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ABSTRACT 
The authors present a new method to extract the mutual information for data from any number of channels from 
either a discrete or continuous system. This generalized mutual information allows for the estimation of the 
average number of redundant bits in a vector measurement. Thus it provides insight into the information shared 
between all channels of the data. It may be used as a measure for the success of blind signal separation with 
multichannel audio. Several multichannel audio signals are separated using various ICA methods and the mutual 
information of each signal is computed and interpreted. It is also implemented as a contrast function in ICA for a 
new method of blind signal separation. 
 
 

INTRODUCTION 

Information theoretic methods have a vast amount of applications 
in audio processing. They are at the core of most compression 
methods, give theoretical limits for transmission rates and provide 
measures of loss in analogue to digital conversion. At the heart of 
information theory is the definition of the mutual information 
between two signals. It is used in the compression of multichannel 
data, in the separation of signals, and in Hidden Markov Model 
based speech recognition systems. Although the mutual 
information between two signals can be estimated easily under 
many circumstances, the estimation of the mutual information 
between many channels for finite data where little is known of the 
underlying system (e. g., unknown, possibly continuous alphabets) 
is a challenging problem. Yet this general case may occur any time 
information theoretic methods are applied to unknown 
multichannel systems. 

The mutual information of two continuous random variables, X and 
Y with joint density function ( , )f x y , is given by  

( , )
( ; ) ( , ) log

( ) ( )

f x y
I I X Y f x y dxdy

f x f y
= = ∫  (1) 

where the convention 0log 0 0=  is used.  

The logarithm is typically taken to base 2 so that the mutual 
information is given in units of bits. For a discrete distribution 
where the two random variables are defined over alphabets, 
X ∈ Χ  and Y ∈ Ψ , this becomes  

( , )
( ; ) ( , ) log

( ) ( )x y

p x y
I X Y p x y

p x p y∈Χ ∈Ψ

= ∑ ∑  (2) 

which is equivalent to (1) in the limit of Χ and Ψ approaching the 
support sets of X and Y respectively. This provides a measure of 
the amount of information that a measurement of X contains 
regarding the measurement of Y, and vice-versa. On the other 
hand, if X and Y have equal probability mass functions, 

( ) ( )p x p y= , then the mutual information function assumes its 
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maximum value, 

( ; ) ( ) log ( )
x

I X X p x p x
∈Χ

= −∑  (3) 

which is the Shannon entropy of X.  

Estimation of the mutual information of two variables is typically 
performed using a joint histogram. This can be extended to the 
estimation of the mutual information between n variables from 
direct estimation of the joint histogram  

1 2
1 2 1 2

1 2

( , ,... )
( , ,... ) ( , ,... ) log

( ) ( )... ( )
n

n n n
n

p x x x
I I X X X p x x x

p x p x p x
= = ∑  (4) 

However, in practice this has both theoretical and 
implementational difficulties. For a histogram with N bins, the n 
dimensional joint histogram would require Nn bins. Thus for large, 
multichannel data sets, standard histogram estimation of the 
mutual information would be beyond the memory capacity of 
many modern computers. If the joint histogram is not kept in 
memory but instead estimated from knowledge of the binning in 
the individual histograms, then the number of computations 
assumes an exponential dependence on the number of channels.  

But both these difficulties are of minor importance in comparison 
to the practical issue of how to estimate a limit in the presence of 
only finite data. That is, (4) approaches  

1
1 2 1 1

1

( ,... )
( , ,... ) ( ,... ) log ,...

( )... ( )
n

n n n n
n

f x x
I I X X X f x x dx dx

f x f x
= = ∫  (5) 

in the limit of infinitely small box size. But for 1 2, ,... nX X X  

defined on infinite alphabets, e. g., 1( ,... ) n
nx x R∈ , then histogram 

estimation of the mutual information is dependent on bin size. If 
the bins are small enough that at most one data point resides in 
each bin of the joint histogram, then the mutual information is 
guaranteed to assume its maximum value. For N points 

1 1 1
log 1

n

nI n
N NN

   = = −    
∑  (6) 

On the other hand, if the bin size is too large, then the fine scale 
structure of the data is completely ignored and the resulting 
uniformity leads to a severe underestimation of the mutual 
information. 

This paper builds on the method of computing mutual information 
that was suggested by Fraser and Swinney.[1] In that work, they 
suggested a method of estimating the mutual information between 
two one-dimensional time series. It was specifically applied to data 
from a continuous alphabet where the number of data points was a 
power of two, and later extended to multiple channels.[1-3] We 
extend that method to the generalized case of an arbitrary number 
of channels, arbitrary number of data points and an unknown 
(discrete or continuous) alphabet. In addition, we show how an 
alternative algorithm greatly reduces memory requirements and 
increases computational speed. 

