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ABSTRACT 

This paper presents the results of laboratory experiments conducted to study the two 
dimensional intrusive gravity currents produced by a constant inflow into a   density 
stratified aquifer.  A semi-empirical solution is offered for the flow produced in density 
stratified aquifer due to the artificial recharge by a two dimensional source of constant 
strength  (line source), embedded in the porous medium of uniform porosity. The artificial 
groundwater recharge scheme examined in this study, is accomplished by  injection   from a 
perforated pipe in a linearly density stratified porous medium of uniform porosity. The 
density of the recharging water is assumed equal to the density of the stratified ambient fluid 
at the   level of the   recharging   pipe source. It is observed that the intrusion forms a thin 
layer at the elevation of the source. Balances   of the   forces that    drive and retard the flow   
indicate that the intrusion is characterized only by one spreading regime:  the pressure 
(buoyancy) force balanced by the viscous Stokes forces on the numerous grains. It is found 
theoretically that the length of the intrusion   L (t) increases with time according to the 
relation L(t)  ~ tm, where   m=2/3.    The experimental results seem to confirm the derived 
spreading   relation.  
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1 INTRODUCTION 

 Artificial recharge (i.e. the artificial increasing of the amount of surface water 
entering an aquifer) is used for many purposes. The most important of these are   
a) The improvement (purification) of water quality, b) storage of excess water from wet 
periods for subsequent use in dry ones, c) maintenance of ground water levels and d) 
disposal of treated unwanted water.  

 Most of published knowledge of the state of the art of the   hydrodynamics of 
artificial recharge assumes that the water of the aquifer has a uniform density or assumes 
sharp fresh –salt-water ambient water; see for example Mahesha (1998), Thompson et al 
(1999).  . Little attention has been given to the   case of the artificial recharge of an aquifer 
where   the density of the ground water is linearly stratified. This situation may appear in a 
coastal region.   

The basic objective of this paper is the stratified aquifer hydrodynamics of the 
artificial recharge by a two dimensional source of strength 2Q units of volume per unit time 
per unit length   (line source), embedded in a porous medium, in a linearly density stratified 
porous medium (aquifer) .It is assumed that the porous medium has a constant intrinsic 
permeability k and is saturated with water of viscosity μ. It is assumed that the artificial 
recharge scheme examined in this study, is accomplished by injection   from a perforated 
long pipe   in a linearly density stratified porous medium of uniform porosity. The density of 
the recharging water is assumed equal to ρο, which for simplicity is assumed equal to the 
density of the ambient fluid at the   level of the   recharging   pipe source. The above 
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configuration resembles the  artificial groundwater recharge by injection using radial 
collector wells,proposed  by Huisman et al (1983) . 

 
In this paper we present relationships for the growth of the longitudinal length  L(t) 

of the gravity current, intruding  the saturated aquifer ,as a function of time. After the entry 
phase, the recharged water will flow more or less horizontally through the aquifer over 
extended distances, involving   long periods of time. The behavior of submerged   intrusions 
due to artificial recharge is of interest to hydraulic and environmental engineer, because  it is 
related with the underground water quality. 
 
2. AN ORDER OF MAGNITUDE ANALYSIS OF THE GROWTH L (t) OF THE  
LENGTH OF THE GRAVITY CURRENT 
 
2.1 Continuity equation 

The groundwater is stagnant and linearly stratified, so that the density, ρ (z), 
decreases with increasing elevation z .The porous medium is assumed homogeneous. Two 
dimensional Cartesian co-ordinate axes are chosen with the z-axis directed vertically 
upwards. we may assume that the line source  of  water volume flux is a perforated pipe; the 
recharge is achieved by applying pressure to the water in the perforated pipe.  The volume 
flux per unit length of the pipe is kept constant and equal to 2Q, it starts at the time t=o and   
the density of the recharged water is   equal to ρο, where ρο is the density of the stratified 
fluid at the level of the pipe location.  

 The flow out of the pipe in the porous medium spreads horizontally at its neutral 
level and forms an intruding submerged gravity current in the saturated, density stratified 
porous medium.  
It is assumed that the flow out of the perforated pipe at x=0, impinges the ambient porous 
media and the ambient stratified water, rises and descends, and it produces the initial region 
of the intruding patch. 

It is reasonable to distinguish two regions: (1) the    impingement region   where the 
flow out of the pipe establishes the initial condition for the intruding water; (2) the main 
spreading region, which is outside the impingement region. 
It may be argued that entrainment in the impingement region is small, and therefore that 
approximately the volume of the slug  (gravity current) at time t is given by the following 
equation: 
 

Volume of slug = 2Qt                         (1)  
 
  If it is assumed that the typical vertical and horizontal extent of the two dimensional 
intruding fluid are H and 2L respectively, then  (1) gives  
 

HL=Qt        (2) 
 
2.2 Vertical momentum equation 
         By integrating the vertical component of the momentum equation over the spreading 
patch  (slug) and by neglecting small terms  (i.e. change of vertical inertia) we obtain the 
physically expected result that the total weight of the slug balances the total pressure force, 
which acts on the   slug surface S, i.e.  

