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Abstract: The rate of technical innovation, system interconnection, and advanced communications 

undoubtedly boost distributed energy networks' efficiency. However, when an additional attack 

surface is made available, the possibility of an increase in attacks is an unavoidable result. The en-

ergy ecosystem's significant variety draws attackers with various goals, making any critical infra-

structure a threat, regardless of scale. Outdated technology and other antiquated countermeasures 

that worked years ago cannot address the complexity of current threats. As a result, robust artifi-

cial intelligence cyber-defense solutions are more important than ever. Based on the above chal-

lenge, this paper proposes an ensemble transfer learning spiking immune system for adaptive 

smart grid protection. It is an innovative Artificial Immune System (AIS) that uses a swarm of 

Evolving Izhikevich Neural Networks (EINN) in an Ensemble architecture, which optimally inte-

grates Transfer Learning methodologies. The effectiveness of the proposed innovative system is 

demonstrated experimentally in multiple complex scenarios that optimally simulate the modern 

energy environment. In this way, the proposed system fully automates the strategic security plan-

ning of energy networks with computational intelligence methods. It allows the complete control 

of the digital strategies of the potential infrastructure that frames it, thus contributing to the timely 

and valid decision-making during cyber-attacks. 

Keywords: Smart Energy Grids; Critical Infrastructure Protection; Artificial Immune System; 

Izhikevich Spiking Neural Networks; Clonal Selection Algorithm; Transfer Learning; Ensemble 

Learning 

 

1. Introduction 

The systems that comprise current energy networks and those inherited from old 

infrastructures exhibit considerable variety, resulting in a diverse collection of interfaces 

with varying features and security needs [1]. Unfortunately, architectural standardiza-

tions don't enable varied system organizations depending on security needs. Implement-

ing an integrated and effective energy network security strategy requires a standard ver-

tical assessment method to manage emerging threats and vulnerabilities in applications 

and equipment [2]. A strong belief should support this viewpoint among all stakehold-

ers that modern energy infrastructure systems are a possible target. As a result, a solid 

structure for deploying the appropriate resources should be standardized to limit the 

consequences of security breaches [3]. There is no silver bullet for designing a security 

plan that completely protects the critical infrastructures, so innovative high-level solu-

tions that effectively coordinate security perimeter deployment without direct human 

resources should be deployed. 
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The current situation emphasizes the human aspect, experience, and expert opin-

ion, using assistive technologies to analyze and manage risks and hazards. For the most 

remarkable results, there should be up-to-date threat information, incident reports, vul-

nerability warnings, and real-time security procedures. The above formulation leads to 

adopting automated solutions of Artificial Intelligence and, simultaneously, termination 

or minimization of human intervention in the empirical analysis of large volumes of da-

ta for the real-time detection of cyber threats or corresponding anomalies [4]. This strat-

egy focuses on reducing the risk of critical assets through a graded approach of even au-

tomated security troubleshooting while ensuring the high availability of the infrastruc-

ture in question [5]. 

In summary, advanced cybersecurity solutions that adapt to dynamic environments 

are required to intelligently protect critical energy infrastructure [6]. The solutions in 

question should be interoperable and beyond the previous systems proposed in the lit-

erature. 

2. Literature Review 

The upgrade of energy infrastructure with the integration of new technologies was 

quickly realized by various digital security agencies, who were active in research to pro-

tect the infrastructure in question. For example, Naruchitparames et al. [7] presented a 

model for ensuring the privacy and integrity of communication parts within an intelli-

gent network in which smart meters are widely used, which in this architecture are used 

as a communication gateway within and between energy infrastructures. They employ 

smart meters as a firewall to govern digital communication between communicating de-

vices. This proposal is a worthwhile effort to ensure only one part of the digital energy 

network, perhaps the least important. It focuses only on end-users and not on the overall 

digital protection and security of critical energy infrastructure. 

Securing essential energy network infrastructure is closely tied to preventing the 

exploitation of wired and wireless communication protocols extensively used in smart 

grids [8]. The vulnerabilities of these protocols can result in the compromise of critical 

devices and applications, the denial or non-availability of essential services, and even 

the extensive or total denial of services, significantly expanding the range of threats to 

which energy infrastructure is vulnerable [9], [10]. However, it should not be forgotten 

that energy networks are also exposed to risks inherited from the existing infrastructure 

due to the lack of operational interoperability [11]. 

The research community has conducted many research studies to protect the infra-

structure from digital attacks. For example, Tao Yu et al. [12] apply intelligent defense as 

attackers exploit the vulnerabilities of the SCADA network, which is used primarily in 

these infrastructures. They construct a prediction model of attack mode recognition 

based on the operational condition of SCADA systems using a neural network architec-

ture with high levels of knowledge and quantitative reasoning. This consideration con-

siders precise technical details of SCADA network automation, thus creating a non-

generic model suitable only for use in environments where specialized equipment and 

similar standardization exist. 

