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Abstract: With the advent of the first pandemic wave of Severe Acute Respiratory Syndrome Coro-

navirus-2 (SARS-CoV-2), the question arises as to whether the spread of the virus will be controlled 

by the application of preventive measures or will follow a different course, regardless of the pattern 

of spread already recorded. These conditions caused by the unprecedented pandemic have high-

lighted the importance of reliable data from official sources, their complete recording and analysis, 

and accurate investigation of epidemiological indicators in almost real time. There is an ongoing 

research demand for reliable and effective modeling of the disease but also the formulation of sub-

stantiated views to make optimal decisions for the design of preventive or repressive measures by 

those responsible for the implementation of policy in favor of the protection of public health. The 

main objective of the study is to present an innovative data-analysis system of COVID-19 disease 

progression in Greece and her border countries by real-time statistics about the epidemiological 

indicators. This system utilizes visualized data produced by an automated information system de-

veloped during the study, which is based on the analysis of large pandemic-related datasets, mak-

ing extensive use of advanced machine learning methods. Finally, the aim is to support with up-to-

date technological means optimal decisions in almost real time as well as the development of me-

dium-term forecast of disease progression, thus assisting the competent bodies in taking appropri-

ate measures for the effective management of the available health resources. 
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1. Introduction 

The health crisis caused by the SARS-CoV-2 pandemic, combined with the economic 

consequences and the shock to health systems, has created serious concerns on how to 

make timely and valid decisions about prevention and social distancing measures to be 

taken [1]. The COVID-19 pandemic has created a rapidly changing environment where a 

huge amount of data related to virus spread updates is daily presented. The effective uti-

lization of this data and the provision of the thorough and at the same time fast analysis 

of the most up-to-date information to support the best decisions requires their intelligent 

processing in near real time [2]. 
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The analysis of the spread rate of COVID-19 disease is directly related to the general 

concerns and challenges of large-scale near real-time data analysis procedures. Specifi-

cally, it is directly related to the high velocity with which the relevant information arrives, 

how this information is collected and stored (its volume), the variety of unstructured or 

semi-structured data forms that can be collected, their variability as epidemiological data 

change in importance over time, their visualization and the diagnosis of whether the in-

formation is accurate or incomplete and inaccurate (its veracity), and finally determining 

their final operational value [3]. Understanding how the parameters of these data are 

linked can help civil protection organizations identify in a clear and fully understandable 

way what capabilities they need to develop or acquire to make full use of the data they 

have to strengthen public safety, health, and consequently safeguarding the state’s health 

system [4]. 

Beyond their management, the biggest modern challenge for large-scale data such as 

those related to COVID-19 disease is to analyze them functionally to finally reveal the 

hidden knowledge contained in this information. For example, using pattern recognition 

methods, it is possible to identify trends or patterns, to identify unknown correlations, as 

well as other useful information, to achieve behavioral prediction and make optimal de-

cisions [5]. It is important to note that the above analysis can be used not only to imple-

ment appropriate policies to prevent and deal with future epidemics by giving a retro-

spective picture of the pace and ways of its spread but also to make optimal decisions and 

actions in almost real time [6]. 

This very ability to process huge amounts of data, using advanced algorithms and 

generally intelligent analysis and processing tools, is a very promising solution to the ef-

fective detection and tracing of active cases, while also creating the background for the 

development of spatio-temporal solutions adapted to real needs, but also methods of 

timely forecasting of potential threats to public health [7]. 

Due to the extremely urgent need to take action to reduce the spread of the disease, 

the requirements of civil and health protection mechanisms must include appropriate al-

gorithms for fast to instantaneous processing of large volumes of data with high complex-

ity, and possible high inhomogeneity [8]. In general, the approaches that should be chosen 

to shield the public health system should meet specific specifications, ensuring at least 

multiple design aspects, such as [9]: 

1. Integrated and interoperable data representation. 

2. Intelligent data management methods (time-series analysis, anomaly detection, di-

mensional reduction, parameter selection, etc.). 

3. Real-time analysis mechanisms. 

4. Ability to securely exchange data between distributed systems. 

The above requirements have led to the parallel development of both the infrastruc-

ture that supports large-scale data and the algorithmic standardizations that must be fol-

lowed to ensure public health [10]. In this spirit, the study of how to record, analyze, and 

model the problem of the spread of the disease is extremely important, both from an epi-

demiological point of view and from a mathematical point of view [11]. 

This paper proposes a novel model for the near-real-time analysis of COVID-19 dis-

ease data, as well as an intelligent machine learning system for predicting disease pro-

gression, in order to assist in deciding on predictive or suppressive measures of social 

distancing or taking appropriate measures related to the management of the health sys-

tem. The proposed system is based on automated data collection and analysis, while the 

medium-term forecast is based on advanced machine learning methods. Within this con-

text, the proposed method can be applied to different aspects of the COVID-19 temporal 

spread in Greece and her border countries to present an exploratory study of COVID-19 

disease progression (real-time statistics about the cumulative number of infections, 

deaths, ICU patients, and epidemiological indicators). In practical implementation, the 
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proposed methodology offers an active method for modeling and forecasting the pan-

demic, which is capable of removing the disconnected past data from the time-series struc-

ture in order to provide a modeling and forecasting tool facilitating decision making and 

resource management in epidemiology, which can contribute to the ongoing fight against 

the pandemic of COVID-19. 

The rest of the work is structured as follows. Initially, relevant research papers are 

presented on how to record, analyze, and model the problem of pandemic spread. Then, 

the third section presents the way of mathematical modeling and analysis of epidemio-

logical data using non-spatial causal models and indicators. The time-series forecasting 

methodology is presented in the next section, while chapter five presents the data used 

and the results obtained. Finally, in the last section, there is an extensive analysis and dis-

cussion of the general methodology that took place, and the study closes with the presen-

tation of future research that is proposed to be followed. 

2. Related Work 

Methodologies for mathematical modeling of the spread of the disease [12] and es-

pecially techniques for predicting the future variation of the epidemic curve [13] are 

deemed as a constant demand by the research community, with remarkable findings al-

ready recorded, offering an important legacy of knowledge [14–16].  

For example, the detailed research of Sarkodie et al. [17] temporally models the evo-

lution of the pandemic, constructing at the same time conceptual tools for linking the re-

lationships between confirmed cases and deaths, based on four characteristic health indi-

cators. The final assessment of this research is based on cross-sectional dependence, en-

dogeneity, and unobserved heterogeneity. Although the linear relationship between 

deaths and confirmed cases are revealed, as well as the non-linear correlation between 

recovery cases and confirmed cases, the study fails to provide a final model with substan-

tial generalization possibilities as it uses limited in scale non-critical data that cannot be 

used for extensive identification of the phenomenon. 

On the other hand, the purpose of this work [18] is to give a contribution to the un-

derstanding of the COVID-19 contagion in Italy. To this end, the authors developed a 

modified Susceptible–Infected–Recovered–Deceased (SIRD) model for the contagion, and 

they used official data of the pandemic for identifying the parameters of this model. Their 

approach features two main non-standard aspects. The first one is that model parameters 

can be time-varying, allowing them to capture possible changes of the epidemic behavior, 

due for example to containment measures enforced by authorities or modifications of the 

epidemic characteristics and to the effect of advanced antiviral treatments. The time-var-

ying parameters are written as linear combinations of basis functions and are then inferred 

from data using sparse identification techniques. The second non-standard aspect resides 

in the fact that they consider as model parameters also the initial number of susceptible 

individuals, as well as the proportionality factor relating the detected number of positives 

with the actual (and unknown) number of infected individuals. Identifying the model pa-

rameters amounts to a non-convex identification problem that they solve by means of a 

nested approach, consisting of a one-dimensional grid search in the outer loop, with a 

Lasso optimization problem in the inner step. 

