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Abstract: Advanced machine learning algorithms, have the potential to be successfully applied 1

to many areas of system modelling. In the present study the capability of ten machine learning 2

algorithms in predicting the structural damage of an 8-storey reinforced concrete frame building 3

subjected to single and successive ground motions is examined. From this point of view, the initial 4

damage state of the structural system, as well as 16 well known ground motion intensity measures are 5

adopted as the features of the machine-learning algorithms that aim to predict the structural damage 6

after each seismic event. The structural analyses are performed considering both real and artificial 7

mainshock–aftershock sequences, while the structural damage is expressed in terms of two overall 8

damage indices. The comparative study results in the most efficient damage index, as well as the most 9

promising machine learning algorithm in predicting the structural response of a reinforced concrete 10

building under single or multiple seismic events. Finally, the configured methodology deployed in a 11

user-friendly web-application. 12

Keywords: Seismic Sequence; Machine Learning Algorithms; Repeated Earthquakes, Structural 13

Damage Prediction, Intensity Measures, Damage Accumulation, Machine Learning, Artificial Neural 14

Network 15

1. Introduction 16

During earthquake events, it is common to observe aftershocks following a mainshock. 17

Moderate-to-strong aftershocks may lead to additional structural damage and even collapse 18

of buildings that sustained damage from the mainshock. Thus, the seismic performance of 19

structural systems subjected to successive ground motions receives increasing attention the 20

last years. The recent disaster held on March 2021 in Tyrnavos-Elassona region, Thessaly 21

of Greece due to a pair of compatible magnitude (Mw=6.3, Mw=6.1) [1] shallow earth- 22

quakes with more than 1800 damaged or non-serviceable buildings, emerge the necessity 23

of predicting the damage potential caused by mainshock–aftershock sequences in order to 24

assess the seismic risk. It should be noted that the final, accumulated, damage includes 25

the initial damage caused by major earthquake and the incremental damage caused by 26

the following seismic sequence. The effect of successive seismic events on the structural 27

performance has been thoroughly examined by many researchers [2–6]. Specifically, Ama- 28

dio et al. [7] studied the influence of repeated shocks on the response of nonlinear Single 29

Degree of Freedom (SDOF) systems using different hysteretic models. Hatzigeorgiou and 30

Beskos [8] conducted an exhausting parametric study on SDOF systems and proposed an 31

empirical relation to calculate inelastic displacement ratio under repeated earthquakes. 32

Hatzigeorgiou and Liolios [9] examined the nonlinear behaviour of Reinforced Concrete 33

(RC) frames subjected to multiple shocks considering a set of eight frames that varied both 34
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at height regularity and dimensioning practice. Hatzivassiliou and Hatzigeorgiou [10] 35

studied the accumulation of damage and ductility demands due to seismic sequence on 36

three dimensional RC structures. Hosseinpour and Abdelnaby [11] studied the impact 37

of different aspects, as earthquake direction, aftershock polarity and the influence of the 38

vertical component, on the nonlinear response of RC frames under successive earthquakes. 39

Also, more recently, Kavvadias et al. [12] and Zhou et al. [13] investigated the correlation 40

between aftershock related Intensity Measures (IMs) and final structural damage indices. 41

Additionally, multiple researchers [14–17] have been evaluating the fragility of buildings 42

and infrastructures against seismic sequences, in the past. 43

In recent years advanced Machine Learning Algorithms (MLAs), such as Artificial Neu- 44

ral Networks (ANNs), have been successfully applied to many areas of system modelling. 45

Their success is based on the thorough processing of data that captures the behaviour of a 46

system. By detecting patterns in the collected data, valuable information can be extracted 47

and predictions can be made that automate the decision-making process. That fact makes 48

Machine Learning (ML) an advanced tool in modern engineering modelling. From this 49

point of view, the utilize of MLAs in earthquake engineering raises year by year, examining 50

mainly the capability of such models in predicting the seismic structural damage [18–20]. 51

Among others, De Latour and Omenzetter [21] investigated the efficiency of ANNs on the 52

prediction of seismic damage on numerous RC frames, while Alvanitopoulos et al. [22] also 53

examined regular RC structures and, by incorporating fuzzy layers in ANN configuration 54

(architecture). Subsequently, Morfidis and Kostinakis [23] used feature selection methods 55

in a dataset of 3 dimensional RC buildings to found the more damage correlated set of 56

seismic IMs. More recently, the same authors [24] examined the effectiveness of ANNs 57

on the damage prediction of non-regular at height structures. Applications of Recurrent 58

Neural Networks (RNNs) on Earthquake Engineering are presented by González et al. [25] 59

and Mangalathu and Burton [26]. Furthermore, Zhang et al. [27] developed a Long-Short 60

Term Memory (LSTM) network to predict structural response. For the same purpose, 61

Convolutional Neural Networks (CNNs) have been applied by Li et al. [28] and Oh et al. 62

[29]. Additionally, Thaler at al. [30] proposed a combination of Monte Carlo simulation and 63

ANNs to predict the post seismic structural statistics of an elasto-plastic frame structure. 64

The application of different fuzzy and crisp ML techniques in localization and predicting 65

the amount of damage to an RC frame under individual earthquakes has been evaluated 66

by Vrochidou et al. [31]. The common characteristic of the above studies is that the initial 67

structural damage state of the structure is omitted. However, Lazaridis et al. [32] used an 68

Ensemble Neural Network to predict the structural damage after a sequence of two seismic 69

shocks employed as input features, both damage after the first earthquake and the IMs of 70

the second one. 71

In the present study the reliability of MLAs in predicting the seismic structural damage 72

of an 8-storey RC frame structure subjected to both single and successive seismic events 73

(consisting of double seismic shocks) is examined. Due to the fact that the effect of each 74

seismic excitation on the structural response is examined individually, to manipulate the 75

data in total, the initial structural damage is taken into account even if the structure is 76

intact i.e., in case of single seismic event (mainshock). The initial damage, as well as the 77

ground motion intensity, which is expressed in terms 16 well-known IMs, are considered 78

as the features of the ML problem, while the post-earthquake damage as the target. By 79

this, the ML model could be applied even in case of multiple aftershock events given the 80

characteristics of the complete seismic activity. 81

2. Primitive Data 82

2.1. Ground Motion Records 83

For the purpose of this study both artificial and natural seismic sequences are con- 84

sidered. By this, a sufficient set of data is ensured. Randomized seismic sequences are 85

synthesized, using a suite of 318 individual natural acceleration records, to generate arti- 86

ficial seismic sequences accelerograms taking into account the differences of the ground 87
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motion features [33]. The descriptive statistics of the aforementioned excitation suite are 88

listed in Table A1. Specifically, every record of aforementioned suite is combined randomly 89

in pairs with another six records from the same suite. As a result, 1908 pairs of first and 90

second shock are constructed. These seismic sequences and the corresponding structural 91

responses are used as the major part of the overall dataset for the specific ML problem. 92

As a minor part of the overall dataset, 111 natural pairs of sequential shocks records are 93

considered. The assumed natural sequences are occurred from 1972 to 2020, while the time 94

gap between the occurrence of the successive shocks is smaller than fifteen months. It has to 95

be mentioned that each mainshock-aftershock record is obtained by the same station. As a 96

result, the natural set is consisted of 41 real seismic sequences recorded by 63 stations. Both 97

sequential and individual records are selected from ESM [34] and PEER NGA West [35] 98

databases. The natural seismic sequences are listed in Table A2. In order to construct the 99

accelerograms composed of two successive seismic records, an intermediate zero ceasing 100

time gap of 20 seconds is added to eliminate the overlap between the building oscillations. 101

It should be noted that Non Linear Time History Analysis (NLTHAs) are performed not 102

only using the seismic sequences but also using the first shock of each sequence, as the 103

scope of this study is to examine the seismic structural response not only under seismic 104

sequences but also under single ground motion records. 105

Figure 1. Reinforced Concrete Frame designed by Hatzigeorgiou and Liolios [9].