The authors of [13] present a passive strategy based on autonomous security man-

agement models for assessing and detecting security attacks and proposing a sequence 

of actions for adequate networked system protection. In the suggested approach, sensors 

collect some network metrics and relay the data to intrusion detection systems. Based on 

the signature of the attacks, a controller determines the best protection technique for re-

covering the system. The proposed method is used in various case studies, including 

denial of service attacks, SQL Injection assaults, and memory fatigue attacks. Experi-

ments show that the technique can successfully fight against known attacks. However, 

the system's success relies exclusively on attack signatures and does not provide signifi-

cant protection against new attacks [14]. 

Going one step further, this paper proposes a specialized innovative computer in-

telligence system presented for the first time in the literature. It is an AIS that models the 
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function of the natural immune system, using an Ensemble array of Izhikevich Neural 

Networks optimized by the Clonal Selection Algorithm (CSA), which is inspired by the 

immune response system in the appearance of a pathogen. This architecture incorpo-

rates advanced Transfer Learning methodologies into a sophisticated digital security 

standard. 

3. The Proposed Artificial Immune System 

The proposed standardization follows the philosophy of AIS [15], [16], wherein a 

computationally intelligent way the functional and organizational behavior of the natu-

ral immune system is modeled, with the aim of its application in non-biological envi-

ronments, such as the examined framework of digital security of energy infrastructures. 

The primary inspiration principles simulated by the proposed system concern the capa-

bilities of natural immune systems [17] [18]: 

1. distinguish normal from foreign cells, 

2. decide whether a foreign cell is hazardous;  

3. employ lymphocyte cloning and mutation to adapt to foreign cells in the body;  

4. respond directly to foreign chemicals released by a pathogen that activate the 

immune system reaction (antigens) the body has previously encountered, thanks to 

memory cells. Furthermore, a crucial aspect that provides inspiration and modeling in-

volves the numerous levels, the in-depth scaling strategy, and the overlap of natural 

immune system defense achieved with the suggested Ensemble architecture [19], [20] 

and Transfer Learning [21], [22] techniques. 

To better understand the proposed strategy and how it is scaled in-depth, a simple 

example is given inspired by the biological function of the human body's defense mech-

anisms by its immune system. The proposed method and its properties are recreated us-

ing how the skin of biological organisms works. The epidermis, nose hairs, and so on 

serve as the first line of defense, preventing diseases such as foreign particles, viruses, 

bacteria, and fungi from entering the body. The upper zone is aided and strengthened 

by feedback mechanisms such as fluid infusion from the body, saliva, sweat, tears, and 

so on, which assist and support the average defense by eliminating pathogens from the 

body or carrying digesting enzymes. When pathogens enter the cells of a living creature, 

individual immune cells called T-lymphocytes trigger an immunological response that 

translates into particular cytotoxic processes that kill infected cells, and so on [16]. 

Combining natural and acquired immunization mimics the suggested system. The 

innate immune system employs molecular patterns to recognize infections from birth 

and doesn't adapt. This function is simulated with the initial training of the intelligent 

system in a set of possible attacks. On the other hand, the acquired immune system cre-

ates the body's exposure to pathogens and the retrieval of the invaders' history and how 

they can be treated. These functions are implemented through the Transfer Learning 

process. In an acquired way, i.e., through knowledge transfer, the system learns to deal 

with new attacks and patterns related to zero-day attacks. When a pathogen attempts to 

infiltrate the organism, the innate and acquired immune systems work together to com-

bat the invasion. This combination function inspired the Ensemble architecture of the 

proposed method, which offers better predictability and a more stable categorization 

model. 

4. Methodology 

The proposed methodology uses an array of EINNs in an Ensemble architecture, 

which best integrates Transfer Learning techniques. The main categorizer is the 

Izhikevich Spiking Neural Networks [23], which base their operation on the theory of 

dynamic systems. The Izhikevich model is a biological model that offers low computa-

tional complexity like the Integrate-and-Fire models, as a neuron is treated as a homo-

geneous set of receiving and transmitting peaks, defined by the membrane's internal po-

tentials. 
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The Izhikevich Spiking Neural Network used, due to its dynamic configuration, can 

reproduce different spikes and different triggering behaviors of neurons. Specifically, 

the dynamics of the model were governed by two key variables. The following equation 

describes the membrane potential [23], [24]: 
𝑑𝜐

𝑑𝑡
= 0,04𝜐2 + 5𝜐 + 140 − 𝑢 + 1                (1) 

and the membrane return function described by the following equation: 
𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝜐 − 𝑢)                 (2) 

where υ represents the neuron's membrane potential and u is the membrane return vari-

able that predicts a negative sign for υ. 

