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Abstract: Advanced machine learning algorithms have the potential to be successfully applied to
many areas of system modelling. In the present study, the capability of ten machine learning algo-
rithms to predict the structural damage of an 8-storey reinforced concrete frame building subjected to
single and successive ground motions is examined. From this point of view, the initial damage state
of the structural system, as well as 16 well-known ground motion intensity measures, are adopted
as the features of the machine-learning algorithms that aim to predict the structural damage after
each seismic event. The structural analyses are performed considering both real and artificial ground
motion sequences, while the structural damage is expressed in terms of two overall damage indices.
The comparative study results in the most efficient damage index, as well as the most promising ma-
chine learning algorithm in predicting the structural response of a reinforced concrete building under
single or multiple seismic events. Finally, the configured methodology is deployed in a user-friendly
web application.

Keywords: seismic sequence; machine learning algorithms; repeated earthquakes; structural damage
prediction; intensity measures; damage accumulation; machine learning; artificial neural network

1. Introduction

During earthquake events, it is common to observe aftershocks following a main-
shock. Moderate-to-strong aftershocks may lead to additional structural damage and
even the collapse of buildings that sustained damage from the mainshock. Thus, the
seismic performance of structural systems subjected to successive ground motions has
received increasing attention in recent years. The recent disaster that occurred on March
2021 in the Tyrnavos–Elassona region, Thessaly of Greece due to a pair of compatible
magnitude (Mw = 6.3, Mw = 6.1) [1] shallow earthquakes with more than 1800 damaged or
non-serviceable buildings demonstrated the necessity of predicting the damage potential
caused by mainshock–aftershock sequences in order to assess the seismic risk. It should
be noted that the final, accumulated damage includes the initial damage caused by the
major earthquake and the incremental damage caused by the following seismic sequence.
The effect of successive seismic events on the structural performance has been thoroughly
examined by many researchers [2–6]. Specifically, Amadio et al. [7] studied the influence
of repeated shocks on the response of nonlinear single degree of freedom (SDOF) systems
using different hysteretic models. Hatzigeorgiou and Beskos [8] conducted an exhausting
parametric study on SDOF systems and proposed an empirical relation to calculate the
inelastic displacement ratio under repeated earthquakes. Hatzigeorgiou and Liolios [9]
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examined the nonlinear behaviour of reinforced concrete (RC) frames subjected to mul-
tiple shocks considering a set of eight frames that varied both at height regularity and
dimensioning practice. Hatzivassiliou and Hatzigeorgiou [10] studied the accumulation of
damage and ductility demands due to seismic sequence on three dimensional RC structures.
Hosseinpour and Abdelnaby [11] studied the impact of different aspects, such as earth-
quake direction, aftershock polarity and the influence of the vertical component, on the
nonlinear response of RC frames under successive earthquakes. Additionally, more recently,
Kavvadias et al. [12] and Zhou et al. [13] investigated the correlation between aftershock-
related intensity measures (IMs) and final structural damage indices. Additionally, multiple
researchers [14–17] have evaluated the fragility of buildings and infrastructures against
seismic sequences, in the past.

In recent years advanced machine learning algorithms (MLAs), such as artificial neu-
ral networks (ANNs), have been successfully applied to many areas of system modelling.
Their success is based on the thorough processing of data that captures the behaviour of a
system. By detecting patterns in the collected data, valuable information can be extracted
and predictions can be made that automate the decision-making process. That fact makes
machine learning (ML) an advanced tool in modern engineering modelling. From this
point of view, the utilization of MLAs in earthquake engineering has been increasing year
by year, examining mainly the capability of such models in predicting seismic structural
damage [18–20]. Among others, De Latour and Omenzetter [21] investigated the efficiency
of ANNs on the prediction of seismic damage on numerous RC frames, while Alvani-
topoulos et al. [22] also examined regular RC structures and, by incorporating fuzzy layers
in ANN configuration (architecture). Subsequently, Morfidis and Kostinakis [23] used
feature selection methods in a dataset of 3-dimensional RC buildings to identify the more
damage-correlated set of seismic IMs. More recently, the same authors [24] examined
the effectiveness of ANNs on the damage prediction of non-regular at-height structures.
Applications of recurrent neural networks (RNNs) on earthquake engineering are presented
by González et al. [25] and Mangalathu and Burton [26]. Furthermore, Zhang et al. [27]
developed a long-short term memory (LSTM) network to predict structural responses.
For the same purpose, convolutional neural networks (CNNs) have been applied by Li
et al. [28] and Oh et al. [29]. Additionally, Thaler at al. [30] proposed a combination of
Monte Carlo simulation and ANNs to predict the post-seismic structural statistics of an
elasto-plastic frame structure. The application of different fuzzy and crisp ML techniques
in localization and predicting the amount of damage to an RC frame under individual
earthquakes has been evaluated by Vrochidou et al. [31]. The common characteristic of the
above studies is that the initial structural damage state of the structure is omitted. However,
Lazaridis et al. [32] used an ensemble neural network to predict the structural damage after
a sequence of two seismic shocks employed as input features, including both damage after
the first earthquake and the IMs of the second one.

