of damaged 

wood (77.88 m3, Table 4) occurred in plot aPIAB, as it was the largest in size disturbed plot 

(5.75 ha, Table 3). As a rule, it was observed that in all four mixed stands of conifers and 

broadleaves (Table 1), only the conifers, i.e., Pinus sylvestris and Picea abies were affected, 

while the broadleaves (Fagus sylvatica and Quercus sp.) showed no signs of damage. 

In the first two mixed stands (PsMxQu and PsDomxQu), both of which were made 

up of conifers and broadleaves (Pinus sylvestris and Quercus sp.), and more specifically, in 

plots aPISY and bPISY (corresponding to PsMxQu and PsDomxQu stands, respectively, 

Table 1), disturbance occurred only in Pinus sylvestris trees, as these plots were composed 

solely of Pinus sylvestris. In the other two mixed Pinus sylvestris and Fagus sylvatica plots, 

i.e., aPIAB and bPIAB (belonging to stands FsDomxPs and PsDomxFs, respectively), dis-

turbance occurred only in a secondary species, namely Picea abies, a fact that can serve as 

proof that Fagus sylvatica is exceptionally resistant to overturning or breaking in the given 

weather conditions. This is true only if Fagus sylvatica is not affected by beech bark disease 

(Chaham et al. 2001), as in the present case. 

More generally, where Pinus sylvestris was mixed either with Quercus sp. or with 

Fagus sylvatica (aPIAB, bPIAB), it had been substantially protected, while in those plots 

where it stood on its own (aPISY, bPISY) it had been extensively uprooted. On the other 

hand, Picea abies, even if it was mixed with Fagus sylvatica and Pinus sylvestris, had been 

blown down to a large extent. 

The ability of a tree to withstand trunk breakage is determined by the applied load 

(wind speed), tree geometry (crown sail-area and stem taper), as well as the mechanical 

properties of green wood, i.e., compression strength and modulus of elasticity (Horáček 

2003). Taking into consideration the fact that the mechanical properties of green (moist) 

wood differ from those of industrial wood (Brudi et al. 2002), we used the corresponding 

green wood values in accordance with the Stuttgart table of wood strength (Wessolly and 

Erb 1998) and, in particular, those for Pinus sylvestris, Picea abies, Fagus sylvatica and Quer-

cus sp. (Table 2). Wessolly and Erb (1998) studied the behavior of standing trees by means 

of an elastometer and derived the values of the mechanical properties of green (moist) 

wood (Horáček 2003). 

Stiffness, measured by the modulus of elasticity (N/mm2), is the only constant of ma-

terials that is responsible for the behavior of the trunk under load stress such as the power 

of the wind. The destruction of a trunk takes place when the wind-induced stress on the 

marginal fibers of the trunk exceeds the tree’s resistance to compression and this capacity 

to withstand loads is referred to as compression strength. 

The resistance of a tree’s crown to the wind is also expressed by means of the aero-

dynamic drag factor (cw). The drag factor shows that during a storm, the leaves, branches, 

and smaller twigs are bent by powerful air gusts (Mayhead 1973). Fagus sylvatica's green 

wood is significantly more rigid (Emod=8500 N/mm2) and has stronger compressive prop-

erties (22.5N/mm2) than Pinus sylvestris and Picea abies; also, the green wood of Quercus sp. 

has the highest compression strength (28 n/mm2) compared to the other three species.  

In addition, both broadleaved species have very high aerodynamic drag factor values 

(cw=0.25-0.30 and cw=0.25 for Fagus sylvatica and Quercus sp., respectively), with cw=0.30 
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being the maximum limit. Pinus sylvestris does not have very high stiffness values 

(Emod=5800 N/mm2) or particularly strong compressive properties (17 N/mm2) and at the 

same time exhibits a relatively low aerodynamic drag factor (cw=0.15), a fact that justifies 

the high rates of Pinus sylvestris uprooting (42.20%).   

Picea abies, on the other hand, is more resistant to external loads (Emod=9000 N/mm2) 

compared to Pinus sylvestris, so it can be considered that its green wood is more rigid and 

has stronger compressive properties (21 N/mm2); its aerodynamic drag factor has a mod-

erate value (cw=0.20), which is by all means higher than that of Pinus sylvestris (cw=0.15). 

The high rates of uprooting in this species (82.47%) are probably due to the fact that Picea 

abies is shallow rooted.    