2.2. Reinforced Concrete Structure 106

Existing buildings designed and constructed without earthquake provisions comprise 107

the majority of structures both in Greece and worldwide. That fact raises particular concern 108

about their response to a potential earthquake. In this view, an 8-storey planar regular 109

RC frame (Figure 1) designed only for gravity loads by Hatzigeorgiou and Liolios [9] is 110

examined in the present study. The finite element simulation of the frame held in IDARC 111

2D [36], using spread plasticity concept and three-parameter Park hysteretic model [37]. 112

Every floor considered to have only one horizontal degree of freedom to take into account 113

the huge plane stiffness of RC slab as a rigid diaphragm. Sparsely placed stirrups with poor 114

anchor details are assumed in order to be in accordance with obsolete design codes. Thus, 115

a nonlinear deformation-stress model for concrete without confinement is adopted. As a 116
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result, the concrete with mean compressive strength equal to 28 MPa is modeled by a curve 117

defined by the initial modulus of elasticity (E0 = 31.42 GPa), the strain at the maximum 118

stress (ϵc0 = 2h), the ultimate strain in compression (ϵcu = 3.5h), stress at tension cracking 119

σt = 0.0022 GPa, and slope of the post-peak falling branch (E f b = −6.2 GPa). Furthermore, 120

for steel grade S500s a bilinear curve with hardening employed. The with yield and ultimate 121

strengths equal to 550 MPa and 660 MPa respectively and the corresponding strains equal 122

to 2.75h and 45h, according to Eurocode-2 [38] provisions. The initial elastic fundamental 123

period of the structure is equal to 1.27 seconds. The generation of IDARC 2D input files 124

and the post-processing of the results are performed through GNU Octave [39,40] code. 125

3. Features, Targets and Dataset Generation 126

3.1. Ground Motion IMs 127

The basic parameters adopted in order to perform a seismic structural damage pre- 128

diction analysis are the characteristics of the ground motion. By this, the identification 129

of the seismic parameters that affect the dynamic response is of outmost importance. For 130

this purpose, a set of 16 ground motion IMs is calculated. Amplitude parameters such 131

as the maximum absolute values of ground accelerations (ag(t)), velocities (vg(t)), and 132

displacements (dg(t)) signals, which referenced as PGA, PGV, and PGD [41], respectively 133

are examined. Additionally, the Arias Intensity (IA) [42] and the Cumulative Absolute 134

Velocity (CAV) [43], which are calculated by integral of the accelerogram time history are 135

considered. 136

An inherent feature of signals is the frequency content which varies dynamically 137

over the time in case of ground motion records. However, it can be quantified using the 138

equivalent frequency PGA/PGV [41] as if it was a sinusoid signal. Another quantity that 139

is related to the frequency content of a ground motion is the Potential Destructiveness 140

Measure after Araya and Saragoni (IAS) [44], determined by the zero crossings number of 141

the acceleration signal (uo) per unit of time. 142

Various definitions have been given in the past for the strong motion duration of a 143

seismic excitation, in order to identify the time interval of the signal in which the vast 144

amount of its total intensity is released. In this work, the strong motion durations defined 145

by Trifunac and Brady (SMDTB) [45], and by Reinoso, Ordaz and Guerrero (SMDROG) [46] 146

are assumed. Both of these are based on the time evolution of Arias Intensity according 147

to Husid Diagram [47]. Also, the bracketed duration as described by Bolt (SMDBolt) [48], 148

which is defined by the first and last exceedance of the 5 percent of g, is employed. 149

Combining the above parameters results in more complex measures such as Power P90 150

[41], arms [41], Characteristic Intensity (Ic) [41], the potential damage measure according to 151

Fajfar, Vidic and Fischinger (IFVF) [49] and the IM after Riddell and Garcia (IRG) [50]. 152

It has to be mentioned that seismic parameters that depend on the fundamental 153

structural period, such as individual spectral values were not calculated. These parameters 154

could not be used due to the elongation of the elastic period during the first seismic event. 155

Instead, the Housner Intensity [51] (SIH) which accumulate pseudo-spectral velocities 156

(PSV) to a constant range of possible eigen periods and demonstrates high correlation 157

with the structural damage [23,52,53], is employed. All of the mathematical expressions 158

of the examined IMs are summarised in Table 1. The elastic spectra are defined using 159

OpenSeismoMatlab [54], while values of the IMs are computed through Python [55] code. 160

3.2. Damage Indicators 161

For the ML modeling of the present study, the structural damage is assumed both as 162

an input feature, to take into account the initial damage due to the former seismic shock, 163

as well as a target one in order to describe the damage accumulation after the examined 164

ground motion. The structural response is assessed in terms of two overall seismic damage 165

indices. Namely, the overall damage index after Park and Ang (DIG,PA) [36] and the 166

damage index after DiPasquale and Çakmak (DIDC) [56]. 167
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Table 1. Mathematical Expressions of IMs.

Num Name Expression Ref. Num Name Expression Ref.

1 PGA max|ag(t)| [41] 9 SMDROG t(Hd = 97.5%)− t(Hd = 2.5%) [46]

2 PGV max|vg(t)| [41] 10 SMDBolt t
ag>0.05g
last − t

ag>0.05g
1st [48]

3 PGD max|dg(t)| [41] 11 P90
IA (Hd=95%)−IA (Hd=5%)

SMDTB
[41]

4 IA
π
2g

∫ tend
0 a2

g(t)dt [42] 12 arms

√
1

SMDTB

∫ t95%
t5%

ag(t)2dt [41]

5 CAV
∫ tend

o |ag(t)|dt [41] 13 Ic a1.5
rms · SMD0.5

TB [41]

6 PGA/PGV PGA
PGV [41] 14 IFVF PGV · SMD0.25

TB [49]

7 IAS
IA
u2

o
[44] 15 IRG PGD · SMD

1
3
TB [50]

8 SMDTB t(Hd = 95%)− t(Hd = 5%) [45] 16 SIH
∫ 2.5

0.1 PSV(T, ξ = 0.05)dT [51]

The originally introduced damage index after Park and Ang (DIPA) [57] results from 168

summation of the maximum flexural responses and the hysteretic energy consumption 169

of the plastic hinges and is calculated by Equation 1 modified by Kunnath et al. [58] 170

(Equation 2). The overall damage index (DIG,PA) [36] is calculated as a weighted average of 171

the sub-factors, weighted by the percentages of the total energy consumed by each member 172

of the construction, according to Equation 3. The value of DIG,PA as close to zero as possible 173

implies a complete damage-free structural system with an elastic response. However, a 174

structure is characterized as near to collapse when DIG,PA takes values over the unit. 175