In the present study, the reliability of MLAs in predicting the seismic structural damage
of a certain 8-storey RC-frame structure subjected to both single and successive seismic
events, consisting of double seismic shocks, is examined. Due to the fact that the effect of
each seismic excitation on the structural response is examined individually, to manipulate
the data in total, the initial structural damage is taken into account even if the structure is
intact, i.e., in case of a single seismic event (mainshock). The initial damage, as well as the
ground motion intensity, which is expressed in terms of 16 well-known IMs, are considered
as the features of the ML problem, while the post-earthquake damage is considered the
target. By this, the ML model could be applied even in case of multiple aftershock events
given the characteristics of the complete seismic activity.
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2. Primitive Data
2.1. Ground Motion Records

For the purpose of this study, both artificial and natural seismic sequences are con-
sidered. By this, a sufficient set of data is ensured. Randomized seismic sequences are
synthesized using a suite of 318 individual natural acceleration records to generate artificial
seismic sequences accelerograms, taking into account the differences of the ground motion
features [33]. The descriptive statistics of the aforementioned excitation suite are listed in
Table A1 (Appendix A). In order to construct the artificial seismic sequences, composed
of two successive seismic records, every record of the aforementioned suite is combined
randomly in pairs with another six records record of the same suite. Thus, six individual
seismic sequences comprised of the same main-shock are generated. As a result, 1908 pairs
of first and second shock are constructed. These seismic sequences and the corresponding
structural responses are used as the major part of the overall dataset for the specific ML
problem. As a minor part of the overall dataset, 111 natural pairs of sequential shock
records are considered. The assumed natural sequences are occurred from 1972 to 2020,
while the time gap between the occurrence of the successive shocks is smaller than fifteen
months. It has to be mentioned that each mainshock-aftershock record is obtained by the
same station. As a result, the natural set consisted of 41 real seismic sequences recorded
by 63 stations. Both sequential and individual records are selected from the ESM [34]
and PEER NGA West [35] databases. The natural seismic sequences are listed in Table A2
(Appendix A). Both in the case of artificial and natural seismic sequences, an intermediate
zero-ceasing time gap of 20 s is added between the two successive records (Figure 1).
By this, the overlap between the building oscillations is eliminated. It should be noted
that nonlinear time history analyses (NLTHAs) are performed not only using the seismic
sequences but also using the first shock of each sequence, as the scope of this study is to
examine the seismic structural response not only under seismic sequences but also under
single ground motion records.
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Figure 1. Representative ground motion signal of successive seismic events.

2.2. Reinforced Concrete Structure

Existing buildings designed and constructed without earthquake provisions comprise
the majority of structures both in Greece and worldwide. That fact raises particular concern
about their response to a potential earthquake. In this view, an 8-storey planar regular
RC frame (Figure 2) designed only for gravity loads by Hatzigeorgiou and Liolios [9] is
examined in the present study. The finite element simulation of the frame is conducted in
IDARC 2D [36] using the spread plasticity concept and the three-parameter Park hysteretic
model [37]. Every floor is considered to have only one horizontal degree of freedom to take
into account the huge plane stiffness of RC slabs as a rigid diaphragm. Sparsely placed
stirrups with poor anchor details are assumed in order to be in accordance with obsolete
design codes. Thus, a nonlinear deformation-stress model for concrete without confinement
is adopted. As a result, the concrete with a mean compressive strength equal to 28 MPa is
modeled by a curve defined by the initial modulus of elasticity (E0 = 31.42 GPa), the strain
at the maximum stress (εc0 = 2h), the ultimate strain in compression (εcu = 3.5h), stress at
tension cracking σt = 0.0022 GPa, and slope of the post-peak falling branch (Efb = –6.2 GPa).
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Furthermore, for steel grade S500s a bilinear curve with hardening was employed. The
yield and ultimate strengths were equal to 550 MPa and 660 MPa, respectively, and the
corresponding strains equal to 2.75h and 45h, according to Eurocode-2 [38] provisions.
The initial elastic fundamental period of the structure is equal to 1.27 s. The generation of
IDARC 2D input files and the post-processing of the results are performed through GNU
Octave [39,40] code.

Figure 2. The examined Reinforced Concrete frame.

3. Features, Targets and Dataset Generation
3.1. Ground Motion IMs

The basic parameters adopted in order to perform a seismic structural damage pre-
diction analysis are the characteristics of the ground motion. By this, the identification
of the seismic parameters that affect the dynamic response is of utmost importance. For
this purpose, a set of 16 ground motion IMs is calculated. Amplitude parameters such
as the maximum absolute values of ground accelerations (ag(t)), velocities (vg(t)), and
displacement (dg(t)) signals, which were referenced as PGA, PGV, and PGD [41], respec-
tively, are examined. Additionally, the Arias intensity (IA) [42] and the cumulative absolute
velocity (CAV) [43], which are calculated by the integral of the accelerogram time history,
are considered.
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An inherent feature of signals is the frequency content, which varies dynamically
over time in the case of ground motion records. However, it can be quantified using the
equivalent frequency PGA/PGV [41] as if it was a sinusoid signal. Another quantity that
is related to the frequency content of a ground motion is the potential destructiveness
measure after Araya and Saragoni (IAS) [44], determined by the zero-crossing number of
the acceleration signal (uo) per unit of time.

Various definitions have been given in the past for the strong motion duration of
a seismic excitation in order to identify the time interval of the signal in which the vast
amount of its total intensity is released. In this work, the strong motion durations defined
by Trifunac and Brady (SMDTB) [45] and by Reinoso, Ordaz and Guerrero (SMDROG) [46]
are assumed. Both of these are based on the time evolution of Arias intensity according
to the Husid diagram [47]. Additionally, the bracketed duration as described by Bolt
(SMDBolt) [48], which is defined by the first and last exceedance of 5 percent of g, is
employed.

Combining the above parameters results in more complex measures such as power P90 [41],
arms [41], characteristic intensity (Ic) [41], the potential damage measure according to Fajfar,
Vidic and Fischinger (IFVF) [49] and the IM after Riddell and Garcia (IRG) [50].

It has to be mentioned that seismic parameters that depend on the fundamental
structural period, such as individual spectral values, were not calculated. These parameters
could not be used due to the elongation of the elastic period during the first seismic event.
Instead, the Housner intensity [51] (SIH) which accumulates pseudo-spectral velocities
(PSV) to a constant range of possible eigen periods and demonstrates high correlation
with the structural damage [23,52,53] is employed. All of the mathematical expressions
of the examined IMs are summarised in Table 1. The elastic spectra are defined using
OpenSeismoMatlab [54], while values of the IMs are computed through Python [55] code.

Table 1. Mathematical expressions of IMs.