In the following section, we describe an efficient method of 
computing In. In the Results section, In is computed for audio data 
from various blind signal separation algorithms for 2, 3, and 5 
channel signals. It is shown that, for the separation of multichannel 
signals, In  is a strong indicator of the effectiveness of signal  
separation.  

METHOD 

The data is described as a series of vectors (1), (2),..., ( )X X X N  

where each vector is n dimensional, 1 2( ) ( ( ), ( ),... ( ))nX i X i X i X i= , 

and the number of vectors is a power of two, N=2K. The vectors are 
assumed to be sampled uniformly in time. That is, at each time 
interval ∆t, a new vector is sampled, and ∆t is a constant. 
Alternatively, the data may be described as n scalar time series, 

1 2, ,... nX X X , where each time series consists of N data points, 

( (1), (2),... ( ))j j j jX X X X N= . We will use both of these notations 

depending on the situation. For the sake of simplicity, we use a 
slightly different notation for the generalized mutual information 
than was suggested by Fraser and Swinney. The multichannel 
mutual information  for time series data may be written as 

1 1 2 2

1 2
1 2

1 2

( , ,... )
... ( , ,... ) log

( ) ( )... ( )
n n

n
n n

x X x X x X n

p x x x
I p x x x

p x p x p x∈ ∈ ∈

= ∑ ∑ ∑  (7) 

so that I2 is the mutual information as typically defined.   

 

Figure 1. An example grid used to  compute the mutual 
information of two time series. The cuts are made such that 
a point may occupy each row or column with equal 
probability. 

Although all the audio data analyzed in the Results section come 
from 16 bit wavefiles, we would like to compute the mutual 
information for data of arbitrary precision. A change of variables is 
first performed on the data, so that each time series 

( (1), (2),... ( ))j j j jX X X X N=  is transformed into integers, 

( (1), (2),... ( ))j j j jY Y Y Y N=  such that the integer values fill the 

range 0 to N-1 and ( ) ( )j jX i X k<  implies ( ) ( )j jY i Y k< . The 

precision of the data is thus dictated by the number of data points, 
i.e., 28 data points give data with 8 bit precision. This has the effect 
of gridding each dimension into equiprobable partitions.  

Fig. 1 depicts the partitions for the case of 16 2-dimensional data 
points. The equiprobable binning has the added benefit that 

1 2( ) ( )... ( )np x p x p x= = . Notice that theoretically, this should 

yield the same estimate for the mutual information in the limit of 
infinite data since the mutual information is constant with respect 
to invariant transformations. Issues arise here, however, since the 
estimation method used may not have the same invariance. 
Nevertheless, this method is still a reasonable approximation of the 
mutual information for the transformed data. 

In [1] a recursive approach was taken to the estimation of the 
mutual information. This can be extended to the n dimensional 
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case by creating a 2n − ary tree from the data 1 2, ,..., NY Y Y . At each 

level of the tree a vector is sorted into one of the 2n branches, 
depending on the value of each vector coordinate. At each node in 
the tree, the number of elements in or below that node is stored. 
Such a tree is known as a quadtree and its creation and searching 
are discussed extensively in computer science literature.[4-6] 

The mutual information is computed through a traversal of the tree. 
Recall that N is a power of two (if not, then data points are 

removed), 2KN = . The levels of the tree define successive 
partitions of the n-dimensional space. For the mth level of the tree, 
the space is partitioned into 2mn hypercubes, 

(0), (1),... (2 1)nm
m m mR R R −  such that the hypercube Rm(j) may be 

partitioned into 1 1 1(2 ), (2 1),... (2 2 1)n n n n
m m mR j R j R j+ + ++ + − . Each 

hypercube has an associated probability Pm(j), which is estimated 
from the relative frequency of that hypercube, Nm(j)/N. Thus the n-
dimensional mutual information may be estimated for any level m 
of the tree. 