DIPA =
δm

δu
+

β

Qyδu

∫
dE (1)

DIPA, component =
θm − θr

θu − θr
+

β

θu My
Eh (2)

DIG,PA =
∑ EiDIPA,component

∑ Ei
(3)

where δm is the maximum element displacement response, δu is the ultimate element 176

displacement, β is the model constant parameter for strength deterioration proposed by 177

Park et al. [59],
∫

dE is the cumulative hysteretic energy consumed by the element during 178

its response, Qy is the yield strength of the element, θm is the maximum element rotation 179

during the time history response, θu is the ultimate capacity of the element and θr is the 180

recoverable element rotation during unloading. 181

During high-intensity seismic events, it is known that the cross-sections in plastic 182

hinges areas of a building can be severely cracked or even present steel yielding, resulting 183

in structural stiffness degradation. Therefore, increase of the building’s flexibility, and as 184

such its fundamental period is expected [60]. The DIDC is based on the above mentioned 185

increase of the fundamental period and is calculated according to Equation 4. 186

DIDC = 1 − T0initial

T0equivalent

(4)

where T0initial is the fundamental period before the starting of analysis and T0equivalent is the 187

fundamental period at the end of the analysis. 188

189

3.3. Datasets Configuration 190

The scope of this study is to examine the capability of MLAs in predicting the structural 191

damage of an RC frame under single or multiple ground motion records. To achieve this, 192

the intensity of each seismic event and the corresponding response is treated individually, 193

taking into account the initial structural damage just before the certain oscillation. In case 194

of sequential seismic events the damage occurred by the fist shock is considered as the 195
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initial damage of the structure subjected to the aftershock. In order to provide a universal 196

model that can predict the structural damage, regardless the pre-earthquake state of the 197

building, the initial damage is taken into account even if the structure is intact i.e., in case of 198

single seismic events. In such case the value of the damage indices is set as zero. It has to be 199

mentioned that from the initially 1908 artificially generated sequences finally 1528 of them 200

are considered. The rest sequences are omitted either due to convergence problems of the 201

NLTHAs, either due to the absence of structural damage under the first shock. Thus, the 202

dataset in total, comprises 1528 artificial and 111 natural seismic sequences. Additionally, 203

429 single seismic events are considered. As such, 2068 NLTHAs are performed. 204

4. Exploratory Data Analysis (EDA) 205

For the most complete and effective decision-making, statistical analysis of the ex- 206

amined data is required, in order to captured the technical characteristics of the problem. 207

This exploratory analysis includes a set of numerical and graphical methods, which allow 208

us to obtain an initial consideration about the features of the data that will be used in the 209

ML Models. The purpose of the aforementioned analysis is the practical (non-scientific) 210

interpretation of the data by unveiling the main characteristics of the data format, as well as 211

their origin. This technique is a necessary step before the application of statistical inference 212

methods, in order to thoroughly check the suitability of the data, the formulation of the 213

adopted hypotheses and the selection of the appropriate method. 214

In particular, based on the problem analyzed in this paper, problematic values can 215

be identified, i.e. values that are cut off from the main corpus and can be characterized as 216

outliers or even incorrect, and appropriately treated them. Moreover, the normality of the 217

data population can be checked. This is particularly important as many of the implemented 218

methods require normality of the data. 219

The Table 2 lists the most important statistics of the ground motions’ IMs. Mean 220

(µ) estimates the average value in the population, for symmetric or nearly symmetric 221

distributions, also σ estimates the standard deviation in the population. When the standard 222

deviation is elevated we know that there are values of the variable sufficiently far from 223

the mean. In a Normal Distribution, 95% of the values of the variable are within the limits 224

µ ± 2σ. Moreover the minimum (min) and the maximum (max) values of each variable 225

indicate the wide range of the seismic parameters. 226

Table 2. Descriptive statistics for the IMs of the overall dataset.

SMD

PGA PGV PGD IA CAV
PGA
PGV

IAS TB ROG Bolt P90 arms Ic IFVF IRG SIH

cm
s2

cm
s

cm
cm
s

cm
s

s−1 cm
s

s s s
cm
s2

cm
s2

cm1.5

s2.5 cm · s−0.75 cm · s
1
3 cm

µ 299.6 29.1 49.4 131.7 738.7 13.0 3.4 13.5 16.9 11.6 15.8 76.4 2267.1 52.4 135.1 90.4
σ 244.1 24.2 120.6 186.2 527.0 8.6 5.0 10.0 11.3 10.0 25.9 63.5 2430.7 42.3 383.3 73.3

min 7.4 0.8 0.0 0.2 28.0 1.7 0.0 0.5 0.7 0.0 0.0 1.8 12.5 1.4 0.1 1.5
max 1465.2 148.2 1314.2 1332.4 3354.8 75.5 41.5 49.5 56.9 58.6 170.7 326.2 13323.4 243.0 4625.5 457.7

The statistical representation of the data is shown in Figures 2 and 3, where clear 227

information is provided about the centre of the data, the symmetry, the skewness, the 228

type of any asymmetry and the outliers. Information on the distortion and curvature 229

of the distribution is also sought. Distortion refers to any deviation over the normal 230

distribution. If the curve shifts to the left or right, it is said to be skewed. Skewness can 231

be quantified as a representation of the degree to which a given distribution differs from a 232

normal distribution. A normal distribution is non-skewed, while for example a lognormal 233

distribution, exhibits right skewness. Distributions can exhibit right (positive) skewness or 234

left (negative) skewness in varying degrees. The skewness, is the degree of asymmetry that 235

observed in a probability distribution. A distribution with positive asymmetry possess, a 236

shifted to lower values median. Obviously, the opposite is occurred in case of negative 237

asymmetry. 238
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Figure 2. Violin and box plots of the IMs.
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Figure 3. Violin and box plots of the damage indices.

In Figure 2 the distributions of all the examined IMs, with their values normalized in 239

[0,1], are presented. Moreover, in Figure 3 the distribution of the structural damage after the 240

single (DIG,PA,1st, DIDC,1st) and the successive (DIG,PA, DIDC) seismic events are depicted 241

comparatively. Under seismic sequences damage accumulation can be observed, as the 242

distributions of both damage indices are shifted to higher values compared to those that 243

correspond to the damage after the first shocks. It has been mentioned that the Figures 2 244

and 3, although that offer meaningful information, constitutes a tool of data exploratory 245

analysis without leading to definitive conclusions. 246
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(b) Cook’s Distance Outlier Detection for DIDC Dataset

7.21%> It = 4
n

Figure 4. Cook’s Distance of each data point for (a) DIG,PA dataset and (b) DIDC dataset.