Num Name Expression Ref. Num Name Expression Ref.

1 PGA max|ag(t)| [41] 9 SMDROG t(Hd = 97.5%) – t(Hd = 2.5%) [46]
2 PGV max|vg(t)| [41] 10 SMDBolt t

ag>0.05g
last – t

ag>0.05g
1st [48]

3 PGD max|dg(t)| [41] 11 P90
IA(Hd=95%)–IA(Hd=5%)

SMDTB
[41]

4 IA
π
2g

∫ tend
0 a2

g(t)dt [42] 12 arms

√
1

SMDTB

∫ t95%
t5%

ag(t)2dt [41]

5 CAV
∫ tend

o |ag(t)|dt [41] 13 Ic a1.5
rms · SMD0.5

TB [41]
6 PGA/PGV PGA

PGV [41] 14 IFVF PGV · SMD0.25
TB [49]

7 IAS
IA
u2

o
[44] 15 IRG PGD · SMD

1
3
TB [50]

8 SMDTB t(Hd = 95%) – t(Hd = 5%) [45] 16 SIH
∫ 2.5

0.1 PSV(T, ξ = 0.05)dT [51]

3.2. Damage Indicators

For the ML modeling of the present study, the structural damage is assumed both as
an input feature to take into account the initial damage due to the former seismic shock, as
well as a target feature in order to describe the damage accumulation after the examined
ground motion. The structural response is assessed in terms of two overall seismic damage
indices, namely, the overall damage index after Park and Ang (DIG,PA) [36] and the damage
index after DiPasquale and Çakmak (DIDC) [56].

The originally introduced damage index after Park and Ang (DIPA) [57] results from
summation of the maximum flexural responses and the hysteretic energy consumption
of the plastic hinges and is calculated by Equation (1) modified by Kunnath et al. [58]
(Equation (2)). The overall damage index (DIG,PA) [36] is calculated as a weighted average
of the sub-factors, weighted by the percentages of the total energy consumed by each
member of the construction, according to Equation (3). The value of DIG,PA as close to
zero as possible implies a complete damage-free structural system with an elastic response.
However, a structure is characterized as near to collapse when DIG,PA takes values over the
unit.
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DIPA =
δm

δu
+

β

Qyδu

∫
dE (1)

DIPA, component =
θm – θr

θu – θr
+

β

θuMy
Eh (2)

DIG,PA =
∑ EiDIPA,component

∑ Ei
(3)

where δm is the maximum element displacement response, δu is the ultimate element
displacement, β is the model constant parameter for strength deterioration proposed by
Park et al. [59],

∫
dE is the cumulative hysteretic energy consumed by the element during

its response, Qy is the yield strength of the element, θm is the maximum element rotation
during the time history response, θu is the ultimate capacity of the element and θr is the
recoverable element rotation during unloading.

During high-intensity seismic events, it is known that the cross-sections in plastic
hinge areas of a building can be severely cracked or even present steel yielding, resulting in
structural stiffness degradation. Therefore, an increase in the building’s flexibility, and as
such its fundamental period, is expected [60]. The DIDC is based on the above-mentioned
increase in the fundamental period and is calculated according to Equation (4).

DIDC = 1 –
T0initial

T0equivalent

(4)

where T0initial is the fundamental period before the start of the analysis, and T0equivalent is the
fundamental period at the end of the analysis.

3.3. Dataset Configuration

The scope of this study is to examine the capability of MLAs in predicting the struc-
tural damage of a certain RC frame under single or multiple ground motion records. To
achieve this, the intensity of each seismic event and the corresponding response is treated
individually, taking into account the initial structural damage just before the certain os-
cillation. In case of sequential seismic events, the damage incurred by the fist shock is
considered to be the initial damage of the structure subjected to the aftershock. In order
to provide a universal model that can predict the structural damage, regardless of the
pre-earthquake state of the building, the initial damage is taken into account even if the
structure is intact, i.e., in case of single seismic events. In such a case, the value of the
damage indices is set as zero. It has to be mentioned that from the initial 1908 artificially
generated sequences, ultimately, 1528 of them are considered. The rest of the sequences
are omitted either due to convergence problems of the NLTHAs or due to the absence of
structural damage under the first shock. Thus, the dataset in total comprises 1528 artificial
and 111 natural seismic sequences. Additionally, 429 single seismic events are considered.
As such, 2068 data instances are assumed.

4. Exploratory Data Analysis (EDA)

For the most complete and effective decision-making, statistical analysis of the exam-
ined data is required in order to capture the technical characteristics of the problem. This
exploratory analysis includes a set of numerical and graphical methods, which allow us
to obtain an initial consideration about the features of the data that will be used in the
ML models. The purpose of the aforementioned analysis is the practical (non-scientific)
interpretation of the data by unveiling the main characteristics of the data format, as well as
their origin. This technique is a necessary step before the application of statistical inference
methods, in order to thoroughly check the suitability of the data, the formulation of the
adopted hypotheses and the selection of the appropriate method.
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In particular, based on the problem analyzed in this paper, problematic values can be
identified, i.e., values that are cut off from the main corpus and can be characterized as
outliers or even incorrect, and appropriately treated. Moreover, the normality of the data
population can be checked. This is particularly important as many of the implemented
methods require normality of the data.

Table 2 lists the most important statistics of the ground motions’ IMs. The mean (µ) of
a population estimates the median value for symmetric or nearly symmetric distributions.
Additionally, σ estimates the standard deviation in the population. When the standard
deviation is elevated, we know that there are values of the variable sufficiently far from
the mean. In a normal distribution, 95% of the values of the variable are within the limits
µ ± 2σ. Moreover, the minimum (min) and the maximum (max) values of each variable
indicate the wide range of the seismic parameters.