In contrast, Anastassopoulou et al. [19], using more complete datasets and heuristic 

methodology for estimating epidemiological parameters, model the rates of disease 

spread with a much more complete and substantial contribution to the way the pandemic 

is assessed. However, the reverse prediction process based on spread scenarios, which 

reproduces the confirmed hypotheses, creates a directed trend that is part of a very spe-

cific framework, suitable only for the verification of simulation techniques. 

A fully technical prototype of high research interest was presented in the work of 

Fong et al. [20], where they presented an optimized prediction model of polynomial neu-

ral networks with corrective feedback, which can generalize, even in cases where the sam-

ples are minimal. Although the methodology is very robust, it needs to be compared with 
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competing algorithms, taking into account additional process evaluation criteria apart 

from those describing the level of accuracy/error. 

Differently from the related literature, where modeling and controlling the pandemic 

contagion is typically addressed on a national basis, this paper [21] proposes an optimal 

control approach that supports governments in defining the most effective strategies to 

be adopted during post-lockdown mitigation phases in a multi-region scenario. Based on 

the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible–

Infected–Recovered (SIR)-based epidemiological model, the approach is aimed at mini-

mizing the cost of the so-called non-pharmaceutical interventions (that is, mitigation strat-

egies), while ensuring that the capacity of the network of regional healthcare systems is 

not violated. In addition, the proposed approach supports policymakers in taking tar-

geted intervention decisions on different regions by an integrated and structured model, 

thus both respecting the specific regional health systems characteristics and improving 

the system-wide performance by avoiding uncoordinated actions of the regions. The 

methodology is tested on the COVID-19 outbreak data related to the network of Italian 

regions, showing its effectiveness in properly supporting the definition of effective re-

gional strategies for managing the COVID-19 diffusion. 

Given the scale of the pandemic in different countries, many researchers have fo-

cused on local analyses based on officially available data. For example, Mahase et al. [22] 

present the statistical data of the United Kingdom after the implementation of social dis-

tancing. A particularly detailed research effort to localize the phenomenon is presented in 

the article [23], which explores the spatio-temporal trend of the epidemic in Italy. This 

study is based solely on statistical modeling without taking into account the statistical 

significance tests used to test the scientific hypothesis that is initially taken into account. 

The severity of this weakness is magnified by the fact that the object of epidemiological 

studies is an occurrence function and more specifically a measure of association that quan-

tifies the relationship between the identifier studied and the outcome, which is required 

to decide whether this relationship is statistically significant or not. 

Respectively, focusing on the peculiarities of the spread of COVID-19 in Greece, [12] 

offers an exploratory time study of the course of the disease while at the same time pro-

posing a realistic model for predicting high reliability. Specifically, a statistical analysis of 

the evolution of epidemiological data in Greece is presented, where the rate of spread and 

the perceived spread of the disease are approximated and standardized with mathemati-

cal standards. Respectively, a methodology for predicting the high solvency of total cases, 

deaths, and intensive care unit beds is proposed based on the Regression Splines algo-

rithm. The important innovation of the proposed model is that it bases its operation on 

the previous modeling with a Complex Network of the social distancing measures taken 

in Greece, thus implementing a fully functional and realistic system of evaluation and 

interpretation of disease-related events. 

Evolving the above investigation, [13] attempts to anticipate the “Flattening of the 

Curve”, to make optimal decisions regarding the support of the health system and the 

implementation of additional measures being taken, such as a reduction of social distanc-

ing. The proposed system approaches offer realism in the way of their evaluation while 

offering a powerful mechanism for modeling the spread of the pandemic. 

The local evaluation of the phenomenon, while it is an essential basis of evaluation, 

also contains serious weaknesses if it is not based on solid conditions. For example, a sub-

jective approach in predicting disease spread based on exponential smoothing models is 

presented in the paper [24]; here, the trend index, which is calculated following the pattern 

of the disease of the past based on local data and the smoothing of the curve, is predicted 

based on similar case studies of other countries leading the pandemic. 

Focusing on the specifics of the spread of the disease both epidemiologically and in 

terms of the implementation of preventive and repressive measures, this paper presents 

an exploratory study for the near real-time analysis of large-scale disease data with ad-

vanced intelligent machine learning techniques, which uses the visualized material that 
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can be produced by the corresponding information system. The aim is to reveal the 

knowledge hidden in the epidemiological data, deciphering, and capturing the mathe-

matics of the pandemic and specifically the indicators that can model the spatio-temporal 

evolution and the spread of the disease. 

3. Mathematical Modeling and Pandemic Analytics  

Spatio-temporal modeling of the circulation of pathogens between hosts and through 

transmitters is used to simplify the reality or complex correlations associated with a cha-

otic phenomenon such as the pathogen–host interaction [25]. In particular, mathematical 

modeling, especially when performed in real time, is a powerful tool for studying the dy-

namic transmission of infectious diseases using non-spatial causal models (Susceptible 

Infectious, Recovered—SIR) and in general in assisting in optimal decision making [26]. 

Decision making in epidemiology [27] is based on predicting or simulating behaviors 

and properties of complex systems based on mathematical modeling. Epidemiology is the 

study of the distribution and evolution of various diseases in the human population (de-

scriptive epidemiology) and the factors that shape them or can influence them (analytical 

epidemiology) [28]. 

3.1. Real-Time Statistics 

Greece at the time of completing the study (17 June 2021) had 417,253 coronavirus 

cases, 12,488 deaths, and 396,317 recovered, with daily variance as shown in Figure 1 [29]. 

 

Figure 1. Greece new cases per day (Gaussian smoothed). 

Respectively, the following Figures 2–5 show the daily variation of the cases with 

Greece’s neighboring countries (Albania, Bulgaria, Turkey, and North Macedonia) to as-

sist the decision-making system and the corresponding social distancing mechanisms [29].  
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Figure 2. Albania new cases per day (Gaussian smoothed). 

 

Figure 3. Bulgaria new cases per day (Gaussian smoothed). 



Processes 2021, 9, 1267 7 of 35 
 

 

 

Figure 4. Turkey new cases per day (Gaussian smoothed). 

 

Figure 5. North Macedonia new cases per day (Gaussian smoothed). 
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For the most complete and effective decision making, real-time statistical analysis of 

the pandemic is required at a level where the technical characteristics of the problem can 

be captured. Detailed statistical analysis for Greece is presented in the following Tables 

1–4 [29]: 

Table 1. Pandemic Statistic Analysis_1. 

 Total Cases New Cases Total Deaths Reproduction Rate Weekly ICU Admissions 

mean 109,424.8912 872.9142259 3475.760776 1.074684096 112.8019394 

std 131,362.2468 1008.649671 4084.12127 0.21673656 119.1627889 

min 1 0 1 0.69 1.945 

max 417,253 4322 12,488 1.58 382.165 

Table 2. Pandemic Statistic Analysis_2. 

 New Tests Total Tests Total Tests/1000 New Tests/1000 Positive Rate Tests Per Case 

mean 23,151.10644 3,056,182.995 293.2137222 2.221138614 0.034083871 84.47204301 

std 21,782.07213 3,037,565.947 291.4275674 2.089800416 0.025939906 122.2038529 

min 45,335 570 0.055 −4.349 0.001 9.5 

max 130,207 10,207,626 979.331 12.492 0.105 768.2 

Table 3. Pandemic Statistic Analysis_3. 