When the membrane potential reaches the threshold θ, a peak is activated, and the 

reset of θ and u occurs. The peak activation function is described by the following equa-

tion: 

𝐶𝜐̇ = 𝑘(𝜐 − 𝜐𝑟)(𝜐 − 𝜐𝑡) − 𝑢 + 𝐼  𝑖𝑓  𝜐 ≥ 𝜐𝑝𝑒𝑎𝑘𝑡ℎ𝑒𝑛 {
𝜐 ← 𝑐

𝑢 ← 𝑢 + 𝑑 
}       (3) 

and the return of the membrane after a peak is described by the following equation: 
𝑢̇ = 𝛼{𝑏(𝜐 − 𝜐𝑟) − 𝑢}            (4) 

The parameters of the model are represented by the variables a, b, c, and d, where a 

represents the rate of decomposition of the membrane potential, b is the sensitivity of the 

membrane recovery, and c and d reset υ and u, respectively. Depending on the values of 

α and b, the neuron can be an integrator (b<0) or resonator (b>0). The parameters c and d 

do not affect the general behavior at a steady state, while on the contrary, they affect the 

model in the post-firing period. The parameter υ is the membrane potential, u the recov-

ery current, C the membrane capacitance, υr the resting membrane potential, and υt the 

instantaneous threshold. 

 The change in synaptic weight is the difference between the arrival time𝑡𝑝𝑟𝑒 of a 

presynaptic peak and the time 𝑡𝑝𝑜𝑠𝑡 of an action potential emitted by the neuron is de-

scribed by a function 𝑊(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡) which determines how the time window works in 

the algorithm. Typical W approaches are [24], [25]: 

𝑊(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡) = {
𝐴+𝑒𝑥𝑝 (

𝑡𝑝𝑟𝑒−𝑡𝑝𝑜𝑠𝑡

𝑟+
)  𝑖𝑓   𝑡𝑝𝑟𝑒 < 𝑡𝑝𝑜𝑠𝑡

𝐴−𝑒𝑥𝑝 (−
𝑡𝑝𝑟𝑒−𝑡𝑝𝑜𝑠𝑡

𝑟−
)  𝑖𝑓   𝑡𝑝𝑟𝑒 > 𝑡𝑝𝑜𝑠𝑡

           (5) 

where the parameters 𝑟+ and 𝑟− specify the time sequence of the pre- and post-synaptic 

interval, while the parameters 𝐴+ and 𝐴− specify the maximum values during the synap-

tic modification if the variables 𝑡𝑝𝑟𝑒 and  𝑡𝑝𝑜𝑠𝑡  are close to zero. The parameters 

𝐴+ , 𝐴−,  𝑟+ and 𝑟−  are adjusted according to the specific neuron being modeled, while 

window W is usually time asymmetric, i.e., 𝐴+ ≠ 𝐴− and  𝑟+ ≠  𝑟−. It should be noted that 

the various options of the above parameters can lead to different inherent operating pat-

terns, depending on the type of attacks that this model is called to resolve and respec-

tively, depending on the configuration of these parameters, a wide variety of neural 

characteristics can be modeled. 

The Encoding by Resonant Burst (ERB) technique was used to match the actual val-

ues of the data set that models the problem of digital security of energy infrastructure. 

The ERB allows the fundamental values of the data set to be mapped to an explosion of 

peaks based on a set of receptive fields. Receptive fields feature a specified set of values 

and only take input to these values, allowing for continuous value encoding via a net-

work of overlapping neurons with varying sensitivity profiles. This method's rationale is 

based on the fact that each input variable is encoded independently of a set of one-

dimensional receptive fields with comparable periods [24], [25]. 

Given that determining the frequency of a peak explosion can determine the active 

neurons involved in it and, in particular, using the resonant effect, If the burst frequency 

is matched to the peak oscillations of the membrane potential of target neurons, a short 

burst of spikes can elicit a robust post-synaptic response. On the other hand, the same 

explosion would not affect the post-synaptic potential of the membrane if the explosion 

were not coordinated, as shown in the figure below. 
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Fig 1: Encoding by Resonant Burst 

Based on this operating standard, sending a short peak explosion instead of a serial 

peak array increases the likelihood that at least one of these peaks could avoid synaptic 

transmission failure. The exact time of the peaks during the explosion does not play an 

important role. On the contrary, the information on the interval between the peaks and 

their period is considered very important. In particular, the shorter the interspike inter-

val, the more likely the synaptic transmission is to be activated, and conversely, the 

longer this interval is, the more likely the transmission is to be completed. In the case of 

bursts from continuous dense peaks, these are taken as a combined function that acti-

vates the post-synaptic potential. 

This function is enhanced because each peak causes an oscillation of the membrane 

potential, which leads to a fluctuation of the distance to the threshold and hence an in-

stability of the probability of contraction. It should be noted that all peaks included in an 

explosion have the same or about the same period. So, suppose the interval between 

peaks is relatively short and the period is similar. In that case, the second peak reached 

during the increasing phase of the oscillation will increase the oscillation amplitude even 

further as the peak effects work cumulatively, thus achieving the synaptic transmission. 