The statistical representation of the data is shown in Figures 3 and 4, where clear
information is provided about the centre of the data, the symmetry, the skewness, the
type of any asymmetry and the outliers. Information on the distortion and curvature
of the distribution is also sought. Distortion refers to any deviation over the normal
distribution. If the curve shifts to the left or right, it is said to be skewed. Skewness can
be quantified as a representation of the degree to which a given distribution differs from a
normal distribution. A normal distribution is non-skewed, while, for example, a lognormal
distribution exhibits right skewness. Distributions can exhibit right (positive) skewness
or left (negative) skewness in varying degrees. The skewness is the degree of asymmetry
that is observed in a probability distribution. A distribution with positive asymmetry
possesses a shift to a median with lower values. Obviously, the opposite is true in the case
of negative asymmetry.

Table 2. Descriptive statistics for the IMs of the overall dataset.

SMD

PGA PGV PGD IA CAV
PGA
PGV

IAS TB ROG Bolt P90 arms Ic IFVF IRG SIH
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s2

cm
s
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cm
s
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s–1 cm
s

s s s
cm
s2

cm
s2

cm1.5

s2.5 cm · s–0.75 cm · s
1
3 cm
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Figure 3. Violin and box plots of the IMs.
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Figure 4. Violin and box plots of the damage indices.

In Figure 3, the distributions of all the examined IMs with their values normalized in (0,
1) are presented. Moreover, in Figure 4, the distribution of the structural damage after the
single (DIG,PA,1st, DIDC,1st) and the successive (DIG,PA, DIDC) seismic events are depicted
comparatively. Under seismic sequences, damage accumulation can be observed, as the
distributions of both damage indices are shifted to higher values compared to those that
correspond to the damage after the first shocks. It has been mentioned that Figures 3 and 4,
despite offering meaningful information, constitute a tool of data exploratory analysis
without leading to definitive conclusions.

Values that are characterised as extremes or outliers are merely “suspect” values, i.e.,
values which may be incorrect or unusual. The number of points clarified as outliers
depends on the sample size and the shape of the distribution. To identify the outliers,
Cook’s distance [61,62] values were calculated according to Equation (5) and illustrated in
Figure 5a,b for the DIG,PA and DIDC datasets, respectively. In the same figure, the threshold
which is equal to It = 4

n (n: number of observations) is depicted. The percentage of the
potential outliers with influence that exceeds the above threshold is equal to 8.99% and
7.21% for the DIG,PA and DIDC datasets, respectively.

Di =
n

∑
i=1

(ŷj – ŷj(i))
2

p MSE
(5)

where ŷj is the jth predicted value, ŷj(i) is the jth predicted value, where the fit does not
include observation i, MSE is the mean squared error, and p is the number of coefficients in
the regression model.
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Figure 5. Cook’s distance of each data point for (a) the DIG,PA dataset and (b) the DIDC dataset.
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Subsequently, a correlation analysis was carried out in order to determine the degree
of linear correlation between each pair of involved variables X and Y with variances σX and
σY, respectively, and covariance σXY = COV(X, Y) = E(X, Y) – E(X)E(Y). The results of the
calculation of the Pearson coefficient [63] according to Equation (6) are shown in Figure 6.

ρX,Y =
COV(X, Y)

σXσY
(6)
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Figure 6. Heatmap of Pearson’s correlation coefficient for every pair of the examined variables
including input features and targets.

Because there is a proven inability of the Pearson method to detect nonlinear correla-
tions such as sinusoidal waves, quadratic curves, etc., the Predictive Power Score (PPS) [64]
technique was also used to summarize the predictive relationships between the available
data, explaining how variable A informs variable B more than variable B informs variable
A. Technically, the score is a measurement in the interval (0, 1) of the success of a model in
predicting a target variable with the help of an out-of-sample predictor variable. From this
method, hidden patterns of the data can be identified and as such faciliate the selection
of appropriate prediction variables. The results of the PPS calculation are shown in the
Figure 7.

After this analytical investigation of the data of the considered research, the analytical
statistical hypothesis testing for testing hypotheses related to the distribution of X (with its
unknown parameters and its shape), and hypothesis and independence testing related to
the comparison of the unknown parameters of the problem variables, it was shown that this
dataset is suitable for the correct application of ML methods. It is particularly important to
understand the logic, meaning and limits of application of the data in question, so that this
knowledge will allow us to correctly interpret the results and make correct conclusions with
an awareness of the magnitude of the uncertainty in them. The logic question is directly
related to the ongoing research question of whether the data used in the application being
developed are appropriate and actually model the problem.
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Figure 7. Heatmap of Predictive Power Score (PPS) for every pair of the examined variables including
input features and targets.

In conclusion, the above investigation allows us to interpret whether a MLA can
extract a confident value associated with the option available to it. Similarly, it allows us to
interpret whether it can abstain from trusting the choice when a particular output is too
low. Finally, it is possible to explore algorithms that can be more effectively integrated into
larger tasks in a way that partially or completely avoids the problem of error propagation.

5. Results
5.1. Comparative Performance Analysis of the Examined MLAs

The selection of the proper MLA in modelling the seismic demand prediction of
the examined RC frame under single and multiple ground motion records is of outmost
importance. This selection has to be made by taking into account the particularities of the
current data, the EDA and restrictions of the examined algorithms. In order to obtain the
most efficient algorithm, a thorough comparatively investigation among 10 different MLAs
was performed. Their performance was assessed by conducting sensitivity and accuracy
analysis regarding the estimated errors obtained by the provided data.