Values are characterised as extremes or outliers, are merely "suspect" values, i.e. values 247

which may be incorrect or unusual. The number of points clarified as outliers depends 248

on the sample size and the shape of the distribution. To identify the outliers, Cook’s 249
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distance [61,62] values is calculated according to Equation 5 and illustrated in Figure 4(a) 250

and Figure 4(b) for DIG,PA and DIDC datasets respectively. In the same figure the threshold 251

which is equal to It =
4
n (n: number of observations) is depicted. The percentage of the 252

potential outliers, with influence that exceeds the above threshold, is equal to 8.99% and 253

7.21% for DIG,PA and DIDC datasets respectively. 254

Di =
n

∑
i=1

(ŷj − ŷj(i))
2

p · MSE
(5)

where ŷj is the jth predicted value, ŷj(i) is the jth predicted value, where the fit does not 255

include observation i, MSE is the mean squared error, p is the number of coefficients in the 256

regression model. 257

Subsequently, a correlation analysis is carried out in order to determine the degree 258

of linear correlation between each pair of envolved variables X and Y with variances σX, 259

σY respectively, and covariance σXY = COV(X, Y) = E(X, Y)− E(X)E(Y). The results of 260

Pearson coefficient [63] calculation, according to Equation 6, are shown in Figure 5. 261

ρX,Y =
COV(X, Y)

σXσY
(6)

D
I D

C
,1

st
D

I G
,P

A,
1s

t

PG
A

PG
V

PG
D I A

C
AV PG

A
PG

V I A
S

SM
D

T
B

SM
D

RO
G

SM
D

Bo
lt

P 90

a rm
s I c

I F
V

F

I R
G

SI
H

D
I D

C

D
I G
,P

A

DIDC,1st

DIG,PA,1st

PGA

PGV

PGD

IA

CAV

PGA
PGV

IAS

SMDT B

SMDROG

SMDBolt

P90

arms

Ic

IFV F

IRG

SIH

DIDC

DIG,PA

0.83

-0.02 -0.03

-0.01 -0.03 0.70

0.06 0.04 -0.01 0.32

-0.00 -0.02 0.82 0.67 0.08

0.00 -0.02 0.59 0.65 0.30 0.82

0.02 0.01 0.12 -0.38 -0.30 -0.03 -0.26

0.05 0.01 0.37 0.61 0.37 0.52 0.62 -0.31

0.01 0.01 -0.38 -0.06 0.41 -0.13 0.28 -0.47 0.15

0.00 -0.00 -0.39 -0.08 0.36 -0.15 0.27 -0.46 0.15 0.98

-0.01 -0.02 0.20 0.42 0.48 0.36 0.76 -0.36 0.42 0.59 0.55

0.01 -0.02 0.86 0.66 -0.04 0.79 0.47 0.04 0.38 -0.37 -0.38 0.06

0.00 -0.02 0.92 0.72 -0.03 0.81 0.55 0.05 0.41 -0.44 -0.46 0.13 0.95

-0.00 -0.02 0.91 0.75 0.04 0.96 0.75 -0.02 0.51 -0.26 -0.27 0.29 0.91 0.93

-0.01 -0.02 0.57 0.96 0.45 0.63 0.75 -0.47 0.66 0.16 0.14 0.60 0.50 0.57 0.66

0.06 0.05 -0.05 0.25 0.99 0.05 0.30 -0.28 0.33 0.45 0.41 0.50 -0.08 -0.07 0.01 0.40

-0.01 -0.03 0.66 0.92 0.22 0.68 0.70 -0.40 0.69 -0.02 -0.03 0.45 0.63 0.70 0.75 0.89 0.17

0.63 0.55 0.26 0.50 0.26 0.32 0.46 -0.30 0.41 0.18 0.17 0.40 0.24 0.28 0.33 0.55 0.24 0.52

0.52 0.63 0.19 0.54 0.29 0.29 0.43 -0.31 0.43 0.20 0.18 0.39 0.20 0.22 0.29 0.61 0.27 0.51 0.80

Pearson Correlation Coefficients

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Heatmap of Pearson Correlation Coefficient for every pair of the examined variables
including input features and targets.

Because there is a proven inability of the Pearson method to detect nonlinear corre- 262

lations such as sinusoidal wave, quadratic curve, etc., the Predictive Power Score (PPS) 263

[64] technique is also used to summarize the predictive relationships between the available 264

data, explaining how variable A informs variable B more than variable B informs variable 265

A. Technically, the score is a measurement in the interval [0, 1] of the success of a model in 266

predicting a target variable with the help of an out-of-sample predictor variable. From this 267
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method, hidden patterns of the data can be identified and as such faciliated the selection 268

of appropriate prediction variables. The results of the PPS calculation are shown in the 269

Figure 6. 270

After this analytical investigation of the data of the considered research, the analytical 271

statistical hypothesis testing, for testing hypotheses related to the distribution of X (with its 272

unknown parameters and its shape), hypothesis and independence testing related to the 273

comparison of the unknown parameters of the problem variables, it was shown that this 274

dataset is suitable for the correct application of ML methods. It is particularly important to 275

understand the logic, meaning and limits of application of the data in question, so that this 276

knowledge will allow us to correctly interpret the results and make correct conclusions with 277

an awareness of the magnitude of the uncertainty in them. The logic question is directly 278

related to the ongoing research question of whether the data used in the application being 279

developed are appropriate and actually model the problem. 280

In conclusion, the above investigation allows us to interpret whether a MLA can 281

extract a confident value associated with the option available to it. Similarly, whether it can 282

abstain from trusting the choice when a particular output is too low. Finally, it is possible 283

to explore algorithms that can be more effectively integrated into larger tasks, in a way that 284

partially or completely avoids the problem of error propagation. 285
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Figure 6. Heatmap of Predictive Power Score (PPS) for every pair of the examined variables including
input features and targets.

5. Results 286

5.1. Comparative Performance Analysis of the Examined MLAs 287

The selection of the proper MLA, in modelling the seismic demand prediction of a 288

RC frame under single and multiple ground motion records, is of outmost importance. 289

This selection has to be made taking into account the particularities of the current data, the 290

EDA and restrictions of the examined algorithms. In order to result into the most efficient 291

algorithm, a thorough comparatively investigation among 10 different MLAs is performed. 292
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Their performance is assessed by conducting sensitivity and accuracy analysis regarding 293

the estimated errors obtained by the provided data. 294

The ten examined MLAs are: the Adaboost Regressor (ABR) [65], the Bayesian Ridge 295

(BR) [66], the Decision Tree Regressor (DTR) [67], the Extra Trees Regressor (ETR) [68], 296

the Gradient Boosting Regressor (GBR) [69], the K-Nearest Neighbors (KNN) [70,71], the 297

Light Gradient Boosting Machine (LGBM) [72], the Linear Regressor (LR) [73], the Multi- 298

Layer Feed-Forward Neural Network (MLNN) [74], the Random Forest Regressor (RFR) 299

[75]. In this sense, an extensive and detailed comparison of 10 different MLAs on the two 300

provided datasets was carried out. The MLAs implemented using the Scikit-learn [76], 301

and LightGBM [72] Python packages as well as evaluated with Yellowbrick library [77,78]. 302

It should be said that the following metrics [73] for comparison and cost analysis of the 303

correct regression errors were taken into account and are listed below: 304

1. Mean Absolute Error (MAE) is a measure of errors between the estimated and the
observed values, and it is given by the following expression:

MAE =
1
n

n

∑
i=1

| ŷi − yi | (7)

where ŷi are the predicted value, yi the real one of the ith observation and n is the total 305

number of observations 306

2. Mean Square Error (MSE): 307

RMSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

3. Root Mean Squared Error (RMSE) calculates the average error between the estimated 308

values and the observed values : 309

MAE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (9)