 Total Vaccinations People Vaccinated People Fully Vaccinated New Vaccinations Total Vaccinations/1000 

mean 220,830,6.81 1,455,548.608 887,829.8134 47,651.25564 21.18607843 

std 212,368,4.319 1,346,725.121 826,843.6484 36,188.52581 20.37470194 

min 447 447 2 147 0 

max 7,244,517 4,381,177 3,045,889 114,676 69.5 

Table 4. Pandemic Statistic Analysis_4. 

 People Vaccinated/1000 People Fully Vaccinated/1000 Stringency Index Hospital Beds/1000 % Death/Cases 

mean 13.96457516 8.518432836 68.39331197 4.21 3.385838864 

std 12.92053129 7.932278859 16.53239424 2.49 × 10−14 1.412956795 

min 0 0 11.11 4.21 0 

max 42.03 29.22 88.89 4.21 6.134338588 

It should be noted that the stringency index is an index provided by the Oxford 

COVID-19 Government Response Tracker [30], which includes a team of one hundred 

experts, who constantly update a database with 17 government response indicators, con-

sidering restraint policies such as school and workplace closures, public events, public 

transportation, home accommodation policies, etc. Essentially, it is a number ranging 

from 0 to 100 that reflects the 17 rating indicators, with the highest score indicating the 

highest level of rigor. The graphical representation of the statistical analysis of the pan-

demic in Greece is also presented in the following Figure 6 [29]. 
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Figure 6. Pandemic statistical analysis of Greece. 

The correlation between the above-examined variables of Tables 1–4 is presented in 

the following figure, and a table of the degree of Pearson correlation is defined in the 

Figure 7 [31]: 

� =
���

����
. (1)
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Figure 7. Pearson correlation matrix. 

Essentially, the above table shows the degree of linear correlation of the variables X 

and Y with the dispersion of ��
� and ��

� respectively and covariance ��� = ���(�, �) =

�(�, �) − �(�)�(�). The correlation coefficient R, similar to the covariance ���, expresses 

the degree and the way the two variables are correlated, that is, how one random variable 

varies concerning the other. ��� takes values that depend on the value range of X and Y, 

while the coefficient R takes values in the interval [−1, 1]; where R = 1, there is a perfect 

positive correlation between X and Y; if R = 0, there is no linear correlation between X and 

Y; and if R = −1, there is a perfectly negative correlation between X and Y. When R = ± 1, 

the relation is causal and not probabilistic because knowing the value of one random var-

iable, the exact value of the other variable is also known. When the correlation coefficient 

is close to −1 or 1, the linear correlation of the two variables is strong (|R| > 0.9), while 

when it is close to 0, the variables are practically unrelated [31]. 
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3.2. Near Real-Time Analytics 

From the moment the epidemic was identified as the result of the new coronavirus 

SARS-CoV-2, the main priorities of the scientific community were to collect appropriate 

data to be able to develop the most important parameters of descriptive epidemiology, 

which can model its evolution and spread disease, to make optimal decisions and ensure 

public health [19]. 

These data must be combined with epidemiological indicators related to the spread 

of COVID-19 disease, analyses for areas of interest that are directly related to the spread 

of the pandemic, as well as systems for recording and describing data such as tables, dia-

grams, etc. It should be emphasized that these mechanisms should not only be based on 

the logical results of the calculations performed but also on the time at which these results 

are available, because timing is a fundamental event in a real critical time system, such as 

the one under examination. Violation of time constraints implies the inability to make 

timely decisions and therefore implement incomplete measures that cannot work in a pan-

demic [6]. 

In this study, a thorough description of how the pandemic spread in Greece is pre-

sented [12], by presenting a data analysis system with machine learning methods, which 

was developed to capture in real time, taking into account the availability of data, statis-

tics, correlations, charts, and comparative tables provided by official health agencies, plus 

any other relevant information related to the pandemic. The following Figures 8–13 show 

comparative diagrams with Greece’s neighboring countries (Bulgaria, Albania, Turkey, 

and North Macedonia), aiming at assisting the decision-making system and the corre-

sponding mechanisms of social distancing [7].  

 

Figure 8. Cumulative confirmed cases per million. 
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Figure 9. Cumulative confirmed deaths per million. 

 

Figure 10. Case fatality rate. 

 

Figure 11. Cumulative tests per 1000 people. 
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Figure 12. People fully vaccinated. 

 

Figure 13. Vaccine doses administered. 

In addition to a thorough analysis of the data provided, this system can calculate in 

real time the most important epidemiological indicators, which are presented below. 

3.2.1. Basic Reproduction Number (R0) 

In epidemiology, R0 can be thought of as the expected number of outbreaks at the 

beginning of an epidemic that results directly from an outbreak in a population where all 

individuals are susceptible to infection when there is no immunity in the population (nat-

ural or vaccinated) and no restrictive measures have begun to be implemented [27,28,32]. 

If, for example, R0 = 3, each case can infect another three people on average, and these, 

in turn, another three each, and so on. As a result, the number of cases gradually increases, 

and there is an extensive dispersion. If R0 < 1, then there is no risk of epidemic. This is 

because, in this case, one case can infect another person, and therefore, the transmission 

gradually declines. In general, the higher the value of R0, the more difficult it is to control 

the epidemic. For simple models, the percentage of the population to be immunized to 

prevent the prolonged spread of the infectious disease must be greater than 1 − 
�

��
. On the 

other hand, the percentage of the population that remains prone to infection during the 

endemic equilibrium is 
�

��
. 
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It is important to note that R0 is not a biological constant for a pathogen, as it is also 

influenced by other factors, such as environmental conditions and the behavior of the in-

fected population. In addition, R0 does not in itself assess how quickly an infection is 

spreading in the population but should be considered in a broader research horizon. In 

addition, the estimated values of R0 depend on the model used and the values of other 

parameters, which suggests that the estimated values only make sense in the given space-

time frame, and it is recommended not to use outdated values or to compare values based 

on different models [32]. 

3.2.2. Effective Reproduction Number (Rt) 

When restrictive measures are implemented to reduce transmission, such as social 

distancing, the interest shifts from R0 to Rt. This indicator expresses the number of people 

who can infect a case based on the restrictions imposed by the implementation of these 

restrictive measures [6,27,32]. 

This value may change over time as the gradual introduction of measures and the 

change in the behavior of the population (e.g., hand hygiene, contact restriction, etc.) make 

transmission increasingly difficult. The aim is to reduce it to Rt < 1, as this indicates that 

control of the epidemic has been achieved. 

Monitoring the course of Rt is extremely important, and its assessment should be up-

dated at regular intervals based on the data collected from epidemiological surveillance 

(diagnosed cases per day) with the application of an appropriate methodology. In this 

way, the course of the epidemic and the effectiveness of the measures in real time can be 

approximated, since there is inevitably a delay from the moment a person becomes in-

fected until he is diagnosed. Consequently, a possible increase in infections today could 

be reflected in the diagnosed cases of the coming days. 

It is important to note that even if the epidemic has been reduced and the Rt reduced 

to low levels, the stopping of the measures may lead to an increase of cases, which is a 

typical example we have seen in Greece. Therefore, in the phase of gradual phasing out 

of the measures, the monitoring of Rt is very important as it will allow decisions to be 

taken for corrective actions if Rt is approaching or exceeding the value of 1. 