If the second peak is reached during the oscillation drop, then, in this case, the peaks 

substantially cancel each other out. The same phenomenon is observed for inhibitory 

synapses. 

Thus, based on the notion that models from the same class exhibit the same or 

comparable behavior and, as a result, produce a similar firing rate at a neuron's output, 

whereas, on the contrary, models from a different class behave differently and thus pro-

duce a different firing rate, the proposed Izhikevich Neural Network is used to identify 

suspicious patterns associated with digital threats intelligently. In particular, each time 

an input signal changes, the network response also changes, creating a different trigger 

rate. The number of peaks created in a time T is used to compute this firing rate. When a 

neuron gets an input signal, it is excited for a while Tms and triggers when a certain 

peak or series of peaks reaches a given threshold of its potential membrane, resulting in 

an action potential [23], [26]. 

More specifically, D = {𝑥𝑖 , 𝑘}𝑖=1
𝑝  is a set of incoming patterns where k = 1,… K is the 

class belonging to 𝑥𝑖 ∈ 𝑅𝑛. Initially, each input pattern is converted to an input signal I, 

based on the ERB procedure. In this example, the learning process is to modify the mod-

el's synaptic weights so that the different firing rate of each neuron is a class k, duplicat-

ing the behavior indicated in the hypothesis. As a result, to address the threat identifica-

tion problem, the current input I that stimulates the model must be calculated. 

Assuming that each characteristic input pattern x𝑖 corresponds to the presynaptic 

potential of each receptive field, the input current I that stimulates the neuron is com-

puted as 𝐼 =  𝑥 ⋅  𝑤, where w∈ R𝑛  is the sum of the synaptic weights of the model. 
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Stream of input in the approach, I is utilized to simulate the model during Tms. Instead 

of using the serial peak array produced by the model to perform the categorization, the 

firing rate of each neuron is calculated as follows [24], [25]: 

𝑓𝑟 =
𝑁𝑠𝑝

𝑇
              (6) 

where 𝑁sp is the set of peaks in the time window T. It is also necessary to calculate each 

category's average AFR ∈ 𝑅𝐾  firing rates based on the firing rates produced by each in-

put. In this view, the learning process entails determining the model's synaptic weights 

so that each category has a different average firing rate 𝑘. 

To obtain the desired behavior at the model's output, the model's synaptic weights, 

which are directly tied to the incoming patterns, must be adjusted. This calculation is 

based on the biologically inspired heuristic CSA algorithm. The immune system's reac-

tion to the arrival of a pathogen inspires CSA. It establishes that only lymphocytes that 

recognize the pathogen better are chosen to be cloned. The goal of the clone selection 

method is to produce a large number of antibodies that are highly compatible with spe-

cific antigens. Antibodies are thought of as possible solutions to CSA. In contrast, anti-

gens are thought of as test data, and the degree of matching between an antibody and an 

antigen signifies the suitability or quality of the solution. The goal is to create an initial 

population, apply it to the data set and use it repeatedly to improve the quality of solu-

tions in the population. Another essential feature of this algorithm is the ability to dis-

tinguish it to avoid entrapment in local minima. At the same time, the evolution of the 

solution population is produced having the lowest computational costs. 

 In the proposed Izhikevich Neural Network, the use of CSA is used to calculate the 

synaptic weights, which can achieve the minimum categorization error of the model. 

The following function fitness function is calculated below [27]:   

f (w, D) = P(w, D)-1           (7) 

where w are the model synapses, D is a set of input patterns, and P (w, D) is the function 

that calculates the model's classification rate. The calculation function of the classifica-

tion rate is calculated as follows:  

𝑃(𝑤, 𝐷) =
𝑃𝑐

𝑃𝑎

            (8) 

where 𝑃𝑐 is the set of correctly categorized standards and 𝑃𝑎 is the number of standards 

tested. The general methodology followed is described below [16], [28], [29]: 

1. Population initialization: For each antibody 𝑎𝑖 ∈ 𝑃, 1 ≤ 𝑖 ≤ |𝑃| a random se-

quence of symbols 𝑠𝑖 ∈ 𝐿 is selected and assigned to it 𝑎𝑖  ←  𝑠𝑖 . The set 𝐺𝑟 ∈ 𝐿: 𝐺𝑟 = 𝐺 is 

also defined. 

 2. Antigen presentation: A random antigen is selected 𝑔𝑖 ∈ 𝐺𝑟 , 1 ≤ 𝑖 ≤ |𝐺𝑟| and 

delivered to the population while the binding function f for each antibody in the popula-

tion is determined. As a result, the following set 𝑉{𝑣𝑗 : 𝑣𝑗 = 𝑓(𝑎𝑗 , 𝑔𝑖), 1 ≤ 𝑗 ≤ |𝑃| } is ob-

tained, which indicates the extent to which each antibody in the population binds to the 

𝑔𝑖 antigen. The 𝑔𝑖 antigen is removed from𝐺𝑟 , so 𝐺𝑟 ← 𝐺𝑟 − {𝑔𝑖}. 