4. Coefficient of Determination R2 expresses the variation in the dependent variable that 310

is predictable from the independent variables: 311

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (10)

where y is the average of the observed values 312

5. Root Mean Squared Log Error (RMSE) is an extension of MSE that is used mainly 313

when the predicted values display high deviation: 314

RMLSE =

√
1
n

n

∑
i=1

(log(ŷi + 1)− log(yi + 1))2 (11)

6. Mean Absolute Percentage Error (MAPE) calculates the accuracy, as a ratio, and is 315

defined by the following formulation: 316

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

In Figure 7 the metrics of each MLA for both datasets are presented. It can be seen that 317

considering DIG,PA, higher performance of the ML modelling is obtained. Specifically, the 318

algorithm with the best prediction capability is the Extra Trees Regressor. This method is 319

based on Decision Trees and randomize Decision Trees for random sub-samples in order 320

to minimize the over-fitting. In particular, given a data sample X = x1, . . . , xn and the 321

respected values y = y1, . . . , yn is chosen repeatedly a random sample without substitution 322
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from the learning ensemble in order to estimate the target values using decision trees. Extra 323

Trees algorithm performs like Random Forest, as multiple trees are generated and the nodes 324

are separated using randomly chosen subsets of features. However, there are two main 325

differences: the sampling is carried out without replacement, which means that there is 326

no bootstrap, and the nodes are separated randomly among a random sunset of features 327

that are chosen for every node. The aforementioned randomness is based on the random 328

separations of the total sample. Thus low variance is achieved. Another important feature 329

is that the predictions are calculated by multiple decision trees and as such there is high 330

prediction accuracy to new data. Moreover, the algorithm reduces the risk of over-fitting 331

due to the randomness that is introduced in the model. Based on the above characteristics 332

the model can be efficiently generalized. 333

Considering the DIDC, the algorithm with the higher prediction capacity is the Gradi- 334

ent Boosting Regressor. The boosted trees algorithms are a combination of Boosting and 335

Decision Trees. Boosting is a meta-algorithm for reducing bias in supervised learning. In 336

the case of boosting [79], predictive regressors are used in order to develop weighted trees. 337

The features of the regression trees and the boosting algorithms are combined to produce 338

boosting trees. The Gradient Boosting method produces a prediction model comprised by 339

a set of weak prediction, usually decision trees, models. It builds gradually the model and 340

generalizes it by optimizing a loss function. In other words, at each iteration a new weak 341

regressor is trained and extended the previous ones in order to increase the accuracy of the 342

model. 343
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Figure 7. Peformace metrics of the examined MLAs.

5.2. Evaluation of the MLAs with the Higher Prediction Ability 344

A major control procedure of the adjustment and the response of the algorithms is 345

based on the learning curve, which depicts the learning performance as a function of the 346

gained experience on the scale of time. It is a widely used tool that assesses the training and 347

the validation data after each update of the measured error performance. Via this method, 348

problems such as under- or over- fitting of the model, and the adequacy of the training or 349

the validation data, could be emerged. In Figure 8 the learning curves of the distinctive 350

MLA for each dataset are depicted. Specifically, Figure 8(a) illustrates the learning curves 351

of the Extra Trees Regressor algorithm, when the structural damage is assessed in terms of 352

DIG,PA, while Figure 8(b) presents the learning curves of the Gradient Boosting Regressor 353

considering structural damage in terms of DIDC. 354

It is obvious that the training curve of Figure 8(a) improves over time without any 355

trends of over-fitting. The prediction ability of the model is highlighted due to the high 356
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performance since the starting point of the procedure, with score over 0.87. An increasing 357

trend is depicted with a quite tight confidence interval, a fact that reflects the quality of the 358

model. Moreover, there is no loss of the training and as such the distance between training 359

and the validation curve reduces in relation to the experience. This distance is referred as 360

“generalization gap” and defines the quality of the model. It is obvious that smaller gap 361

between the two curves implies higher accuracy of the model. 362

From training and the validation curves of Figure 8(b) it could be easily observed 363

that the algorithm fits quite well. Specifically, there are no trends of under- or over-fitting. 364

The sufficient fit is noticed due to that fact that the training score is higher than the cross 365

validation one, while the generalization gap reduces in relation to the experience, and 366

tends to a constant value. Moreover, based on the aforementioned curves the quality of 367

the considered data is assessed. Particularly, the total data set is representative to gain a 368

solution, as the training data provide adequate information to train the problem, in relation 369

to the data that is used to validate it. It can be remarked that sufficient samples are provided 370

in order to lead to generalization. The training curve seems to be improving, without tends 371

of over-fitting. Over-fitting could be identified by small alteration similarly presented in 372

both training and cross validation curve. Moreover, there are no cases of validation loss 373

lower than the training loss, a fact that indicates that the model can predict easier values of 374

the validation data set compared to the training one. 375
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Figure 8. Learning Curves of the MLAs with the best predictive capacity for (a) the prediction of
DIG,PA (b) the prediction of DIDC.

In order to thoroughly assess the ML methods, the K-Fold cross validation method- 376

ology [76] is performed. During this method the total data set is divided in K subsets. 377

Each randomly defined subset consists of different observations. One subset is used as 378

the cross validation one, while the K-1 others are merged and used as the training set. 379

This process is performed K times, using different set as the validation one and the K-1 380

rests of them as the training set. The performance of the MLA is evaluated for each case 381

and on average. By this, the performance of the method in relation to the prediction error 382

are determined. Specifically, the statistical properties, the bias and the variance of the 383

regression prediction error are recorded and analyzed using a 10-fold cross validation 384

procedure. A decomposition of the variability of the 10-fold cross validation sample, taking 385

into account its variability sources. In Figure 9 the error metrics are depicted compara- 386

tively for the qualified MLA of each data set. In general, Extra Trees Regressor algorithm 387

exhibit higher performance than the Gradient Boosting Regressor algorithm considering 388

DIG,PA and DIDC structural damage index, respectively. Considering DIG,PA it is observed 389

a generally smooth shift of the error that expresses the probability of a given number of 390

events occurring over a fixed period of time, taking into account the observations that 391

occur at a known average constant rate and are independent of their appearance. There 392

is only one case of significant error fluctuation which describes repetitive non-periodic 393
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alterations that could not be predicted by this algorithm. On the other hand, regarding the 394

DIDC it is observed that there is higher dispersion of the error, which normalizes in the 395

later folds. This fact translates the randomness of the samples into some folds, which are 396

independent of the time period of their occurrence. The normalization and stabilization 397

of the error after the initial fluctuations describes some possible repetitive non-periodic 398

changes which are satisfactorily predicted by the specific algorithm. By this fact the model 399

can be characterized by it constant generalization ability, and as such correct output values 400

can be calculated for inputs that are new and different from those with which is trained. 401
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Figure 9. Evolution of performance metrics during 10-fold cross validation.