The first step in modeling the Rt index is the input process of the recorded cases. A 

popular option for distributing these arrivals is to use the Poisson distribution, which is a 

distinct distribution function that expresses the probability of a given number of events 

occurring over a fixed period if these events occur by a known means rhythm and are 

independent of the time from the last case, as in the case under investigation. The Poisson 

distribution has the parameter λ that indicates the average percentage of infections per 

day, which are independent of the last time of occurrence of the event, which is inter-

preted as the probability of occurrence of new cases every day and is given by the follow-

ing function [26,28]: 

�(�|�) =
�����

�!
. (2) 

Given the Poisson distribution, we can construct the probability distribution of new 

cases for a set of λs. The distribution of λ on k is called the probability function. The rep-

resentation of the probability function by determining the number of new cases observed 

k is calculated from the probability function in a range of values λ. 

Under this relation, we can look for a new set L(Rt|kt), which parameterizes the rela-

tion between the Poisson distribution and the index Rt and is expressed by the following 

relation [33,34]: 

� = ������(����) (3) 

where γ is the inverse of the serial interval (about 4 days for COVID19) and kt − 1 is the 

number of new cases observed in time t − 1. 
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Since we know the exact number of cases per day, we can reformulate the probability 

function as Poisson, which is parameterized by specifying k and changing Rt and specifi-

cally as follows (Figure 14): 

�(��|�) =
�����

�!
. (4) 

 

Figure 14. Likelihood of Rt given k. 

For each day, there is an independent conjecture about Rt. To combine the actual in-

formation from the previous days with the current day, Bayes’ theorem is used to inform 

the hypotheses about the true value of Rt based on the number of new cases reported daily. 

By this logic, Bayes’ theorem is used as follows: 

�(��|��) =
�(��)∙�(��|��)

�(��)
. (5) 

Using the probability of the previous period P(Rt − 1|kt − 1), the previous equation is 

written as follows: 

�(��|��) ∝ �(�� − 1|�� − 1) ⋅ �(��|��). (6) 

With iterative iterations up to t = 0, the relation becomes: 

�(��|��) ∝ �(��) ⋅ ∏ �(��|��)�
��� . (7) 

With a uniform previous P(R0), this is reduced to: 

�(��|��) ∝ ∏ �(��|��)�
��� . (8) 

Taking the posterior probability, there is a significant change in the variance, as 

shown graphically in Figure 15 below. 

 

Figure 15. Posterior �(��|�). 
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When estimating the quantity, it is very important to give a sense of the error sur-

rounding the estimation. A popular way to do this is to use higher density intervals. This 

calculation is done with the highest density interval (HDI) algorithm of posterior distri-

butions. HDI can be used in the context of the uncertainty of classifying rear distributions 

as Credible Intervals (CI), where all points within this interval have a higher probability 

density than points outside the interval. With this parameterization, both the most prob-

able values for the Rt index and the HDI fluctuation over time can be plotted (Figure 16) 

[35].  

 

Figure 16. �� by day. 

This is a very useful representation, as it shows how the components change every 

day. In essence, this view gives the most probable value of Rt, while expressing the cer-

tainty expressed over time, where the interval of the highest density decreases as the daily 

recorded cases increase. Below is captured each day (row) of the rear distribution that is 

designed simultaneously. The rear distributions start without much confidence (wide) 

and gradually become more confident (narrower) for the true value of Rt (Figures 17–21). 

 

Figure 17. Greece—daily posterior for ��. 
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Figure 18. Albania—daily posterior for ��. 

 

Figure 19. Bulgaria—daily posterior for ��. 

 

Figure 20. Turkey—daily posterior for ��. 
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Figure 21. North Macedonia—daily posterior for ��. 

Since the results include uncertainty, it is desirable to show the most probable value 

of �� along with the higher density interval. In addition, taking into account the direct 

relationship that may exist in the spread of the virus with the opening of the borders and 

especially of the neighboring countries with land borders with Greece, this study includes 

similar studies for Albania, Bulgaria, Turkey, and North Macedonia, as shown in the Fig-

ure 22 below [11,28,32].  

 

Figure 22. Real-time Rt for Greece and surrounding countries. 
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Respectively in the following diagrams are presented detailed data on the variation 

of the Rt for the examined countries and the probabilities related to the mentioned index 

(Figure 23 and Figure 24) [6,11,33]. 

 

Figure 23. Most likely, high and low �� by country. 

 

Figure 24. Countries �� with under and not under control. 

The following Table 5 presents the index �� by country based on the statistical anal-

ysis for the most common values, as well as the respective Low and Max. 

Table 5. Most likely value of Rt along with its highest density interval. 

ID Country Most Likely Low Rt Max Rt 

1 Albania 0.83 0.65 1.61 

2 Bulgaria 0.89 0.61 1.16 

3 Greece 0.74 0.62 0.84 

4 North Macedonia 0.97 0.28 1.68 

5 Turkey 0.98 0.68 1.94 

3.2.3. Case Fatality Rate (CFR) 

The CFR is the ratio of deaths from the virus to the total number of people diagnosed 

with the disease over a given period of time. It is essentially an assessment of the risk of 

death from the disease, and mortality is usually expressed as a percentage and is an indi-

cator of the severity of the disease, while it is important to note that disease mortality is 

not stable. It varies between populations and varies over time, due to the interaction be-

tween the causative agent of the disease, the host, the environment, as well as the available 

treatment infrastructure and the quality of medical care resulting from the health system 

[27,32]. 

Reliable CFRs that can be used to assess deaths and evaluate any public health 

measures taken are calculated at the end of an epidemic, after resolving all cases related 
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to affected individuals who have either died or recovered. Figure 25 below shows the CFR 

index for Greece and its peripheral states. 

 

Figure 25. Case fatality rate by country. 

3.2.4. Mortality Rate (MR) 

Mortality or mortality rate is a measure of the number of deaths (either in general or 

due to a specific cause) in a given population, in terms of population size, per unit of time. 

As a rule, the unit of mortality is the number of deaths per 1000 people per year. The 

general form of the mortality calculation formula is 
�

�
× 10�, where d is the number of 

deaths from the cause being studied, p is the size of the population from which the deaths 

came, and 10� is a conversion factor that determines the size of the denominator. Specif-

ically, the MR index is calculated as follows [6,32]: 

������������� =
���������������

��������������
. (9) 

Figure 26 below shows the mortality rate index for the countries under study. 

 

Figure 26. Mortality rate by country. 

3.2.5. Recovery Rate (RR) or Discharge Rate (DR) 

In its simplest form, the RR is calculated by dividing the number of recoveries by the 

number of confirmed cases. Specifically, the RR index is calculated as follows [27,28,32,33]: 

������������ =
��������������

��������������
. (10) 

Figure 27 below shows the RR index for the countries under study. 
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Figure 27. Recovery rates by country. 

3.2.6. Infection Rate (IR)  

IR is the apparent rate of infection, which is an estimation of the rate of disease pro-

gression, based on proportional measures of the extent of infection at different times. 

Initially, a proportional measure of the extent of the infection is chosen as a measure 

of the extent of the disease. Then, measurements of the extent of the disease are taken over 

time, based on an appropriate mathematical model. The model is based on the assumption 

that the progression of the infection is limited by the amount of the population remaining 

to be infected, in which case the extent of the infection is limited, and otherwise, it would 

show exponential growth. A model of its calculation can be calculated in detail using the 

following formula [26,28,32]: 

�� =
1

�� − ��

log� �
��(1 − ��)

��(1 − ��)
� (11) 

where t1 is the time of the first measurement, t2 is the time of the second measurement, x1 

is the proportion of infection measured at time t1, and x2 is the proportion of infection 

measured at time t2. The values for the maximum infection rate of the study countries are 

presented in the Table 6 below [6,28,32,33]. 