3. Selection of antibodies: Based on the data of set V, the 𝑛𝑏 antibodies that indi-

cate the best binding quality are selected and constitute the set 𝐵, |𝐵| = 𝑛𝑏. 

 4. Cloning / Amplification: Based on its binding quality to the 𝑔𝑖  antigen, each 

antibody in set B is cloned, with each antibody giving more clones as its quality im-

proves. The generated clones are stored in a new set C. 

5. Clone maturation: Each element 𝑐𝑗  of the set C changes at a rate 𝑎𝑗 this is de-

termined by the clone's degree of binding 𝑐𝑗 to the 𝑔𝑖 antigen. The higher the binding 

quality, the lower the mutation rate, ensuring that no irreversible alterations to the anti-

body occur. The set 𝐶𝑚 is made up of mutant clones. 

 6. Clone selection and memory refresh: The function f is applied to each set ele-

ment 𝐶𝑚 and the set 𝑉′ is obtained, which contains the binding quality of each mutant 

clone, 𝑉′ = {𝑣𝑗
′: 𝑣𝑗

′ = 𝑓(𝑐𝑗
′, 𝑔𝑖), 1 ≤ 𝑗 ≤ |𝐶𝑚| }. Based on 𝑉′ the 𝑛𝑚 best clones are selected 

which constitute the set 𝛣′. Imaging K is then applied to the 𝑔𝑖 antigen to give the set of 

𝑀𝑖 of the memory antibodies that could be replaced. Based on the algorithm's memory 

renewal policy, a final set of 𝑀𝑖
′ cells are obtained such that 𝑛𝑚 = |𝑀𝑖

′| ≤ |𝛭𝑖| . The 
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memory cells of the set 𝑀𝑖
′ will be replaced by other selected cells if and only if these 

cells demonstrate a higher quality of binding, resulting in the condition 𝑓(𝑚, 𝑔𝑖) <
𝑓(𝑎, 𝑔𝑖), 𝑚 ∈  𝑀𝑢

′ , 𝑎 ∈  𝐵′. 
 7. Population renewal: To maintain population diversity, either 𝑛𝑡 cells are se-

lected from the set 𝑉′ and brought into the population to take the place of others, or 𝑛𝑑 

worse cells are selected from the population P and replaced with entirely new ones. 

8. Termination condition: If 𝐺𝑟 ≠ 0, the algorithmic approach is then repeated, 

beginning with the second step of antigen presentation. Otherwise, a condition of 

memory antibody M convergence with set G antigens is verified. In the event of a failed 

convergence, then 𝐺𝑟 ← 𝐺 _ and the algorithm is repeated from the second step of the an-

tigen presentation, while otherwise 𝐺𝑟 = 0, at which point the algorithm terminates and 

completes a generation of evolution [30], [31]. 

The schematic representation of CSA is shown in the figure below. 

 

Fig 2: Clonal Selection Algorithm 

 The suggested system's major innovation is implementing the Transfer Learning 

[22] process as a simulation of the acquired immune system which is the creation of the 

body's exposure to infections and the retrieval of invasion history and treatment options. 

These functions, which are acquired in an acquired way, i.e., by transferring knowledge, 

perform a process of dealing with new attacks and patterns related to zero-day attacks. 

To be more specific, after successfully training the model, it is essential to determine the 

firing rate produced by the trained neuron to identify the category to which an un-

known input pattern x belongs. This rate is compared to the category's average firing 

rate. The slightest difference between the firing rate and the mean firing rate determines 

the class of an unknown pattern. The following equation compares the firing rate and 

the regular mean firing rates [25], [32]: 
𝑐𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘=1

𝐾 (|𝐴𝐹𝑅𝑘 − 𝑓𝑟|)         (9) 
where fr is the trigger rate of a neuron for an incoming standard x. 

To strengthen the acquired immune system and, in particular the memory cells that 

will provide acquired knowledge to the system, an algorithmic addition was added to 

step 6 of the CSA [31], which strengthens the memory cells with additional knowledge, 

so that they can provide Transfer Learning to the general system. In particular, the un-

known, incorrectly classified samples follow a process of identification through an un-

supervised identification technique. Essentially, the centers are calculated, and the un-

known points are assigned to centers of a vector space using the Euclidean distance. This 

process, based on the general fuzzy c-means algorithm, is repeated until the centers are 

stabilized. In contrast, the algorithm directly constrains the membership degree function 

for each point. The process is described by the following mathematical relation [33], [34]: 

∑ 𝜇𝑗(𝑥𝑖) = 1   𝑖 = 1,2,3, … 𝑘
𝑝

𝑗=1
           (10) 
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where p is the number of classes, k is the number of data points, xi is the i-th point, and 

μj(xi) is the function that returns x member degree in the j-th class, i is a data vector 

where i = 1, 2, k. Thus, the sum of the membership points for each point in all classes 

should be 1. The following equation is used to calculate the value of a new cluster center: 

𝑐𝑗 =
∑ [𝜇𝑗(𝑥𝑖)]

𝑚
𝑖 𝑥𝑖

𝛴𝑖[𝜇𝑗(𝑥𝑖)]
𝑚             (11) 

where cj is the center of the j-th cluster with (j = 1,2… .p), xi is the i-th point, and m is the 

ambiguity parameter. The amplitude of m was calculated between [1.25, 2], based on the 

trial-and-error method. 