The ten examined MLAs are: the Adaboost regressor (ABR) [65], the Bayesian ridge
(BR) [66], the decision tree regressor (DTR) [67], the extra trees regressor (ETR) [68], the
gradient boosting regressor (GBR) [69], the K-nearest neighbors (KNN) [70,71], the light
gradient boosting machine (LGBM) [72], the linear regressor (LR) [73], the multi-layer
feed-forward neural network (MLNN) [74], and the random forest regressor (RFR) [75]. In
this sense, an extensive and detailed comparison of 10 different MLAs on the two provided
datasets was carried out. The MLAs are implemented using the Scikit-learn [76] and
LightGBM [72] Python packages, while they are evaluated with Yellowbrick library [77,78].
It should be said that the following metrics [73] for the comparison and cost analysis of the
correct regression errors were taken into account and are listed below:
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1. Mean absolute error (MAE) is a measure of errors between the estimated and the
observed values, and it is given by the following expression:

MAE =
1
n

n

∑
i=1

| ŷi – yi | (7)

where ŷi is the predicted value, yi the real value of the ith observation and n is the
total number of observations;

2. Mean square error (MSE):

MSE =
1
n

n

∑
i=1

(ŷi – yi)
2 (8)

3. Root-mean-squared error (RMSE) calculates the average error between the estimated
values and the observed values:

RMSE =

√
1
n

n

∑
i=1

(ŷi – yi)2 (9)

4. The coefficient of determination, R2, expresses the variation in the dependent variable
that is predictable from the independent variables:

R2 = 1 –
∑n

i=1(yi – ŷi)
2

∑n
i=1(yi – yi)2 (10)

where y is the average of the observed values;
5. Root-mean-squared-log-error (RMSLE) is an extension of MSE that is used mainly

when the predicted values display high deviation:

RMSLE =

√
1
n

n

∑
i=1

(log(ŷi + 1) – log(yi + 1))2 (11)

6. Mean absolute percentage error (MAPE) calculates the accuracy, as a ratio, and is
defined by the following formulation:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi – ŷi
yi

∣∣∣∣ (12)

In order to thoroughly assess the ML methods, 30 percent of the total dataset was
withheld and was employed as a test set for the final assessment. In the remaining part,
we trained and evaluated all of the examined algorithms using the K-fold cross-validation
strategy [76]. During this method, the above part is divided in K subsets. Each randomly
defined subset consists of different observations. One subset is used as the cross-validation
subset, while the K-1 others are merged and used as the training set. This process is
performed K times using different sets as the validation set and the K-1 rest of them as the
training set. The performance of the MLA is evaluated for each case and on average. By this,
the performance of the method in relation to the prediction error is determined. Specifically,
the statistical properties, the bias and the variance of the regression prediction error are
recorded and analyzed using a 10-fold cross-validation procedure. A decomposition of
the variability of the 10-fold cross-validation sample is performed, taking into account its
variability sources.

In Figure 8, the metrics of each MLA for both damage indices are presented. It can
be seen that considering DIG,PA, higher performance of the ML modelling is obtained.
Specifically, the algorithm with the best prediction capability is the extra trees regressor.
This method is based on decision trees and randomizes decision trees for random sub-
samples in order to minimize over-fitting. In particular, given a data sample X = x1, . . . , xn
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and the respected values y = y1, . . . , yn, a random sample is chosen repeatedly without
substitution from the learning ensemble in order to estimate the target values using decision
trees. The extra trees algorithm performs like random forest, as multiple trees are generated
and the nodes are separated using randomly chosen subsets of features. However, there
are two main differences: the sampling is carried out without replacement, which means
that there is no bootstrap, and the nodes are separated randomly among a random subset
of features that are chosen for every node. The aforementioned randomness is based on the
random separations of the total sample. Thus, low variance is achieved. Another important
feature is that the predictions are calculated by multiple decision trees, and as such, there
is high prediction accuracy for new data. Moreover, the algorithm reduces the risk of
over-fitting due to the randomness that is introduced in the model.
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Figure 8. Peformace metrics of the examined MLAs.

Considering the DIDC, the algorithm with the higher prediction capacity is the gradient
boosting regressor. The boosted trees algorithms are a combination of boosting and decision
trees. Boosting is a meta-algorithm for reducing bias in supervised learning. In the case
of boosting [79], predictive regressors are used in order to develop weighted trees. The
features of the regression trees and the boosting algorithms are combined to produce
boosting trees. The gradient boosting method produces a prediction model comprised of a
set of weak prediction, usually decision tree, models. It builds the model gradually and
generalizes it by optimizing a loss function. In other words, at each iteration, a new weak
regressor is trained and the previous ones are extended in order to increase the accuracy of
the model.

Based on the above observation, these algorithms could provide a generalized model
that could be capable of reliably predicting the final damage of the examined RC frame
for given new values, different from training ones, of the established damage and seismic
shock IMs.

5.2. Evaluation of the MLAs with the Higher Prediction Ability

In this section, we provide a more detailed description about the performance of the
MLAs with the higher prediction ability during the 10-fold procedure. In Figure 9, the
error metrics are depicted comparatively for the qualified MLA of each damage index. In
general, the extra trees regressor algorithm exhibits higher performance than the gradient
boosting regressor algorithm considering the DIG,PA and DIDC structural damage indexes,
respectively. Considering DIG,PA, a generally smooth shift of the error is observed that
expresses the probability of a given number of events occurring over a fixed period of time,
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taking into account the observations that occur at a known average constant rate and are
independent of their appearance. There is only one case of significant error fluctuation
which describes repetitive non-periodic alterations that could not be predicted by this
algorithm. Regarding the DIDC, it is observed that there is higher dispersion of the error,
which normalizes in the later folds. This fact translates the randomness of the samples into
some folds, which are independent of the time period of their occurrence. The normalization
and stabilization of the error after the initial fluctuations describes some possible repetitive
non-periodic changes which are satisfactorily predicted by the specific algorithm. By this
fact, the model can calculate reliable output values for inputs that are new and different
from those with which it is trained.
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Figure 9. Evolution of performance metrics during 10-fold cross-validation for ETR and GBR algo-
rithms in case of DIG,PA and DIDC damage indices, respectively.