Table 6. Maximum infection rates. 

ID Country Max IR 

1 Albania 1239.0 

2 Bulgaria 4828.0 

3 Greece 3316.0 

4 North Macedonia 1402.0 

5 Turkey 82,325.0 

3.2.7. Prevalence 

This is the proportion of a specific population that is found to be affected by the epi-

demic and essentially expresses the actual number of patients in the population. It comes 

from comparing the number of people found to have the disease with the total number of 

people studied and is usually expressed as a fraction, percentage, or the number of cases 

per 10,000 or 100,000 people. Point prevalence is the proportion of a population that has 

the disease at a given time, while period prevalence is the proportion of a population that 

has the disease at any given time in a given period (e.g., twelve-month prevalence). Life-

time prevalence is the proportion of a population that at some point in its life (up to the 

time of assessment) has been affected by the disease (Figure 28) [26,27,32].  
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Figure 28. Percentage of population affected by global pandemic. 

4. Prediction Model  

Making a decision is a complex process, which must take into account many different 

factors. As part of an ideal process, information should be gathered on all the possible 

factors involved, the weight and influence of each factor should be understood, an ex-

haustive list and meticulous study of all possible solutions should be made, and the ben-

efits and costs for each of them should be assessed. Such an ideal process yields the opti-

mal solution [6,14]. 

The ability to accurately predict the course of the pandemic is an extremely important 

but difficult task. Due to the limited knowledge of the new COVID-19 disease, the high 

uncertainty, and the complex socio-political factors that affect the spread of the new virus, 

the constant information and any scientifically substantiated methodology of analysis or 

prediction of the phenomenon is an important legacy. 

Focusing on the specifics of the spread of the disease, both epidemiologically and in 

terms of implementation of preventive and repressive measures, this paper conducts an 

exploratory study, which is based on the analysis of time-series data related to COVID-19 

disease and the prediction of the future development of the pandemic for Greece but also 

for the border countries. 

To accurately approach the problem, the goal is to find the mathematical relationship 

that can model the data on the spread of the disease and how the cases increase over time. 

Facebook’s Prophet, an innovative and highly reliable time series prediction model, was 

used as the forecasting methodology. 

Prophet is based on the general methodology of Generalized Additive Models 

(GAM) [36–38], which is a modeling method that uses non-parametric techniques offering 

significant advantages over conventional regression methods. That is, it offers an oppor-

tunity to overcome the statistical problems associated with the normality and linearity 

assumptions that are necessary for linear regression. 

The name Additive refers to the multivariate hypothesis of the underlying model, 

according to which the predictors have a cumulative structure. Such models are interest-

ing if they fit the data because they are easier to interpret. In general, a cumulative regres-

sion model uses cumulative adaptive methods for modeling. Thus, the researcher is not 

required to look for the correct transformation of each variable. 

More specifically, the estimation of the dependent variable Y in this case for a single 

independent variable can be given by the following equation [37,38]: 

� =  �(�)  +  ����� (12) 

where s(X) is an unspecified smoothing function, while error is the error that usually has 

zero mean value and constant dispersion. For example, the smoothing function can be 



Processes 2021, 9, 1267 23 of 35 
 

 

determined by the current mean or by the current median or by the local least squares 

method, the Kernel method, the Loess method, or the spline method. The term current 

means the serial calculation of a statistic applied to overlapping intervals of values of the 

independent variable, such as the running mean. In GAM modeling, the classical linear 

hypothesis is extended to include any probability distribution (Poisson, Gamma, Gauss-

ian, Binomial, and Inverse Gaussian) error by the exponent group. 

Similar to a GAM, with time as a regressor, Prophet can adapt to many linear and 

non-linear functions of time as components, wherein its simplest form, three basic ele-

ments are used: trend, seasonality, and holidays, which are combined in the following 

equation [39,40]: 

�(�)  =  �(�)  +  �(�)  +  ℎ(�)  +  �(�) (13) 

where:  

1. �(�), trend models non-periodic changes (i.e., growth over time) 

2. �(�), seasonality presents periodic changes (i.e., weekly, monthly, yearly) 

3. ℎ(�), ties in effects of holidays (on potentially irregular schedules ≥1 day(s)) 

4. �(�), covers idiosyncratic changes not accommodated by the model 

In general, the whole equation can be written as follows: 

�(�)  =  ���������_�����(�)  +  �����������(�)  +  ℎ������_�������(�)  +  �����(�). (14) 

In a more thorough analysis, the test variables can be structured as follows: 

1. Trend. The process includes two possible trend models for g(t), namely a Saturat-

ing Growth Model and a piecewise linear model as follows [39,40]: 

a. Saturating Growth Model. If the data suggests promise of saturation: 

�(�)  =
�

1 + ����−�(� − �)�
 (15) 

where � is the carrying capacity, � is the growth rate, and � is an offset parameter.  

It is possible to incorporate trend changes in the model, explicitly specifying the 

change points where the growth rate change is allowed. Assuming that there are S change 

points during periodic ��, � =  1, … , �, then Prophet defines a vector of �� rate change set-

tings in time ��, with � ∈ �� . So, at any time t, the rhythm � can be formulated as � +

∑ ���:����
. If in this relation, the vector �(�) ∈ {0,1}� is also determined, so that: 

��(�) = �
1, �� � ≥ ��

0, ��ℎ������
, (16) 

then, the rhythm at the moment t is � +  � (�) ᵀ�. When the rate � is adjusted, the offset 

parameter � must also be adjusted to connect the endpoints of the sections. The correct 

setting at the change point � is easily calculated as: 

�� = ��� − � − ∑ ����� � �1 −
��∑ �����

��∑ �����
�. (17) 

The final function is completed as follows: 

�(�)  =
�(�)

�������(� � � (�) ᵀ�)���(��� (�) ᵀ�)��
. (18) 

b. Linear Trend with Changepoints. This is a Piecewise Linear Model with a constant 

growth rate, which is calculated as follows: 

�(�)  = (� +  � (�)ᵀ�)� + (� + � (�) ᵀ�) (19) 

where � is the growth rate, � has the rate adjustments, � is the offset parameter, and to 

make the function continuous, �� is set to −����. 

c. Automatic Changepoint Selection. To identify changepoints, it is recommended to 

identify a large number of changepoints as follows: 

��~�������(0, �) (20) 
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where � directly controls the flexibility of the model in altering its rate. It should be noted 

that a sparse previous adjustment � has no effect on the primary growth rate �, so it pro-

gresses to 0, and the adjustment reduces the typical (no piecewise) logistic or linear 

growth. 

d. Trend Forecast Uncertainty.  

When the model deviates beyond the background to make a prediction, the trend 

�(�) will have a steady pace. Uncertainty in the forecast trend is assessed by extending 

the production model forward where there are � change points over a history of points 

�, each of which has a change of pace ��~�������(0, �) derived from the data, which is 

achieved by estimating the maximum probability of the rate scale parameter as follows: 

� =
�

�
∑ �����

��� . (21) 

Future sample change points are randomized in such a way that the mean frequency 

of change points matches the corresponding historical points as follows: 

∀�> �, �
�� = 0 �. �.