Finally in order to further analyze the introduced errors and determine their influence 402

on the prediction ability of the examined models, the residual plots are presented in 403

Figure 10. These scatter plots show the vertical deviations with respect to the regression 404

line. These deviations, referred as residuals, are obtained by subtracting the observed 405

responses from the predicted ones. In Figure 10(a) the residuals of the Extra Tree Regressor 406

algorithm is predicted. The vertical deviations in relation to the regression line are quite 407

limited both in train (R2 = 1.0) and test (R2 = 0.950). The residuals which are obviously 408

very limited and their dispersion is minimal can be considered as cases of small population 409

samples that do not follow a statistically central trend. Thus, these values are not related 410

with the position of the center of the distribution and their mean value does not approach 411

the actual one. As a result, the random error increases as the sample size increases too. The 412

model holds high percentages of accuracy as the aforementioned samples are few enough, 413

while the level of error is independent of the observation occurrence. In conclusion, the 414

model understands the structure of residuals and manages to reduce the generalization 415

error, while the predictive ability is exponentially increasing, without the requirement 416

of special interventions in the hyperparameters of the model. Additionally, Figure 10(b) 417

presents the residuals of the Gradient Boosting Regressor algorithm for training (R2 = 418

0.893) and validation (R2 = 0.833). The predicted response is calculated by the Gradient 419

Boosting Regressor, since all the unknown parameters of the model have been calculated 420

from the NLTHA results data. Careful examination of the residuals allows us to determine 421

whether the adopted model is appropriate and the assumptions are reasonable. In our case 422

the residuals can be considered as variables that compose general errors independently 423

distributed with an average of 0.0. That fact implies that the model mistakenly predicts 424

the response in a random way, i.e. the model predicts values higher or lower than the 425

real ones with equal probability. In addition, the error is independent of the time or the 426

magnitude of the observations, or even of the adjustment factors involved in making the 427
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prediction. In conclusion, the residuals from these assumptions mean that the errors contain 428

a structure that is not taken into account in the model, due to the inability to limit the 429

error by generalizing the way of parameterizing the variation of its predictive capability. 430

The identification of this structure, in theory, could lead to an enhanced model by adding 431

representative terms. However, this consideration will lead to a model that will accumulate 432

significant bias that would not lead to generalized solutions. 433
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Figure 10. Residuals of the MLAs with the best predictive capacity for (a) the prediction of DIG,PA (b)
the prediction of DIDC.

To this end, the structural damage prediction of an RC frame under single and multiple 434

ground motion records is more efficient to be modeled adopting the DIG,PA. Due to the 435

nature of the examined problem, it is evident that DIG,PA can assess both the initially 436

occurred damage as well as the damage accumulation due to the successive ground motion 437

records. 438

The comparative thorough analysis emerges the high performance of the Extra Trees 439

Regressor. The ability of this algorithm can be explained due to its parametric nature, 440

where it summarizes the data with a constant size set of parameters, regardless the number 441

of the training instances. This fact leads to a learning system that achieves noteworthy 442

results in relation to the competing systems. Another important observation is that the 443

method produces accurate results without repetitive problems of indefinite causes, because 444

all the intermediate partitions in the examined data set are handled very efficiently. In 445

addition, one of the main advantages gained from the results is the high reliability resulting 446

from the R2 values, combined with the very low error rate. That fact arise as a result of 447

receiving data without boostrap, which allows the maintenance of more relevant data for 448

the forthcoming predictions. Similarly, in the case of small population samples that do 449

not follow the statistically central trend, the algorithm managed to achieve low variance, 450

so that the sample data is close to the projections of the target function. This observation 451

parallels the sensitivity of the model’s correlative hyperparameters related with the data, 452

which offers better predictability and stability as the overall behavior of the model is less 453

noisy, while the overall risk of a particularly poor solution that may arise by undersampling 454

is reduced. The above consideration is also supported by the dispersion of the expected 455

error, which is concentrated close to the average error value, a fact that rigidly states the 456

reliability of the system and its generalizability. 457

5.3. Web-Application Development 458

In this end, the authors decide to utilize the described methodology in a user-friendly 459

web-application (Appendix B) that incorporate the trained models in order to deliver the 460

results of this study via an interactive tool. After uploading an acceleration record file in 461

PEER or ESM format, the IMs and the response spectra are calculated. The final structural 462

damage is calculated considering as input features the IMs and the initial damage. The 463
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initial damage, that express the damage state before the current seismic excitation, can be 464

set through a slide bar. By adjusting the initial damage, the final damage is recalculated 465

in real-time. Thus, several scenarios can be reproduced considering either an undamaged 466

structure subjected to a seismic excitation, that could be considered as a main shock, or an 467

already damaged structure, by a potential previous shock, subjected to an aftershock. The 468

application is deployed using Streamlit [80] Python framework. 469

6. Discussion and Conclusions 470

In the present study, we proposed a ML approach of the structural damage prediction 471

after a single or multiple seismic events on an RC frame in terms of DIG,PA and DIDC dam- 472

age indices using input features the IMs of the second shock and the established damage 473

after the first one. The ability of ten MLAs to model the problem of structural damage 474

prediction of a RC frame under single or multiple ground motions was thoroughly investi- 475

gated. For this purpose multiple error metrics was adopted in order to assess the predictive 476

capacity of the examined MLAs. Then it took place thorough comparison between the now 477

known MLAs, moreover the generalization of the most efficient algorithms evaluated. The 478

investigation relied entirely on evaluative methods of sensitivity analysis, variability and 479

error analysis. 480

This algorithm facilitates the learning of specialized functions for extracting useful 481

representations in complex learning dependencies, utilizes the use Random Decision Trees 482

to learn without causing uncertainty issues, moreover overfitting is avoided, while utilizes 483

significantly reducing computing training costs and time, producing improved training 484

stability, high generalization performance and remarkable determination accuracy. In 485

addition, the algorithm leads to much better predictive results, and high generalization 486

ability, with reduced bias and variance. Therefore, a robust forecasting model capable of 487

respond to the highly complex problem, as this of structural damage prediction, is deduced. 488

It should also be emphasized that this methodology deals with great accuracy the noisy 489

scattered residuals points. 490

Conclusively, as an outcome of this research the authors developed a user-friendly 491

web-application that incorporates the results of this study. Future improvements should 492

focus on the expanding dataset to incorporate different force resisting mechanisms and 493

structural features simultaneously with IMs as input of sequential deep learning models to 494

predict the final seismic damages as regression or classification problem. 495
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ML Machine Learning
MLA Machine Learning Algorithm
SDOF Single Degree Of Freedom
RC Reinforced Concrete
IM Intensity Measure
ANN Artificial Neural Network
LSTM Long Short Term Memory
CNN Convolutional Neural Network
NLTHA Non Linear Time History Analysis
PGA Peak Ground Acceleration
PGV Peak Ground Velocity
PGD Peak Ground Displacement
IA Arias Intensity
CAV Cumulative Absolute Velocity
IAS Seismic Intensity after Araya and Saragoni
SMDTB Strong Motion Duration after Trifunac and Brady
SMDROG Strong Motion Duration after Reinoso, Ordaz and Guerrero
SMDBolt Strong Motion Duration after Bolt
arms Root Mean Squared of Ground Acceleration Signal
Ic Characteristic Intensity
IFVF Potential Damage Measure after Fajfar, Vidic and Fischinger
IRG Intensity Measure after Riddel and Garcia
PSV Pseudo-Spectrum Velocities
Hd Husid Diagram
SIH Spectral Intensity after Housner
DIG,PA,1st The overall Park and Ang damage index after the first seismic shock (input feature)
DIG,PA The overall Park and Ang damage index after the second seismic shock (target)
DIDC,1st DiPasquale and Çakmak damage index after the first seismic shock (input feature)
DIDC DiPasquale and Çakmak damage index after the second seismic shock (target)
EDA Exploratory Data Analysis
PPS Predicitve Power Score
ABR AdaBoost Regressor
BR Bayesian Ridge
DTR Decision Tree Regressor
ETR Extra Trees Regressor
GBR Gradient Boosting Regressor
KNN K Nearest Neighbors Regressor
LGBM Light Gradient Boosting Machine
LR Linear Regressor
MLNN Multi-Layer Feed-Forward Neural Network
RFR Random Forest Regressor

510

Appendix A 511

Table A1. Descriptive statistics for the IMs of the 318 individual records.