The 10-fold procedure is implemented iteratively in a progressively increasing subset
in order to produce the learning curves. In both cross-validation and training sets, the
average and the range of R2 are calculated for each iteration. A major control procedure of
the adjustment and the response of the algorithms is based on the learning curve, which
depicts the learning performance as a function of the gained experience. It is a widely used
tool that assesses the training and the validation data after each update of the measured
error performance. Via this method, problems such as under- or over-fitting of the model,
and the adequacy of the training or the validation data, could emerge. In Figure 10, the
learning curves of the distinctive MLA for each dataset are depicted. Specifically, Figure 10a
illustrates the learning curves of the extra trees regressor algorithm when the structural
damage is assessed in terms of DIG,PA, while Figure 10b presents the learning curves of the
gradient boosting regressor considering structural damage in terms of DIDC.

It is obvious that the training curve of Figure 10a improves as the experience of the
model increases without any trends of over-fitting. That fact could be identified by small
alterations similarly presented in both training and cross-validation curves. The prediction
ability of the model is highlighted due to the high performance beginning at the starting
point of the procedure with a score over 0.87. An increasing trend is depicted with a rather
narrow confidence interval, a fact that reflects the quality of the model. Moreover, there is
no loss of the training, and as such, the distance between training and the validation curve
reduces in relation to the experience. This distance is referred to as the “generalization
gap” and defines the quality of the model. It is obvious that smaller gaps between the two
curves implies higher accuracy of the model.
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From the training and the validation curves of Figure 10b, it could be easily observed
that the algorithm fits quite well. Specifically, there are no trends of under- or over-fitting.
The sufficient fit is noticed due to that fact that the training score is higher than the cross-
validation score, while the generalization gap reduces in relation to the experience and
tends to a constant value. Moreover, based on the aforementioned curves, the quality of
the considered data is assessed. Particularly, the total data set is representative to gain a
solution, as the training data provide adequate information to train the problem in relation
to the data that is used to validate it. It can be remarked that sufficient samples are provided
in order to lead to generalization. Moreover, the training curve seems to improve as the
experience of the model increases. Moreover, there are no cases of validation loss lower
than the training loss, a fact that indicates that the model can predict easier values of the
validation data set compared to the training one.
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Figure 10. Learning curves of the MLAs with the best predictive capacity for (a) the prediction of
DIG,PA and (b) the prediction of DIDC.

Finally, in order to further analyze the introduced errors and determine their influ-
ence on the prediction ability of the examined models, the residual plots are presented in
Figure 11. These scatter plots show the vertical deviations with respect to the regression
line. These deviations, referred to as residuals, are obtained by subtracting the observed
responses from the predicted responses. In Figure 11a, the residuals of the extra tree re-
gressor algorithm is predicted. The vertical deviations in relation to the regression line are
quite limited both in training (R2 = 1.0) and test (R2 = 0.950) data. The residuals, which are
obviously very limited and demonstrate minimal dispersion, can be considered cases of
small population samples that do not follow a statistically central trend. Thus, these values
are not related to the position of the center of the distribution, and their mean value does
not approach the actual value. As a result, the random error increases as the sample size
increases. The model holds high percentages of accuracy, as the aforementioned samples
are few enough, while the level of error is independent of the observation occurrence.
In conclusion, the model understands the structure of residuals and manages to reduce
the generalization error, while its predictive ability exponentially increases without the
requirement of special interventions in the hyperparameters of the model. Additionally,
Figure 11b presents the residuals of the gradient boosting regressor algorithm for training
(R2 = 0.893) and validation (R2 = 0.833). The predicted response is calculated by the gradi-
ent boosting regressor, since all the unknown parameters of the model have been calculated
from the NLTHA results data. Careful examination of the residuals allows us to determine
whether the adopted model is appropriate and the assumptions are reasonable. In our case,
the residuals can be considered as variables that compose general errors independently
distributed with an average of 0.0. That fact implies that the model mistakenly predicts
the response in a random way, i.e., the model predicts values higher or lower than the
real values with equal probability. In addition, the error is independent of the time or
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the magnitude of the observations, or even of the adjustment factors involved in making
the prediction. In conclusion, the residuals from these assumptions mean that the errors
contain a structure that is not taken into account in the model due to the inability to limit
the error by generalizing the way of parameterizing the variation of its predictive capability.
The identification of this structure, in theory, could lead to an enhanced model by adding
representative terms. However, this consideration will lead to a model that will accumulate
significant bias that would not lead to generalized solutions.
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Figure 11. Residuals of the MLAs with the best predictive capacity for (a) the prediction of DIG,PA

and (b) the prediction of DIDC.

To this end, the structural damage prediction of an RC frame under single and multiple
ground motion records is more efficient to be modeled adopting DIG,PA. Due to the nature
of the examined problem, it is evident that DIG,PA can assess both the initially incurred
damage as well as the damage accumulation due to the successive ground motion records.

The comparative thorough analysis demonstrates the high performance of the extra
trees regressor. The ability of this algorithm can be explained due to its parametric nature,
where it summarizes the data with a constant size set of parameters regardless of the num-
ber of the training instances. This fact leads to a learning system that achieves noteworthy
results in relation to the competing systems. Another important observation is that the
method produces accurate results without repetitive problems of indefinite cause because
all the intermediate partitions in the examined data set are handled very efficiently. In
addition, one of the main advantages gained from the results is the high reliability resulting
from the R2 values combined with the very low error rate. That fact arises as a result
of receiving data without boostrapping, which allows the maintenance of more relevant
data for the forthcoming predictions. Similarly, in the case of small population samples
that do not follow the statistically central trend, the algorithm managed to achieve low
variance, so that the sample data are close to the projections of the target function. This
observation parallels the sensitivity of the model’s correlative hyperparameters related
with the data, which offers better predictability and stability as the overall behavior of the
model is less noisy, while the overall risk of a particularly poor solution that may arise by
undersampling is reduced. The above consideration is also supported by the dispersion
of the expected error, which is concentrated close to the average error value. This fact
rigidly states the reliability of the configured model trained over a vast number of initial
structural damage and ground motion records in order to predict the final damage of the
examined RC frame. Moreover, it can predict the seismic damage even in case of an initially
undamaged structure (zero initial damage).
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5.3. Web-Application Development

In this end, the authors decided to utilize the described methodology in a user-friendly
web-application (Appendix B) that incorporates the distinguished ML models, trained over
the total dataset, in order to deliver the results of this study via an interactive tool. After
uploading an acceleration record file in PEER or ESM format, the IMs and the response
spectra are calculated. The final structural damage is calculated considering as input
features the IMs and the initial damage. The initial damage, which expresses the damage
state before the current seismic excitation, can be set through a slide bar. By adjusting the
initial damage, the final damage is recalculated in real-time. Thus, several scenarios can be
reproduced considering either an undamaged structure subjected to a seismic excitation
that could be considered as a main shock or an already damaged structure by a potential
previous shock subjected to an aftershock. The application is deployed using Streamlit [80]
Python framework.