���

�

��~�������(0, �) �. �.
�

�

. (22) 

2. Seasonality. The seasonal variable s(t) provides adaptability to the model allowing 

periodic changes based on daily, weekly, and annual seasonality. Prophet relies on the 

Fourier series to provide a flexible model of periodic modeling, where approximately ar-

bitrarily smooth seasonal snapshots are associated with a typical Fourier series: 

�(�) = ∑ ��� cos �
����

�
� + �� sin �

����

�
���

��� . (23) 

3. Holidays and Events. The item h(t) reflects predictable events of the year, including 

those on irregular schedules, which, however, create serious bias in the model. Assuming 

that the holiday effects are independent, seasonality is calculated by the model creating a 

regression matrix: 

�(�) = [1(� ∈ ��), … ,1(� ∈ ��)] 
ℎ(�) = �(�)�. 

(24) 

5. Data and Results 

The data used to mathematically model and predict disease spread are freely availa-

ble for use at the COVID-19 data repository by the Center for Systems Science and Engi-

neering at Johns Hopkins University [29], and they include the daily measurements dur-

ing the period from 26 February 2020 to 31 May 2021 of the total recorded cases. 

With an initial approach to measurements related to the spread of COVID-19 disease, 

we find that this is a dataset that is collected over time and expresses the evolution of 

values over equal successive periods (daily measurements). In particular, it is a continu-

ous-time series, where the price trend is initially upward, while there are intervals that 

show signs of stability. 

Respectively, no fluctuations of the values that vary with time were found, as the 

time series does not show periodic fluctuations or changes that occur due to exogenous 

factors during specific periods. Although the test sample is not large enough, the above 

two tests confirm that the time variation of COVID-19 disease is recorded with data that 

are part of a static time series. 

With a more thorough analysis, we look on the one hand for those characteristics that 

focus on estimating the system that produces the time series and on the other hand at 

finding the corresponding characteristics that contribute to understanding the historical 

behavior of the disease, thus allowing the prediction of its future prices. 

In attempting to predict the spread of the disease in Greece, the Prophet algorithm 

was applied [39]. Specifically, considering all the pairs ���, �(��)�, … , ���, �(��)� of arith-

metic figures of the spread of the disease in Greece, the proposed forecasting system aims 

to calculate an optimal approach to the spread of the pandemic �� ∈ � with �� ≠ �� , � ∈
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{1, … , �}  so that the estimated ��(��) is as close as possible to the real �(��). The main 

objective of the process is to calculate the value ��(��) for �� ≠ ��, � ∈ {1, … , �}, for gen-

eralization purposes, i.e., the implementation of a realistic model that will not be com-

pletely guided by the historical data, which are its reference point. 

Given the fact that the time series under consideration has a constant rate of change, 

the Prophet algorithm was used for the daily forecast from 1 June to 1 September 2021, 

using as training data the daily cases from 26 February 2020 to 28 February 2020 (369 days) 

and as a set of testing and confirmation of the model the period from 1 March 2021 to 31 

May 2021 (92 days). 

The following metrics were used to confirm the result: 

1. Coefficient of Determination—�� [31]. To express the correlation of two random 

variables, �� is used, which is expressed as a percentage (%). It gives the percentage of 

variability of Y values calculated from X and vice versa and is a useful way to accurately 

determine the correlation of two random variables. �� is defined as follows: 

�� = 1 −
∑ ��� − ����

��
���

∑ (�� − ���)��
���

 (25) 

where  ��  represents the observed values of the dependent variable, ���  represents the es-

timated values of the dependent variable, �� represents the arithmetic mean of the ob-

served values, and n represents the number of observations. �� expresses the percentage 

of variability of the dependent variable explained by the existence of independent varia-

bles in the model and takes values in the interval [0, 1], with optimal performance when 

its value approaches the unit, which is interpreted that then, the regression model adapts 

optimally to the data 

2. Root Mean Squared Error—RMSE [31]. The RMSE is directly related to the Stand-

ard Error of the Regression (SER) and calculates the average error of the predicted values 

about the actual values. It is calculated based on the following formula: 

���� = �
1

�
���(��) − ���

�
�

���

 (26) 

where �(��) is the value predicted by the program i for a simple hypothesis j and �� is the 

target value for the simple hypothesis j. The success of a regression model requires ex-

tremely small values for the root of the mean square error, while the best case, which 

implies an absolute correlation between actual and predicted values and therefore the ab-

solute success of the model, is achieved when �(��) − �� = 0. 

Mean Absolute Error—MAE. The MAE is the measure of quantification of the error 

between the estimate or forecast to the observed values. It is calculated by the formula:  

��� =
1

�
�|�� − ��| =

1

�
�|��|

�

���

�

���

 (27) 

where �� is the estimated value and ��  is the true. The average of the absolute value of 

the quotient of these values is defined as the absolute error of their relation |��| = |�� − ��|.  

3. Mean Absolute Percentage Error—MAPE [31]. The average percentage absolute 

difference provides an objective measure of the forecast error as a percentage of demand 

(e.g., the forecast error is on average 10% of actual demand), without depending on the 

order of magnitude of demand. It is calculated by the formula: 

���� = 100 ∑
�
�������

��
�

�

�
��� . (28) 

The results are presented in the Table 7 below. 

Table 7. Performance metrics of the Prophet method. 

Prophet 
R2 RMSE MAE MAPE 

99,998 2.259 1.357 0.179 
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Diagrams of the methodology that show how the algorithm works and respectively 

how the problem is modeled are presented in the following Figures 29–36. 

 

Figure 29. Prophet forecast. 

The diagram of the process including the trend changes is presented in the following 

image. 

 

Figure 30. Prophet forecast with trend changes. 
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Figure 31. Prophet forecast effects. 

 

Figure 32. Prophet forecast yearly seasonality. 
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Figure 33. Prophet forecast quarterly seasonality. 

 

Figure 34. Prophet forecast monthly seasonality. 
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Figure 35. Prophet forecast weekly seasonality. 

 

Figure 36. Prophet forecast importance seasonality. 

Finally, the total table of detailed forecasts of the methodology from 1 June 2021 to 1 

September 2021 is presented in the Table 8 below. 

Table 8. Prophet forecast values. 

Date 
Forecasted Trend 

Value High Low Yearly Quarterly Monthly Weekly 

1/6/2021 404,185 405,914 405,495 0.15301 0.03672 0.00013 −0.00131 

2/6/2021 405,563 406,259 406,069 0.15132 0.03662 −0.00017 0.0003 

3/6/2021 406,241 408,937 407,573 0.14958 0.03626 −0.00057 0.00174 

4/6/2021 407,386 409,059 407,990 0.14776 0.03572 −0.00083 0.0022 
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Date 
Forecasted Trend 