 So, for the unknown samples, e.g., zero-day attacks that are difficult to categorize, 

we can assign them a new target based on their new position and the new condition of 

the samples in space. In the first iteration of the method, we set the class centers to arbi-

trary values, usually zero, and calculate the membership points of the points for them. 

First, to determine the distance of each unknown sample xi from the center of the correct 

class c1…j, the Euclidean distance is calculated using the following equation [35]: 

𝑑𝑗𝑖 = ‖𝑥𝑖 − 𝑐𝑗‖
2
             (12) 

where dji is the distance of xi from the center of the class cj. The degree of membership of 

a point in a class is then calculated by the following equation: 

𝜇𝑗(𝑥𝑖) =
(

1

𝑑𝑗𝑖
)

1
𝑚−1

∑ (
1

𝑑𝑘𝑖
)

1
𝑚−1𝑝

𝑘=1

           (13) 

where dki is the distance of xi from the center of the class ck. 

Based on the memory refresh policy as described in step 6 of the CSA algorithm 

[29], [30], a new set of memory cells emerges that are better than their original categori-

zation and enhance the algorithm's better connection quality, transferring knowledge 

from the parallel unsupervised learning process. More specifically, the memory cells are 

represented by the 𝑀𝑚𝑒𝑟𝑔𝑒 ,  𝑀𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 ,  𝑀𝑖𝑛𝑛𝑎𝑡𝑒  sets, which are subsets of 𝑅𝑛 × {1, … , 𝑐}. 

 During the operation of the algorithm 𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a dynamic slider containing the 

most recent m examples of the data stream containing the Minnate memory cells: 
𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = {(xi, yi) ∈ Rn × {1, … , c} |i = t − m + 1, … , t}                   (14) 

𝑊𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔  retains all the other memory cells that have been created, and unlike 

𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡, it is not even a continuous part of the data stream but a set of static points p:  
𝛭𝐿𝑇 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑛 × {1, … , 𝑐} |𝑖 = 1, … , 𝑝}    (15) 

Combined memory 𝑀𝑚𝑒𝑟𝑔𝑒 is the union of both memories with size m + p: 

𝑀𝑚𝑒𝑟𝑔𝑒= 𝑊𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ∪ 𝑊𝑐𝑢𝑟𝑟𝑒𝑛𝑡             (16) 

Each set includes an EINN classifier for each 𝑅𝑛 × {1, … , 𝑐}. Specifically, 𝐸𝐼𝑁𝑁𝑀𝑚𝑒𝑟𝑔𝑒
, 

   𝐸𝐼𝑁𝑁𝑀𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑
, 𝐸𝐼𝑁𝑁𝑀𝑖𝑛𝑛𝑎𝑡𝑒

.. The EINN function assigns a label to a given point x based 

on a set 𝑍 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑛 × {1, … , 𝑐} |𝑖 = 1, … , 𝑛} such that [19]–[21], [24]: 

𝐸𝐼𝑁𝑁𝑍(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥 { ∑
1

𝑑(𝑥𝑖 , 𝑥)
𝑥𝑖∈𝑁𝑘(𝑥,𝑍)|𝑦𝑖=𝑐̂

|𝑐̂ = 1, . . , 𝑐}                 (17) 

where 𝑑(𝑥𝑖 , 𝑥) is the Euclidean Distance between two points and 𝑁𝑘(𝑥, 𝑍) returns the set 

k of the nearest classes of x to Z. With this tactic, we have a constant updating of the 

model by transferring knowledge between memory cells. Furthermore, the combined ac-

tion of the innate and acquired immune systems in dealing with the invasion effectively 

generates the Ensemble architecture, which has been demonstrated to give superior pre-

dictability and a more stable categorization model due to the system's robust and pre-

dictable behavior. 

5. Dataset and Results 

Modern power grid threats include undermining actuator or sensor operations in 

the physical layer, attacks on device connections in the data link layer, and more special-

ized efforts to undermine particular control systems in the SCADA layer. Consequently, 

optimal energy grid security needs real-time analysis of large-scale data produced in the 

networks by millions of sensors and smart meters [36]. For the validation of the method-
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ology as well as the individual experiments in the preparation of the final parameters of 

the model, which were selected mainly by trial and error, a highly complex data set was 

used that fully reflects the dynamics of the proposed system. 