ρs
V S

x g k dV p x n x dS( ) ( ) ( )! ! ! ! !∫∫∫ ∫∫=                                 (3)  
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Where  ρs x( )!  is the density at any point !x within the slug and p x( )!  is   the hydrostatic 
ambient pressure at any point !x  at the interface of the slug; ! !n x( )  is the unit vector 
perpendicular to the surface, g the gravitational constant and 

!
k  is the unit vector in the 

vertical direction.  Since the hydrostatic ambient pressure depends on the ambient density 
profile   (and the depth), it is clear that equation (3) imposes a relationship between the 
density of the slug and the ambient density.  

It is assumed that to the first approximation the density within the slug varies linearly 
with the depth, so   that it is easy to integrate equation (3) in a slug of constant depth H and 
length  L(t)  to find the following relationship between the ambient and slug densities:  
            au al u lρ +ρ = ρ +ρ                   (4)  
where  auρ  and alρ  are respectively the   densities of the ambient fluid at the upper and 
lower interfacial layer of slug, and uρ  and ρl  are respectively the densities at the upper and 
lower interfacial layer within the slug.   

Since the intrusion layer is neutrally buoyant at the height where it spreads   
horizontally   it is, strictly speaking, the   "squeezing” pressure pu , pl exerted on the upper 
and lower   surfaces of   the slug   which oblige the slug to spread.  
For linear ambient stratification and linear    density profile within the slug, i.e. assuming 
that the density within the slug   of thickness H   is given by 

l u
u z

H
ρ ρρ −+                                                              ( 5) 

where the vertical distance z measures   depth from the upper point of the slug, we   find that 
the   pressure inside the   slug    is equal to    

2( )
2

l u
u u

gp gz z
H

ρ ρρ −+ +                                              (6)  

The pressure inside the slug is clearly   greater than the pressure outside, and 
therefore the excess horizontal pressure  (usually called "buoyancy “) force Fp    per unit 
width which drives the spreading (intrusion) is   given by  
                      2

pF gH= ρ′                                             (7)  
where      u au( ) / 6ρ′ = ρ −ρ                                         (8)  
Using the continuity equation   (2), equation   7  becomes  

2 3 2
pF gQ R t−= ρ′                                                (9) 

 
2.3  Horizontal    momentum equation-scaling analysis 

The methodology that   we will follow to   find   the asymptotic growth rate of the 
length L(t)  with time is based on the balance of the forces, which drive and retard the flow. 
Similar   methodology has been used previously by  Hoult (1972) , Chen and List  (1976) 
Didden and   Maxworthy  (1982), Lemkert and Imberger (1993) . 
      The force, which drives the flow, is only one:  the pressure  (or buoyancy) force Fp. The   
force, which retards    (or resist) the   flow is only one, the   drag    Fdrag which is   exerted by 
the ambient porous media and the ambient fluid on the intruding fluid (clearly the inertia of 
the intruding gravity current is negligible). 
.    Subsequently we find the scaling of the above-mentioned forces, where the continuity 
equation (2) has been considered and where L(t)/t gives the typical horizontal velocity U 
within the intrusion, where   t is the time.  
We find for the  pressure force : 
Fp  = pressure  (or buoyancy) force =  O(ρ'gH2 )= O(ρ'gQ2 L-2  t2 )         (10)  



 4 

We assume that   the drag force, which is applied to the intruding slug, is due to 
Stokes drag  forces  of the  slug fluid  due the flow around the   numerous grains of the 
porous media.  The Stokes force  Fs  due  to the laminar flow  around a sphere for small 
Reynolds number ( Re<1 ) , is given by  

Fs=3πdμ U 
where   μ is the dynamic viscosity , U  the  fluid velocity   and  d is the  grain 

diameter  . 
We obtain  therefore  

Fdrag =   drag  force =O(μ d U n) =O(μ d-2 LT-1 HL )=O(μ d-2 L   Q  )      (11)  
where   n  is equal to the  number of grains  within the volume of the  slug  , 
 i.e.   n≈HL(t) /d3.  