Value High Low Yearly Quarterly Monthly Weekly 

5/6/2021 408,414 410,570 408,029 0.14586 0.03505 −0.00073 0.00216 

6/6/2021 409,442 411,155 409,148 0.14387 0.0343 −0.00029 −0.0013 

7/6/2021 410,470 412,972 410,067 0.14178 0.03347 0.00031 −0.00379 

8/6/2021 411,498 413,968 411,286 0.13959 0.03254 0.00076 −0.00131 

9/6/2021 412,526 415,169 412,305 0.13729 0.03145 0.00093 0.0003 

10/6/2021 413,554 416,370 413,124 0.1349 0.03016 0.0009 0.00174 

11/6/2021 414,582 417,570 413,943 0.13241 0.02866 0.00082 0.0022 

12/6/2021 415,610 418,771 414,762 0.12982 0.02697 0.00071 0.00216 

13/6/2021 416,638 419,972 415,581 0.12714 0.02517 0.00052 −0.0013 

14/6/2021 417,666 421,173 416,400 0.12438 0.02337 0.00029 −0.00379 

15/6/2021 418,694 422,374 417,219 0.12155 0.0217 0.00021 −0.00131 

16/6/2021 419,722 423,575 418,038 0.11864 0.02028 0.00037 0.0003 

17/6/2021 420,750 424,776 418,857 0.11566 0.01915 0.00061 0.00174 

18/6/2021 421,778 425,977 419,676 0.11262 0.0183 0.0006 0.0022 

19/6/2021 422,806 427,178 420,495 0.10951 0.01763 0.00024 0.00216 

20/6/2021 423,834 428,379 421,314 0.10634 0.017 −0.00018 −0.0013 

21/6/2021 424,862 429,580 422,133 0.10309 0.01624 −0.00024 −0.00379 

22/6/2021 425,890 430,781 422,952 0.09975 0.01521 0.00012 −0.00131 

23/6/2021 426,918 431,982 423,771 0.09632 0.01383 0.00046 0.0003 

24/6/2021 427,946 433,183 424,591 0.09277 0.01213 0.00029 0.00174 

25/6/2021 428,974 434,384 425,410 0.08909 0.01021 −0.00046 0.0022 

26/6/2021 430,002 435,584 426,229 0.08525 0.00828 −0.00129 0.00216 

27/6/2021 431,030 436,785 427,048 0.08122 0.00652 −0.00163 −0.0013 

28/6/2021 432,058 437,986 427,867 0.07697 0.00513 −0.00131 −0.00379 

29/6/2021 433,086 439,187 428,686 0.07247 0.00418 −0.00062 −0.00131 

30/6/2021 434,114 440,388 429,505 0.06767 0.00367 −0.00003 0.0003 

1/7/2021 435,142 441,589 430,324 0.06255 0.00345 0.00017 0.00174 

2/7/2021 436,170 442,790 431,143 0.05707 0.00328 −0.00001 0.0022 

3/7/2021 437,198 443,991 431,962 0.05118 0.00291 −0.0004 0.00216 

4/7/2021 438,226 445,192 432,781 0.04485 0.00208 −0.00075 −0.0013 

5/7/2021 439,254 446,393 433,600 0.03806 0.00062 −0.00082 −0.00379 

6/7/2021 440,282 447,594 434,419 0.03076 −0.00152 −0.00052 −0.00131 

7/7/2021 441,310 448,795 435,238 0.02293 −0.00428 0.00005 0.0003 

8/7/2021 442,338 449,996 436,057 0.01455 −0.00747 0.0006 0.00174 

9/7/2021 443,366 451,197 436,876 0.00562 −0.01084 0.00089 0.0022 

10/7/2021 444,394 452,397 437,695 −0.00388 −0.01417 0.00093 0.00216 

11/7/2021 445,422 453,598 438,514 −0.01395 −0.01725 0.00086 −0.0013 

12/7/2021 446,450 454,799 439,333 −0.02458 −0.01999 0.00077 −0.00379 

13/7/2021 447,478 456,000 440,152 −0.03574 −0.0224 0.00062 −0.00131 

14/7/2021 448,506 457,201 440,971 −0.04741 −0.02457 0.00039 0.0003 

15/7/2021 449,534 458,402 441,790 −0.05955 −0.02664 0.00022 0.00174 

16/7/2021 450,562 459,603 442,609 −0.07211 −0.02873 0.00027 0.0022 

17/7/2021 451,590 460,804 443,428 −0.08505 −0.03094 0.00051 0.00216 

18/7/2021 452,618 462,005 444,247 −0.09829 −0.03325 0.00065 −0.0013 

19/7/2021 453,646 463,206 445,066 −0.11176 −0.03558 0.00043 −0.00379 

20/7/2021 454,674 464,407 445,885 −0.12538 −0.03778 −0.00002 −0.00131 

21/7/2021 455,702 465,608 446,704 −0.13907 −0.03968 −0.00027 0.0003 

22/7/2021 456,730 466,809 447,523 −0.15275 −0.04115 −0.00007 0.00174 

23/7/2021 457,758 468,010 448,342 −0.16631 −0.04211 0.00035 0.0022 

24/7/2021 458,786 469,211 449,161 −0.17967 −0.04256 0.00044 0.00216 

25/7/2021 459,814 470,411 449,980 −0.19274 −0.04263 −0.00008 −0.0013 

26/7/2021 460,842 471,612 450,799 −0.20541 −0.04247 −0.00095 −0.00379 

27/7/2021 461,870 472,813 451,618 −0.21761 −0.04226 −0.00157 −0.00131 

28/7/2021 462,898 474,014 452,437 −0.22924 −0.04212 −0.00152 0.0003 

29/7/2021 463,926 475,215 453,256 −0.24023 −0.04212 −0.00094 0.00174 

30/7/2021 464,954 476,416 454,075 −0.25052 −0.0422 −0.00026 0.0022 

31/7/2021 465,982 477,617 454,894 −0.26003 −0.04222 0.00014 0.00216 

1/8/2021 467,010 478,818 455,713 −0.26872 −0.04198 0.00011 −0.0013 

2/8/2021 468,039 480,019 456,532 −0.27655 −0.04124 −0.00022 −0.00379 

3/8/2021 469,067 481,220 457,351 −0.2835 −0.03981 −0.00062 −0.00131 

4/8/2021 470,095 482,421 458,171 −0.28955 −0.03757 −0.00084 0.0003 

5/8/2021 471,123 483,622 458,990 −0.29469 −0.03452 −0.00069 0.00174 
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Date 
Forecasted Trend 