The Electric Power and Intelligent Control (EPIC) [37], [38] dataset was chosen spe-

cifically because it best represents the routine operation of all active media utilized in 

modern power grids. EPIC is a power grid testbed that combines the four primary stages 

of energy networks: generation, transmission, microgrid, and smart home. It is available 

to researchers to run experiments to test the effectiveness of novel cyber defensive 

measures. 

Its architecture includes segmented communications networks, wired and wireless 

communications systems, distributed dynamic control mechanisms, the interconnection 

between other test centers, and full access to control automation through Programmable 

Logic Controllers (PLCs) and Human Machine Interfaces (HM). 

In particular, the set includes the normal operation of the network. It includes ex-

amples of advanced cyber-attacks that evolved through isolation tactics of properly 

model local and global vulnerabilities their complicated user interface, resulting in 12 

separate high-complexity scenarios. From these scenarios, network traffic log data, 

flagged network transactions during normal operation, and transactions during various 

cyber-attacks were collected. Also included are data on abnormalities detected during 

malicious operation of the equipment and data identifying statistical information that 

can determine how a network operates. 

Power outages were the focus of the experimental process to make the research 

much more specific. In particular, the scenarios investigate whether the intruder oper-

ates the circuit breakers at each of the different stages of the energy infrastructure, where 

one or more circuit breakers can be closed or opened. In the second level, the intruder 

manipulates the power settings at multiple stages by adjusting the maximum power set-

tings at various power sources. 

In the first example, each step of the energy network (Generation, Transmission, 

Micro-grid, and Smart Home) has its own PLC controller and communication channels 

between SCADA, DCS, EMS, and PLC controllers [12]. The four modeled cases are: 

1. Intrusion into the communication network and conversion of control commands 

issued by PLC controllers. This is a binary classification problem in which the 

results of the proposed system in comparison with respective machine learning 

techniques (Support Vector Machines - SVM, k-Nearest Neighbors - k-NN, and 

Random Forest - RF) are presented in Table 1 below: 

Table 1. Performance of ML algorithms in scenario 1 

ML Accuracy Precision Recall F-Score AUC 

EINN 96.51% 0.970 0.960 0.965 0.965 

SVM 92.78% 0.920 0.920 0.920 0.920 

k-NN 93.38% 0.930 0.940 0.930 0.940 

RF 93.95% 0.940 0.935 0.940 0.940 

 

2. Targeting any PLC controllers to execute a DDoS attack to make them inactive. 

This is a binary classification problem in which the results are presented in Table 

2: 

Table 2. Performance of ML algorithms in scenario 2 

ML Accuracy Precision Recall F-Score AUC 

EINN 98.77% 0.990 0.980 0.980 0.990 

SVM 94.13% 0.945 0.940 0.940 0.950 

k-NN 93.66% 0.940 0.940 0.940 0.935 

RF 94.28% 0.940 0.945 0.940 0.940 
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3. Targeting any of the PLC controllers to execute general vulnerability exploitation 

attacks to make them inactive. This is a binary classification problem where 

anomalies are detected. The results are presented in Table 3: 

Table 3. Performance of ML algorithms in scenario 3 

ML Accuracy Precision Recall F-Score AUC 

EINN 91.15% 0.905 0.910 0.910 0.910 

SVM 88.49% 0.885 0.885 0.885 0.885 

k-NN 86.04% 0.860 0.860 0.860 0.860 

RF 87.76% 0.870 0.880 0.870 0.875 

 

4. To undertake power outage attacks, enter the SCADA workstation and change 

the various settings to control different actuators, circuit breakers, and other re-

gions of the smart grid. Anomalies are found in this binary classification task. 

Table 4 summarizes the findings: 

Table 4. Performance of ML algorithms in scenario 4 

ML Accuracy Precision Recall F-Score AUC 

EINN 95.46% 0.950 0.945 0.945 0.950 

SVM 91.89% 0.920 0.920 0.920 0.920 

k-NN 91.97% 0.920 0.920 0.920 0.920 

RF 92.03% 0.920 0.920 0.920 0.920 

 

In the second case of the experimental process, the intruder handles the power set-

tings at different stages to achieve a power outage. The three cases modeled along with 

the system results are as follows: 

1. Adding malicious code to the PLC that sends Variable Speed Drives (VSDs) at 

faster speeds and more extraordinary power upsets the power balance and 

crashes the system. This is a binary classification problem where anomalies are 

detected. The results are presented in Table 5: 

Table 5. Performance of ML algorithms in scenario 5 

ML Accuracy Precision Recall F-Score AUC 

EINN 96.42% 0.960 0.965 0.965 0.970 

SVM 90.28% 0.900 0.900 0.900 0.900 

k-NN 91.86% 0.910 0.920 0.920 0.920 

RF 93.35% 0.930 0.930 0.940 0.930 

 