6. Discussion and Conclusions

In the present study, we proposed a ML approach of the structural damage prediction
after a single or multiple seismic events on an RC frame in terms of DIG,PA and DIDC
damage indices using as input features the IMs of the second shock and the established
damage after the first one. The ability of ten MLAs to model the problem of structural dam-
age prediction of an RC frame under single or multiple ground motions was thoroughly
investigated. For this purpose, multiple error metrics were adopted in order to assess
the predictive capacity of the examined MLAs. Then, it took place thorough comparison
between the now known MLAs. Moreover, the generalization of the most efficient algo-
rithms was evaluated. The investigation relied entirely on evaluative methods of sensitivity
analysis, variability and error analysis.

The comparative study indicates that the structural damage under single and multiple
seismic shocks can be efficiently described in terms of DIG,PA. Moreover, adopting the extra
trees regressor, a higher prediction performance is gained. This algorithm facilitates the
learning of specialized functions for extracting useful representations in complex learning
dependencies and utilizes random decision trees to learn without causing uncertainty
issues. Moreover, overfitting is avoided, while the algorithm utilizes significantly reduced
computing training costs and time, producing improved training stability, high general-
ization performance and remarkable determination accuracy. In addition, the algorithm
leads to much better predictive results and high generalization ability with reduced bias
and variance. Therefore, a robust forecasting model capable of responding to the highly
complex problem of structural damage prediction is deduced. It should also be emphasized
that this methodology deals with the noisy scattered residuals points with great accuracy.
Based on the results, this algorithm provides a generalized model that predicts the final
damage of the examined RC frame given the initial damage and the seismic excitation
characteristics.

Conclusively, as an outcome of this research, the authors developed a user-friendly
web application that incorporates the results of this study. Future work should focus on
examining an expanded dataset that incorporates a wide range of structural features such
as design code, height level, elevation and plan regularity in order to generate a universal
model of structural predictions under single and multiple shocks.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine learning
MLA Machine learning algorithm
SDOF Single degree of freedom
RC Reinforced concrete
IM Intensity measure
ANN Artificial neural network
LSTM Long short term memory
CNN Convolutional neural network
NLTHA Nonlinear time history analysis
PGA Peak ground acceleration
PGV Peak ground velocity
PGD Peak ground displacement
IA Arias intensity
CAV Cumulative absolute velocity
IAS Seismic intensity after Araya and Saragoni
SMDTB Strong motion duration after Trifunac and Brady
SMDROG Strong motion duration after Reinoso, Ordaz and Guerrero
SMDBolt Strong motion duration after Bolt
arms Root-mean-squared of ground acceleration signal
Ic Characteristic intensity
IFVF Potential damage measure after Fajfar, Vidic and Fischinger
IRG Intensity measure after Riddel and Garcia
PSV Pseudo-spectrum velocities
Hd Husid diagram
SIH Spectral intensity after Housner
DIG,PA,1st The overall Park and Ang damage index after the first seismic shock (input feature)
DIG,PA The overall Park and Ang damage index after the second seismic shock (target)
DIDC,1st DiPasquale and Çakmak damage index after the first seismic shock (input feature)
DIDC DiPasquale and Çakmak damage index after the second seismic shock (target)
EDA Exploratory data analysis
PPS Predictive power score
ABR AdaBoost regressor
BR Bayesian ridge
DTR Decision tree regressor
ETR Extra trees regressor
GBR Gradient boosting regressor
KNN K nearest neighbors regressor
LGBM Light gradient boosting machine
LR Linear regressor
MLNN Multi-layer feed-forward neural network
RFR Random forest regressor
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Appendix A

Table A1. Descriptive statistics for the IMs of the 318 individual records.
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s
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cm
s2
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cm1.5
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1
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max 1465.2 132.8 1314.2 1332.4 3119.3 75.5 41.5 49.5 56.9 58.6 150.1 306.4 13,323.4 201.8 4625.5 387.1

Table A2. Seismic metadata for natural sequences.

Region
1st Shock 2nd Shock

Station Code/Name Component PGA1st (g) PGA2nd (g)
Date M Date M

Ancona 14-06-1972 4.2 21-06-1972 4.0 ANP N-S 0.220 0.410
Friuli 11-09-1976 5.8 15-09-1976 6.1 BUI N-S 0.233 0.110

E-W 0.108 0.093
GMN N-S 0.328 0.324

E-W 0.299 0.644
Montenegro 15-04-1979 6.9 15-04-1979 5.8 PETO E-W 0.304 0.089

24-05-1979 6.2 BAR N-S 0.371 0.201
E-W 0.360 0.267

HRZ N-S 0.215 0.066
E-W 0.254 0.076

ULO N-S 0.282 0.033
E-W 0.236 0.030

Imperial Valley 15-10-1979 6.5 15-10-1979 5.0 Holtville Post Office 315 0.221 0.254
Mammoth Lakes 25-05-1980 6.1 25-05-1980 5.7 Convict Creek 90 0.419 0.371
Irpinia 23-11-1980 6.9 24-11-1980 5.0 BGI N-S 0.129 0.031