SMD

PGA PGV PGD IA CAV
PGA
PGV

IAS TB ROG Bolt P90 arms Ic IFVF IRG SIH

cm
s2

cm
s

cm
cm
s

cm
s

s−1 cm
s

s s s
cm
s2

cm
s2

cm1.5

s2.5 cm · s−0.75 cm · s
1
3 cm

µ 302.5 29.5 52.0 134.1 754.4 12.9 3.5 13.8 17.2 12.0 16.0 76.8 2301.9 53.4 143.2 91.8
σ 247.5 24.4 124.7 186.4 516.5 8.5 5.0 10.0 11.3 10.0 26.2 63.9 2455.5 42.1 398.7 72.8

min 32.7 1.2 0.1 0.7 28.0 1.7 0.0 0.6 1.9 0.0 0.1 7.4 55.3 1.4 0.1 2.1
max 1465.2 132.8 1314.2 1332.4 3119.3 75.5 41.5 49.5 56.9 58.6 150.1 306.4 13323.4 201.8 4625.5 387.1
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Table A2. Seismic Metadata for Natural Sequences.

1st Shock 2nd Shock

Region Date M Date M Station Code / Name Component PGA1st PGA2nd
(g) (g)

Ancona 1972-06-14 4.2 1972-06-21 4.0 ANP N-S 0.220 0.410
Friuli 1976-09-11 5.8 1976-09-15 6.1 BUI N-S 0.233 0.110

E-W 0.108 0.093
GMN N-S 0.328 0.324

E-W 0.299 0.644
Montenegro 1979-04-15 6.9 1979-04-15 5.8 PETO E-W 0.304 0.089

1979-05-24 6.2 BAR N-S 0.371 0.201
E-W 0.360 0.267

HRZ N-S 0.215 0.066
E-W 0.254 0.076

ULO N-S 0.282 0.033
E-W 0.236 0.030

Imperial Valley 1979-10-15 6.5 1979-10-15 5.0 Holtville Post Office 315 0.221 0.254
Mammoth Lakes 1980-05-25 6.1 1980-05-25 5.7 Convict Creek 90 0.419 0.371
Irpinia 1980-11-23 6.9 1980-11-24 5.0 BGI N-S 0.129 0.031

E-W 0.189 0.033
STR N-S 0.224 0.018

E-W 0.320 0.032
Gulf of Corinth 1981-02-24 6.6 1981-02-25 6.3 KORA Trans 0.296 0.121

Logn 0.240 0.121
Coalinga 1983-07-22 5.8 1983-07-25 5.2 Elm (Old CHP) 90 0.519 0.677

0 0.341 0.481
Kalamata 1986-09-13 5.9 1986-09-15 4.8 KAL1 Trans 0.269 0.140

Logn 0.232 0.237
KALA Trans 0.296 0.152

Logn 0.216 0.334
Spitak 1988-12-07 6.7 1988-12-07 5.9 GUK N-S 0.181 0.144

E-W 0.182 0.099
1989-01-08 4.0 1989-01-08 4.1 NAB E-W 0.206 0.217

Georgia 1991-05-03 5.6 1991-05-03 5.2 SAMB N-S 0.354 0.208
E-W 0.504 0.122

Erzican 1992-03-13 6.6 1992-03-15 5.9 AI 178 ERC MET N-S 0.411 0.032
E-W 0.487 0.039

Ilia 1993-03-26 4.7 1993-03-26 4.9 PYR1 Logn 0.109 0.100
Northridge 1994-01-17 6.7 1994-01-17 5.9 Moorpark - Fire Station 90 0.193 0.139

180 0.291 0.184
1994-01-17 5.2 Pacoima Kagel Canyon 360 0.432 0.053
1994-03-20 5.3 Rinaldi Receiving Station 228 0.874 0.529

Sepulveda Hospital 270 0.752 0.102
Sylmar - Olive Med 90 0.605 0.181

Umbria Marche 1997-09-26 5.7 1997-09-26 6.0 CLF N-S 0.276 0.197
E-W 0.256 0.227

NCR N-S 0.395 0.502
Kalamata 1997-10-13 6.5 1997-11-18 6.4 KRN1 Trans 0.119 0.071

Logn 0.118 0.092
Bovec 1998-04-12 5.7 1998-08-31 4.3 FAGG N-S 0.024 0.023

E-W 0.023 0.026
Azores Islands 1998-07-09 6.2 1998-07-11 4.7 HOR N-S 0.405 0.082

E-W 0.369 0.092
Izmit 1999-08-17 7.6 1999-11-12 7.3 ARC N-S 0.210 0.007

E-W 0.132 0.007
ATK N-S 0.102 0.016

E-W 0.167 0.016
DHM N-S 0.090 0.017

E-W 0.084 0.017
FAT N-S 0.181 0.034

E-W 0.161 0.024
KMP N-S 0.102 0.014

E-W 0.127 0.017
ZYT N-S 0.119 0.021

E-W 0.109 0.029
Athens 1999-09-07 5.9 1999-09-07 4.3 SPLB Trans 0.324 0.059

Logn 0.341 0.071
Chi-Chi 1999-09-20 7.6 1999-09-20 6.2 TCU071 N-S 0.651 0.382

E-W 0.528 0.193
TCU129 N-S 0.624 0.398

E-W 1.005 0.947
1999-09-25 6.3 TCU078 N-S 0.307 0.387

E-W 0.447 0.266
TCU079 N-S 0.424 0.626

E-W 0.592 0.776
Duzce 1999-11-12 7.3 1999-11-12 4.7 AI 010 BOL E-W 0.820 0.060

Continued on next page
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1st Shock 2nd Shock

Region Date M Date M Station Code / Name Component PGA1st PGA2nd
(g) (g)

Bingöl 2003-05-01 6.3 2003-05-01 3.5 AI 049 BNG N-S 0.519 0.147
E-W 0.291 0.068

L Aquila 2009-04-06 6.1 2009-04-07 5.5 AQK N-S 0.353 0.081
E-W 0.330 0.090

AQV N-S 0.545 0.146
E-W 0.657 0.129

AVZ N-S 0.069 0.021
2009-04-09 5.4 AQA N-S 0.442 0.057

Darfield 2010-09-03 7.0 2011-02-21 6.2 Botanical Gardens S01W 0.190 0.452
N89W 0.155 0.552