Value High Low Yearly Quarterly Monthly Weekly 

6/8/2021 472,151 484,823 459,809 −0.29894 −0.03074 −0.00021 0.0022 

7/8/2021 473,179 486,024 460,628 −0.30233 −0.0264 0.00038 0.00216 

8/8/2021 474,207 487,224 461,447 −0.30489 −0.02173 0.0008 −0.0013 

9/8/2021 475,235 488,425 462,266 −0.30667 −0.01694 0.00094 −0.00379 

10/8/2021 476,263 489,626 463,085 −0.30773 −0.01222 0.00089 −0.00131 

11/8/2021 477,291 490,827 463,904 −0.30814 −0.00768 0.00081 0.0003 

12/8/2021 478,319 492,028 464,723 −0.30798 −0.0034 0.00069 0.00174 

13/8/2021 479,347 493,229 465,542 −0.30734 0.00061 0.00049 0.0022 

14/8/2021 480,375 494,430 466,361 −0.30629 0.00437 0.00027 0.00216 

15/8/2021 481,403 495,631 467,180 −0.30494 0.00792 0.00021 −0.0013 

16/8/2021 482,431 496,832 467,999 −0.30337 0.01126 0.0004 −0.00379 

17/8/2021 483,459 498,033 468,818 −0.30169 0.0144 0.00063 −0.00131 

18/8/2021 484,487 499,234 469,637 −0.29997 0.01731 0.00057 0.0003 

19/8/2021 485,515 500,435 470,456 −0.29831 0.01997 0.00018 0.00174 

20/8/2021 486,543 501,636 471,275 −0.29679 0.02236 −0.00021 0.0022 

21/8/2021 487,571 502,837 472,094 −0.29549 0.02449 −0.00021 0.00216 

22/8/2021 488,599 504,037 472,913 −0.29445 0.02639 0.00017 −0.0013 

23/8/2021 489,627 505,238 473,732 −0.29374 0.0281 0.00047 −0.00379 

24/8/2021 490,655 506,439 474,551 −0.2934 0.02967 0.00022 −0.00131 

25/8/2021 491,683 507,640 475,370 −0.29346 0.03115 −0.00057 0.0003 

26/8/2021 492,711 508,841 476,189 −0.29394 0.03253 −0.00137 0.00174 

27/8/2021 493,739 510,042 477,008 −0.29484 0.0338 −0.00163 0.0022 

28/8/2021 494,767 511,243 477,827 −0.29616 0.03491 −0.00124 0.00216 

29/8/2021 495,795 512,444 478,646 −0.29788 0.03579 −0.00054 −0.0013 

30/8/2021 496,823 513,645 479,465 −0.29996 0.0364 0.00002 −0.00379 

31/8/2021 497,851 514,846 480,284 −0.30237 0.03669 0.00017 −0.00131 

6. Discussion and Conclusions 

Focusing on the specifics of the ongoing and deadly pandemic, the spread of the dis-

ease both epidemiologically and at the level of implementation of preventive and repres-

sive measures is an extremely urgent and important process aimed at revealing the 

knowledge hidden in the epidemiological data and deciphering indicators that can model 

the spatio-temporal evolution and spread of the disease. 

In this paper, an exploratory study was conducted for the near-real-time analysis of 

COVID-19 disease data, as well as an intelligent model for predicting disease progression, 

to assist in deciding on predictive or suppressive measures of social distancing or taking 

appropriate measures related to the management of the health system. The study was 

conducted based on an automated system of data collection and analysis, while the me-

dium-term forecast was based on advanced machine learning methods. 

The ability to process data in real time, using the tools of intelligent analysis, visual-

ization, and analytical processing, is the basis for methods of dealing with the pandemic 

and in particular for the effective detection and tracking of active cases. Respectively, the 

development and use of spatio-temporal forecasts adapted to real data and needs allow 

the timely methodization of issues related to public health. 

Due to the extremely urgent issue, civil protection mechanisms need to incorporate 

in their technological arsenal systems that are capable of fast to instantaneous data pro-

cessing, which involve high complexity and possibly great heterogeneity. 

Specializing and attempting an evaluation of the results of the forecasting method, it 

is easy to conclude that the proposed method is a particularly valuable decision support 

system, as it creates a robust and reliable system of intelligent inference. Reliability is in-

dicative of how the method handles the available data, its mathematical background, and 

the completeness of the handling of specialized cases that may create noise in the model. 

In addition, one of the key advantages that need attention is the high reliability that results 

from the very low error values that resulted from the tests and the forthcoming predic-

tions that were made. 
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It is also important to note that the proposed methodology models the spread of the 

disease in the timeliest way, taking into account the actual variation of the recorded cases, 

which adds complexity to the methodology but also realism. The tests obtained should be 

considered statistically and semantically significant compared to any other methodology, 

as they are an indicator of how to study the pandemic at a broader level.  

In addition, the proposed model can be used in other scenarios where data are less 

accurate because Prophet can easily detect the trend of long-term growth with an annual 

cycle. In addition, the prediction result includes the confidence interval derived from the 

complete posterior distribution, that is, Prophet provides a data-driven risk estimate. 

Changepoints (inflection points where the trend changes significantly) can be identified 

automatically or defined manually to take more control of forecasting, and the outliers 

can be handled well by the model itself without any requirement for imputation. In case 

the forecast is going beyond a certain limit based on case study understanding, it can be 

fixed by setting up a forecasting cap and modeling using logarithmic growth instead of 

linear growth. In this study, the time-series data have a natural temporal ordering without 

taking into account the pandemic waves. The changepoints (the waves of the pandemic) 

can be identified automatically by Prophet to take more control of forecasting. 

Finally, the use of the Prophet algorithm is a very serious proposal for managing 

chronological data of high complexity and uncertainty such as the one under considera-

tion, which also shows variability, which can be attributed to several unspecified param-

eters. This technique, as proved mathematically, offers high accuracy predictions and sta-

bility, as the overall behavior of the method minimizes noise and at the same time reduces 

the overall risk of a particularly poor choice that can result from poor sampling or arbi-

trariness in the parameterization of hyperparameters. The above view is also aided by the 

fact that the spread of the prediction error is minimized, which clearly states the reliability 

of the system and the ability to generalize to new data.  

Summarizing, we have frequently used Prophet as a replacement for the forecast 

package in many settings because of two main advantages: 

1. Prophet makes it much more straightforward to create a reasonable, accurate fore-

cast. The forecast package includes many different forecasting techniques (ARIMA, 

exponential smoothing, etc.), each with its own strengths, weaknesses, and tuning 

parameters. We have found that choosing the wrong model or parameters can often 

yield poor results, and it is unlikely that even experienced analysts can choose the 

correct model and parameters efficiently given this array of choices. 

2. Prophet forecasts are customizable in ways that are intuitive to non-experts. There 

are smoothing parameters for seasonality that allow us to adjust how close to fit his-

torical cycles, as well as smoothing parameters for trends that allow us to adjust how 

aggressively to follow historical trend changes. For growth curves, we can manually 

specify “capacities” or the upper limit of the growth curve, allowing us to inject our 

own prior information about how the forecast will grow (or decline). Finally, we can 

specify irregular holidays to model such as the dates of the local holidays, etc. 

However, an important issue at the moment is the fact that in general, modeling a 

problem with methods such as the proposed one requires a lot of historical data, which is 

not yet available. However, even if a system based solely on historical data was available, 

it could only contribute to one aspect of the decisions. A more detailed methodology 

would be useful in linking technical forecasts to other decision-making factors and study 

processes that are more complex and potentially more complete. At the same time, no 

predictions are certain, as the future is seldom repeated in the same way as the past. In 

addition, it should be noted that forecasts are affected by data reliability and the variables 

that make up the problem over time. Psychological factors also play an important role in 

the way people perceive and react to the risk of illness and the fear that it may affect them 

personally. 
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Therefore, it is important to keep in mind that these models do not simulate nature 

itself, which often surprises us, but mathematically represent our perceptions of it and 

help conditionally explain the epidemiological data, reducing them to a small number of 

variable factors. In this sense, it is very important to have scientific methodologies and 

appropriate technical tools or modeling tools such as the proposed one, which can realis-

tically explain similar phenomena and offer valuable assistance in making optimal deci-

sions. It is also important to note that due to the limited knowledge of the new COVID-19 

disease, the high level of uncertainty, and the complex socio-political factors influencing 

the spread of the new virus, no scientifically substantiated methodology for analyzing or 

predicting the phenomenon is an important legacy. Nevertheless, the ability to accurately 

predict the course of the pandemic is an extremely difficult and complex task. 

Proposals for the development and future improvements of this methodology should 

focus on further optimizing the parameters of the forecasting system used to achieve an 

even more efficient, accurate, and realistic process of approaching the spread of the dis-

ease. It would also be important to study the extension of this system by implementing a 

broader spatio-temporal study at the pan-European or world level to verify the generali-

zation of the method in more complex environments. Finally, an additional element that 

could be studied in the direction of future expansion concerns the implementation of a 

hybrid learning system based on the proposed architecture, which with methods of rede-

fining its parameters automatically and in real time can fully automate the forecasting 

process. 
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