4. Conclusion  

In the disturbed area, located NE of the City of Xanthi, Pinus sylvestris and Picea abies 

individuals suffered damage from stormy winds blowing for three consecutive days with 

maximum gusts reaching 187.5 km/h (on April 5th) and maximum wind speeds equal to 

11.8 m/s. According to the Fujita scale, the above wind speeds are ranked F0-F1, a category 

comprising almost 75% of tornadoes (Godfrey 2017). As the winds were not considered to 

be particularly strong, the disturbance caused was not significantly extensive. Four plots 

in the study area were affected with a total area equal to 11.31ha (Table 3). The damage 

due to uprooting amounted to 124.84 m3 of wood (Table 4), while the overall damage in-

cluding windsnap, too, was 187.77 m3. 

Identifying the plots where the damage occurred was a problematic task as these 

areas were small-sized and scattered, and consequently it was highly unlikely that they 

could be identified through satellite. In order to identify the disturbed plots, an unmanned 

aircraft system (UAS) was used in the present study, as these systems are, as a rule, flexible 

and easy to use. It is beyond doubt that it is of crucial importance to quickly detect all 

damaged trees from abiotic causes such as wind disturbance even if they are scattered and 

in small areas as they constitute habitats to bark beetles (Seidl et al. 2014). 

While recording and analyzing the information we collected about the damaged 

trees, it became easily evident that Picea abies is highly unstable and therefore easily up-

rooted even in low wind speeds, and its individuals are unable to be protected even if it 

is a secondary species within mixed conifer-broadleaf clusters. According to the Stuttgart 

table of wood strength (Wessolly and Erb 1998), the green wood of Picea abies has rela-

tively good mechanical resistance and presents sufficient stiffness (Emod=9000 N/mm2) but 

its easy uprooting is due to its shallow root system that provides rather poor anchorage 

(Puhe 2003). 

It was also found that, unlike Picea abies, under the same wind conditions, Pinus syl-

vestris experienced disturbance not individually but only in relatively small plots (1.20 ha 

and 4.10 ha, respectively, was the total area of plots aPISY and bPISY, where almost all 

Pinus sylvestris trees [95% and 100%, respectively] had been damaged). From on-site re-

search, the authors assumed that a large proportion of damage within the respective plots 

can be attributed to trees falling on their neighbors (Metcalfe 2008). It was also found that 

in those cases where Pinus sylvestris was mixed with Fagus sylvatica in a cluster, it had been 

protected, whereas if it stood alone, it was damaged. Taking into account the fact that 

wind speeds were not exceptionally high as compared to those in other disturbed areas, 

it can also be assumed that the topographic conditions of the plots (slope, aspect, etc.) 

played a role in affecting local wind conditions, such as speed and pressure (Metcalfe 

2008; Einzmann 2017; Brudi et al. 2002).   

Given the global climate change situation, the approaches to be adopted for the opti-

mal management of forests should revolve around goals of forest resilience and effective 

adaptation to future demanding environmental conditions. The authors of the current 

study believe that the windthrow data provided herein will benefit policy decision makers 

regarding risk management and forest planning. To this end, the following recommenda-

tions might prove useful. 
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It is deemed necessary to opt for mixed forests and avoid large monoculture patches 

where a certain species develops on its own, as in the case of Pinus sylvestris, since it has 

been shown that even in relatively low wind intensities there may be serious tree damage; 

it is also recommended that Picea abies be avoided as it is particularly susceptible to wind-

throw even in relatively low wind intensities and it is hardly protected even in a mixed 

conifer-broadleaf community.   

The data collected was used to develop a realistic machine learning model which 

adopts an RF algorithm in order to predict windthrow in similar conditions. The method-

ology of the proposed information system utilizes and expands the most technologically 

advanced forestry methods, as it takes advantage of the hidden knowledge lying in envi-

ronmental data in order to add to climate change analysis methods and optimal decision-

making mechanisms associated with it. 
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Appendix A 

 

 

Fig. 6 Threshold plot 

 

 

Fig. 7  Class prediction error 
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Fig. 8 Learning curve 

 

Fig. 9 Validation curve 

 

 

Fig. 10 Calibration plot 
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Fig. 11 Lift curve 

 

Fig. 12 Cumulative gains curve 

 

Fig. 13 KS statistic plot  
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