E-W 0.189 0.033
STR N-S 0.224 0.018

E-W 0.320 0.032
Gulf of Corinth 24-02-1981 6.6 25-02-1981 6.3 KORA Trans 0.296 0.121

Logn 0.240 0.121
Coalinga 22-07-1983 5.8 25-07-1983 5.2 Elm (Old CHP) 90 0.519 0.677

0 0.341 0.481
Kalamata 13-09-1986 5.9 15-09-1986 4.8 KAL1 Trans 0.269 0.140

Logn 0.232 0.237
KALA Trans 0.296 0.152

Logn 0.216 0.334
Spitak 07-12-1988 6.7 07-12-1988 5.9 GUK N-S 0.181 0.144

E-W 0.182 0.099
08-01-1989 4.0 08-01-1989 4.1 NAB E-W 0.206 0.217

Georgia 03-05-1991 5.6 03-05-1991 5.2 SAMB N-S 0.354 0.208
E-W 0.504 0.122

Erzican 13-03-1992 6.6 15-03-1992 5.9 AI 178 ERC MET N-S 0.411 0.032
E-W 0.487 0.039

Ilia 26-03-1993 4.7 26-03-1993 4.9 PYR1 Logn 0.109 0.100
Northridge 17-01-1994 6.7 17-01-1994 5.9 Moorpark—Fire Station 90 0.193 0.139

180 0.291 0.184
17-01-1994 5.2 Pacoima Kagel Canyon 360 0.432 0.053
20-03-1994 5.3 Rinaldi Receiving Station 228 0.874 0.529

Sepulveda Hospital 270 0.752 0.102
Sylmar-Olive Med 90 0.605 0.181

Umbria Marche 26-09-1997 5.7 26-09-1997 6.0 CLF N-S 0.276 0.197
E-W 0.256 0.227

NCR N-S 0.395 0.502
Kalamata 13-10-1997 6.5 18-11-1997 6.4 KRN1 Trans 0.119 0.071

Logn 0.118 0.092
Bovec 12-04-1998 5.7 31-08-1998 4.3 FAGG N-S 0.024 0.023

E-W 0.023 0.026
Azores Islands 09-07-1998 6.2 11-07-1998 4.7 HOR N-S 0.405 0.082

E-W 0.369 0.092
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Table A2. Cont.

Region
1st Shock 2nd Shock

Station Code/Name Component PGA1st (g) PGA2nd (g)
Date M Date M

Izmit 17-08-1999 7.6 12-11-1999 7.3 ARC N-S 0.210 0.007
E-W 0.132 0.007

ATK N-S 0.102 0.016
E-W 0.167 0.016

DHM N-S 0.090 0.017
E-W 0.084 0.017

FAT N-S 0.181 0.034
E-W 0.161 0.024

KMP N-S 0.102 0.014
E-W 0.127 0.017

ZYT N-S 0.119 0.021
E-W 0.109 0.029

Athens 07-09-1999 5.9 07-09-1999 4.3 SPLB Trans 0.324 0.059
Logn 0.341 0.071

Chi-Chi 20-09-1999 7.6 20-09-1999 6.2 TCU071 N-S 0.651 0.382
E-W 0.528 0.193

TCU129 N-S 0.624 0.398
E-W 1.005 0.947

25-09-1999 6.3 TCU078 N-S 0.307 0.387
E-W 0.447 0.266

TCU079 N-S 0.424 0.626
E-W 0.592 0.776

Duzce 12-11-1999 7.3 12-11-1999 4.7 AI 010 BOL E-W 0.820 0.060
Bingöl 01-05-2003 6.3 01-05-2003 3.5 AI 049 BNG N-S 0.519 0.147

E-W 0.291 0.068
L Aquila 06-04-2009 6.1 07-04-2009 5.5 AQK N-S 0.353 0.081

E-W 0.330 0.090
AQV N-S 0.545 0.146

E-W 0.657 0.129
AVZ N-S 0.069 0.021

09-04-2009 5.4 AQA N-S 0.442 0.057
Darfield 03-09-2010 7.0 21-02-2011 6.2 Botanical Gardens S01W 0.190 0.452

N89W 0.155 0.552
Cashmere High School S80E 0.251 0.349
Cathedral College N26W 0.194 0.384

N64E 0.233 0.478
Christchurch Hospital N01W 0.209 0.346

S89W 0.152 0.363
Emilia 20-05-2012 6.1 29-05-2012 6.0 MRN N-S 0.263 0.294

E-W 0.262 0.222
03-06-2012 5.1 12-06-2012 4.9 T0827 N-S 0.490 0.585

E-W 0.263 0.234
Central Italy 24-08-2016 6.0 24-08-2016 5.4 AQK E-W 0.050 0.010

26-08-2016 4.8 AMT N-S 0.375 0.336
E-W 0.867 0.325

26-10-2016 5.4 26-10-2016 5.9 CMI N-S 0.341 0.308
E-W 0.720 0.651

CNE E-W 0.556 0.537
30-10-2016 6.5 CIT N-S 0.052 0.213

E-W 0.092 0.325
26-10-2016 5.9 30-10-2016 6.5 CLO N-S 0.193 0.582

E-W 0.183 0.427
CNE N-S 0.380 0.294
MMO N-S 0.168 0.188

E-W 0.170 0.189
NOR E-W 0.215 0.311

30-10-2016 6.5 31-10-2016 4.2 T1213 N-S 0.867 0.185
E-W 0.794 0.212

18-01-2017 5.5 18-01-2017 5.4 PCB N-S 0.586 0.561
E-W 0.408 0.388

Dodecanese Islands 08-08-2019 4.8 30-10-2020 7.0 GMLD N-S 0.450 0.899
E-W 0.673 0.763

Appendix B

https://share.streamlit.io/plazarid/ml_rc_frame/main/ML_stream_app.py (accessed
on 7 April 2022).
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