  We consider below the  growth L(t) under the balance of the corresponding driving 
and resisting force. Clearly   we have a balance of the buoyancy driving force  Fp  and the 
resisting   drag  force Fdrag   , and we obtain: 
 
Fp  = pressure  (or buoyancy  )  force =  Fdrag =   drag  force   , or   
 
O(ρ'gQ2 L-2  t2 )  = O(μ d-2 L   Q  )     , which gives 

2 1/3 2 /3
0L(t) c ( gQd / ) t′= ρ µ                                                (12)  

  where   0c    is an experimental parameter  .  
 The  above  analysis predicts the typical  horizontal  length L(t) of the  gravity 

current increases  with time as t2/3.Subsequently we describe experiments conducted    to test 
the above asymptotic law. 
 
3. EXPERIMENTAL PROCEDURE 
 A Hele-Shaw  cell was  constructed  of  two sheets of  1 cm optically flat plate  glass  
approximately  66 cm long and 48 cm  height , clamped  0.1 cm apart .The  entire cell was  
embedded in a  tank 20 cm wide and  100 cm long. A vertical  wall, made of glass , 19.9 cm 
wide and  48 cm height, as  shown in Figure 1 , separated the tank in two  smaller tanks, tank  
1  and  tank 2.  The left  end of the cell was  freely exposed in tank 1 , and the  right  end of  
the cell  was sealed with plastic  tape except  of a small hole  at   mid elevation. The hole  is  
temporarily blocked, and it is unblocked  at the start of the experiment. Tap water and 
commercial salt was used to stratify the tank. The tank and  the cell was  linearly  stratified  
by running  layers of successively increasing density in  the bottom  and then allowing the 
tank to stand for  about 12 hours  to smooth out the discontinuities. The actual  stratification 
in the tank was measured with a  calibrated conductivity probe. 
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Figure 1 . Experimental  configuration  (not to scale ) of the  simulation of the  intrusion in a 
density stratified porous medium. 
 

A typical profile of the density distribution is shown in Figure 2. The  density in the 
tank 2 was  uniform  and  equal to  the  density  at the middle point of tank 1.A red dye was 
also diluted in the tank  2. The free surface  elevation of tank 2 was  1 to 2  cm  higher than 
the free surface elevation  of tank 1 . This  difference  of the free elevation  of the two tanks  
drove the  intrusion into the   Hele- Shaw cell . A   measure of the   gradient of the ambient 
density profile   at the level of spreading   is given by the   Brunt-Vaissala   frequency   Ν, 
which is calculated by the relation  

[ ]1/ 2( ))
( )

g d zN
z

ρ
ρ

=          (13)   

When a uniform  density gradient had been established  in tank 1, the hole  which 
separates  the linearly  stratified  Hele-Shaw  cell  from  the tank 2 , was unblocked  and the 
dyed   water from tank  2  started  to intrude between the  plates of the  Hele-Shaw cell. In 
some experiments the water in the tank 2 was not dyed  and the  intruding  flow was  
visualized  by dropping  dye particles between the plates of Hele-Shaw cell. 
 
4 .EXPERIMENTAL RESULTS   

For each experimental run , the length  L(t)  of the intrusion patch was  measured as a 
function of time . A typical contour  of the  intruding gravity current as a function of time  is 
shown in Figures  3. For each experiment  the  length   L(t)   of  the  spreading  slug  was  
plotted   in logarithmic  scale as a function of  time. The raw data of the length  L(t) as a 
function of time   t from many experiments   are plotted   in Figures  4 and 5 .Best-fit lines 
are also drawn   and the corresponding equations  of the fits are  printed in the plot. 
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Figure  2.  Density distribution   in the Helle-Shaw cell. Run B13. 
Brunt -Vaissala frequency   N=0,71s-1.

 
 

 
 

Figure 3 . Contours  of  the  intrusion   as a function of time;  Run  B13; N=0.71 sec-1  . 

 
The  best fit equation is of the form   L∼  tm  ,where   m  is the exponent   of time .  It 

can be seen  (see Figure 4 and 5 )  that  experimental results  show that  the length  L(t)  
grows   like tm  , where m=2/3,  in agreement with our theoretical  prediction. In addition , 
the  area within each contour was  measured .It was found  that the area increased   linearly 
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with time, so that  we verified that the  input volume  flux   Q was  kept constant during the 
experimental run (equation  1). 
 
5.  CONCLUSIONS 

The  flow visualization  indicated that the  intruding gravity current  occupies a thin 
layer  at the elevation of the  hole . This implies that in a practical situation , contaminants  
that may be present in the  artificially recharged water  can travel very long distances  , 
practically without any further dilution.  

The experimental results  indicate that  the length   L(t)  of the intrusion  increases 
with time   as  t2/3, in agreement with the theoretical prediction.  
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Figure  4 .Length of the intruding gravity current  as a function of time . 
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Figure  5 . Growth history of the   the increase of the length of the
 intrusion with time . Comparison of the experimental results  with 
the  slope  2/3 of the theoretical  prediction.
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