Cashmere High School S80E 0.251 0.349
Cathedral College N26W 0.194 0.384

N64E 0.233 0.478
Christchurch Hospital N01W 0.209 0.346

S89W 0.152 0.363
Emilia 2012-05-20 6.1 2012-05-29 6.0 MRN N-S 0.263 0.294

E-W 0.262 0.222
2012-06-03 5.1 2012-06-12 4.9 T0827 N-S 0.490 0.585

E-W 0.263 0.234
Central Italy 2016-08-24 6.0 2016-08-24 5.4 AQK E-W 0.050 0.010

2016-08-26 4.8 AMT N-S 0.375 0.336
E-W 0.867 0.325

2016-10-26 5.4 2016-10-26 5.9 CMI N-S 0.341 0.308
E-W 0.720 0.651

CNE E-W 0.556 0.537
2016-10-30 6.5 CIT N-S 0.052 0.213

E-W 0.092 0.325
2016-10-26 5.9 2016-10-30 6.5 CLO N-S 0.193 0.582

E-W 0.183 0.427
CNE N-S 0.380 0.294
MMO N-S 0.168 0.188

E-W 0.170 0.189
NOR E-W 0.215 0.311

2016-10-30 6.5 2016-10-31 4.2 T1213 N-S 0.867 0.185
E-W 0.794 0.212

2017-01-18 5.5 2017-01-18 5.4 PCB N-S 0.586 0.561
E-W 0.408 0.388

Dodecanese Islands 2019-08-08 4.8 2020-10-30 7.0 GMLD N-S 0.450 0.899
E-W 0.673 0.763
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https://share.streamlit.io/plazarid/ml_rc_frame/main/ML_stream_app.py 515

References 516

1. Papadopoulos, G.A.; Agalos, A.; Karavias, A.; Triantafyllou, I.; Parcharidis, I.; Lekkas, E. Seismic and Geodetic Imaging 517

(DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences 2021, 11. 518

doi:10.3390/geosciences11080311. 519

2. Goda, K.; Taylor, C.A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal 520

earthquakes. Earthquake Engineering & Structural Dynamics 2012, 41, 2311–2330. doi:10.1002/eqe.2188. 521

3. Iervolino, I.; Giorgio, M.; Chioccarelli, E. Closed-form aftershock reliability of damage-cumulating elastic-perfectly-plastic 522

systems. Earthquake engineering & structural dynamics 2014, 43, 613–625. doi:10.1002/eqe.2363. 523

4. Yu, X.H.; Li, S.; Lu, D.G.; Tao, J. Collapse capacity of inelastic single-degree-of-freedom systems subjected to mainshock-aftershock 524

earthquake sequences. Journal of Earthquake Engineering 2020, 24, 803–826. doi:10.1080/13632469.2018.1453417. 525

5. Ghosh, J.; Padgett, J.E.; Sánchez Silva, M. Seismic damage accumulation in highway bridges in earthquake-prone regions. 526

Earthquake Spectra 2015, 31, 115–135. doi:10.1193/120812EQS347M. 527

6. Ji, D.; Wen, W.; Zhai, C.; Katsanos, E.I. Maximum inelastic displacement of mainshock-damaged structures under succeeding 528

aftershock. Soil Dynamics and Earthquake Engineering 2020, 136, 106248. doi:10.1016/j.soildyn.2020.106248. 529

7. Amadio, C.; Fragiacomo, M.; Rajgelj, S. The effects of repeated earthquake ground motions on the non-linear response of SDOF 530

systems. Earthquake Engineering & Structural Dynamics 2003, 32, 291–308. doi:10.1002/eqe.225. 531

8. Hatzigeorgiou, G.D.; Beskos, D.E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Engineering 532

Structures 2009, 31, 2744–2755. doi:10.1016/j.engstruct.2009.07.002. 533

9. Hatzigeorgiou, G.D.; Liolios, A.A. Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dynamics and 534

Earthquake Engineering 2010, 30, 1010–1025. doi:10.1016/j.soildyn.2010.04.013. 535

10. Hatzivassiliou, M.; Hatzigeorgiou, G.D. Seismic sequence effects on three-dimensional reinforced concrete buildings. Soil 536

Dynamics and Earthquake Engineering 2015, 72, 77–88. doi:10.1016/j.soildyn.2015.02.005. 537

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2022                   doi:10.20944/preprints202203.0188.v1

https://share.streamlit.io/plazarid/ml_rc_frame/main/ML_stream_app.py
https://doi.org/10.3390/geosciences11080311
https://doi.org/10.1002/eqe.2188
https://doi.org/10.1002/eqe.2363
https://doi.org/10.1080/13632469.2018.1453417
https://doi.org/10.1193/120812EQS347M
https://doi.org/10.1016/j.soildyn.2020.106248
https://doi.org/10.1002/eqe.225
https://doi.org/10.1016/j.engstruct.2009.07.002
https://doi.org/10.1016/j.soildyn.2010.04.013
https://doi.org/10.1016/j.soildyn.2015.02.005
https://doi.org/10.20944/preprints202203.0188.v1


Version March 11, 2022 submitted to Appl. Sci. 19 of 21

11. Hosseinpour, F.; Abdelnaby, A. Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. 538

Soil Dynamics and Earthquake Engineering 2017, 92, 706–725. doi:10.1016/j.soildyn.2016.11.006. 539

12. Kavvadias, I.E.; Rovithis, P.Z.; Vasiliadis, L.K.; Elenas, A. Effect of the aftershock intensity characteristics on the seismic 540

response of RC frame buildings. In Proceedings of the Proceedings of the 16th European Conference on Earthquake Engineering, 541

Thessaloniki, Greece, 2018, pp. 18–21. 542

13. Zhou, Z.; Yu, X.; Lu, D. Identifying Optimal Intensity Measures for Predicting Damage Potential of Mainshock–Aftershock 543

Sequences. Applied Sciences 2020, 10, 6795. doi:10.3390/app10196795. 544

14. Yu, X.; Zhou, Z.; Du, W.; Lu, D. Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock 545

sequences. Earthquake Engineering & Structural Dynamics 2021. doi:10.1002/eqe.3542. 546

15. Jeon, J.S.; DesRoches, R.; Lowes, L.N.; Brilakis, I. Framework of aftershock fragility assessment–case studies: older California 547

reinforced concrete building frames. Earthquake Engineering & Structural Dynamics 2015, 44, 2617–2636. doi:10.1002/eqe.2599. 548

16. Hosseinpour, F.; Abdelnaby, A. Fragility curves for RC frames under multiple earthquakes. Soil Dynamics and Earthquake 549

Engineering 2017, 98, 222–234. doi:10.1016/j.soildyn.2017.04.013. 550

17. Abdelnaby, A.E. Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences. Journal of Earthquake 551

Engineering 2018, 22, 902–920. doi:10.1080/13632469.2016.1264328. 552

18. Sun, H.; Burton, H.V.; Huang, H. Machine Learning Applications for Building Structural Design and Performance Assessment: 553

State-of-the-Art Review. Journal of Building Engineering 2020, p. 101816. doi:10.1016/j.jobe.2020.101816. 554

19. Xie, Y.; Ebad Sichani, M.; Padgett, J.E.; DesRoches, R. The promise of implementing machine learning in earthquake engineering: 555

A state-of-the-art review. Earthquake Spectra 2020, p. 8755293020919419. doi:10.1177/8755293020919419. 556

20. Harirchian, E.; Hosseini, S.E.A.; Jadhav, K.; Kumari, V.; Rasulzade, S.; Işık, E.; Wasif, M.; Lahmer, T. A Review on Application of 557
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