2. Through changes in the SCADA application settings, the maximum power of the 

two-way inverter in the micro-grid is set higher than the maximum load demand, 

which causes power imbalance and system shutdown. This is a binary classifica-

tion problem where anomalies are detected. The results are presented in Table 6: 

Table 6. Performance of ML algorithms in scenario 6 

ML Accuracy Precision Recall F-Score AUC 

EINN 97.52% 0.970 0.970 0.975 0.970 

SVM 95.84% 0.960 0.960 0.960 0.960 

k-NN 95.93% 0.960 0.960 0.960 0.960 
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RF 96.88% 0.970 0.970 0.970 0.970 

 

3. The speed directives supplied to the VSD by the PLCs are modified by changing 

the communication channel, causing the VSD to function faster than required, af-

fecting the power balance and shutting down the system. Anomalies are found in 

this binary classification task. Table 7 summarizes the findings: 

Table 7. Performance of ML algorithms in scenario 7 

ML Accuracy Precision Recall F-Score AUC 

EINN 98.22% 0.980 0.980 0.980 0.980 

SVM 94.04% 0.940 0.940 0.940 0.940 

k-NN 94.89% 0.950 0.950 0.945 0.955 

RF 94.78% 0.950 0.950 0.940 0.950 

 

In terms of addressing the examined digital security problem, the proven reliability 

of the recommended architecture is attributable to a combination of elements. Because of 

the Ensemble nature, which includes clustering, it can discover and keep crucial features 

connected to complex patterns that grow and contribute to the timely and accurate pre-

diction of scenarios. The Ensemble technique substantially improves data processing 

methodology by detecting the intricate relationships that explain them and capturing the 

minute differences that separate them. Furthermore, because the overall behavior of the 

numerous models is less noisy than a comparable individual, the suggested system pro-

vides a better prediction and a more stable classification model [19].  

Furthermore, because of the nature of the problem under discussion, which evolves 

in real-time, data transfer is accomplished using the transfer learning architecture [22] 

while considering correlations and interdependencies that might be present in the data 

flow sequence. The problem with using the shared learning rate of the transfer learning 

architecture for all parameters and all phases of the learning process adds significantly 

to the attainment of the above and, in general, to the speed of generalization and con-

vergence.  

Another important finding that supports the transfer learning approach is that just 

the current control batch's statistics are utilized, resulting in more effective smoothing as 

the learned parameters do not incorporate data from multiple-use parameters. A non-

intelligent program would gather current batch data at all phases of the internal loop 

learning update, delaying or stopping optimization. False assumption causes beginning 

to model and update feature distributions to be similar. Current statistics may be pro-

vided with all network internal loop updates—false assumption. Keep statistics across 

stages and read optimization parameters for each internal loop iteration step by step. 

The suggested system achieved the highest accuracy rates when data streams were 

reviewed rather than a single data set, confirming the high convergence rate. Another 

critical factor in selecting this architecture was because EINNs take advantage of all tra-

ditional machine learning algorithms while avoiding issues such as delayed conver-

gence, fixation at local extremes, and so on [25], [26]. Finally, the best combination of cel-

lular memory levels given by this method demonstrated the ability to uncover hidden 

correlations or patterns in data while minimizing errors and enhancing categorization 

accuracy [29], [31]. 

6. Conclusion 

In the present work, an advanced standard for securing energy infrastructure was 

presented, which automates operational cyber security. The model uses advanced com-

putational intelligence methods in a hybrid system first introduced in the literature. It is 

an AIS that models the function of the natural immune system, using an Ensemble array 
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of Izhikevich Neural Networks optimized with CSA, which is inspired by how the im-

mune system reacts to the appearance of a pathogen. 

Similar nature-inspired optimization methods, as well as more complex optimiza-

tion methods based on complex mathematical models, have been proposed in the litera-

ture to solve practical applications or to solve specialized problems. However, the pro-

posed architecture incorporates optimally advanced Transfer Learning methodologies to 

fully automate the strategic security planning of energy infrastructures, enable the com-

plete control of digital systems, and contribute to the timely and valid decision-making 

during cyberattacks. 

However, the functionality of this system is also associated with a severe drawback, 

as a complete understanding of how the optimum network for each circumstance neces-

sitates specialized expertise and extensive experimentation. It should also be noted that 

the proposed methodology has more requirements in computing resources, which is al-

so recorded in the disadvantages of the process as an essential issue that should be ex-

plored in the development of this research. As a future extension of the proposed sys-

tem, it is proposed to explore ways to automatically find and optimize the Ensemble 

network parameters and its optimization parameters, to achieve even higher categoriza-

tion accuracy. 

Also, a significant development in this proposal is the addition of automatic export 

capabilities and selection of the most appropriate features from the initially available da-

ta of unknown situations, which will allow upgrading its categorization capabilities, 

thus dealing with unknown attacks. Finally, the system in question must be studied in a 

more profound architecture, which will be able to model even more complex nonlinear 

correlations and intermediate representations, which can lead to even more reliable in-

telligent systems. 
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