2 1

0 1, 2, ,

( )
( ) log

( ) ( )... ( )

nm

m
m m

j m m n m

P j
i P j

P j P j P j

−

=

= ∑  (8) 

where , ( )i mP j  is the probability of finding the ith coordinate of a 

vector to reside in the same partition along the  ith direction as 
Rm(j). Due to the equiprobable nature of the partitions, 

, ( ) 2 m
i mP j −=  for all i and j. Hence   

2 1

0

( ) log ( )
nm

m m m
j

i mn P j P j
−

=

= + ∑  (9) 

Note that the contribution to im of Rm(j) is 
( ) ( ) log ( )m m mmnP j P j P j+  and the contribution to im+1 of Rm(j) is 

2 ( 1) 1

1 1
2

( 1) ( ) ( ) log ( )
n

n

j

m m m
k j

m nP j P k P k
+ −

+ +
=

+ + ∑ . So in going from im to 

im+1 a ( )mnP j  term is added and the ( ) log ( )m mP j P j  term is 

replaced by 
2 ( 1) 1

1 1
2

( ) log ( )
n

n

j

m m
k j

P k P k
+ −

+ +
=
∑ . If the mth level has no 

substructure, then 1(2 )n
mP j+ =  1(2 1) ...n

mP j+ + =  

1(2 ( 1) 1) ( ) / 2n n
m mP j P j+ + − = . So, without substructure, the 

contribution to im+1 of Rm(j) would be the same as  the contribution 
to im of Rm(j). Therefore 0 (0)nI G=  where, 

( ) ( ) log ( )m m mG j P j P j= , if there is no substructure and  (10) 

2 ( 1) 1

1
2

( ) ( ) ( )
n

n

j

m m m
k j

G j nP j G k
+ −

+
=

= + ∑ , if there is substructure. (11) 

Fraser and Swinney suggest a χ-squared test for substructure. 
However, this is a source of error and is unnecessary. Instead, we 
choose to stop the calculation when no further subdivision of Rm(j) 
is possible, and hence we are guaranteed no substructure. This is 
the case if ( ) 1mN j ≤ , since a cube containing 1 point will always 

be partitioned into 2n-1 cubes containing no points and a cube 
containing 1 point. This partitioning is clearly an artifact of the 
finite number of data points and not of any structure in the data. 

So using this cutoff as a test for substructure, we have 

0 (0)
logn

nF
I N

N
= −  where, 

( ) 0mF j = , if ( ( )) 2mN R j <  (12) 

2 ( 1) 1

1
2

( ) ( ) ( )
n

n

j

m m m
k j

F j N j F k
+ −

+
=

= + ∑ , if ( ( )) 2mN R j ≥ . (13) 

Each node ( )mR j  in the tree contains ( )mN j  points and pointers 

to 1(2 ),n
mR j+  1(2 1),n

mR j+ +  ... (2 2 1)n n
mR j + − . The tree is 

traversed from left to right using equations (12) and (13) to keep a 
running sum of the mutual information.  

However, such a search tree based approach is problematic. First, 
the memory required to store the tree is on the order of 2nN, due to 
the fact that null pointers must be created at each node. In addition 
to the memory problems, this implies that a great deal of 
computational time must be spent dynamically allocating (and 
deallocating) the tree. This is unnecessary since the tree is intended 
only to be searched once. A far quicker implementation may be 
performed if one notices a natural ordering for multidimensional 
data.  

For 8 points of two channel data, the sorted scaled data may be 
ordered in the following manner. 

(0,0) -> 00 00 00 
(3,2) -> 00 01 10 
(2,1) -> 00 10 01 
(1,6) -> 01 01 10 
(5,3) -> 10 01 11 
(4,4) -> 11 00 00 
(6,5) -> 11 10 01 
(7,7) -> 11 11 11 

This is achieved using a quicksort based on the following 

comparison scheme. For vectors ( )Y i  and ( )Y j , one determines 

whether ( ) ( )Y i Y j< , ( ) ( )Y i Y j> , or ( ) ( )Y i Y j=  by making the 

following comparisons. 

If  the first bit in the binary representation of 1( )Y i  is less than the 

first bit in the binary representation of 1( )Y j , then ( ) ( )Y i Y j< . 

Else if  the first bit in the binary representation of 1( )Y i  is greater 

than the first bit in the binary representation of 1( )Y j , then 

( ) ( )Y i Y j> . If these first bits are equal, then we make the same 

comparison on the first bits of 2 ( )Y i  and 2 ( )Y j , and so on up to 

the nth components of the vectors. If all of these are equal, then we 
compare the second bits of 1 ( )Y i and 1( )Y j , and then, if necessary 

the second bits of 2 ( )Y i  and 2 ( )Y j , and so on. Again, if these are 

all equal we move on to the third bits of the binary representation. 
This procedure is completed until all bits of the binary 

representations of ( )Y i  and ( )Y j  have been compared. Thus the 

comparison of two vectors requires at most n K⋅  binary 
comparisons.  

Computation of the mutual information can then be achieved 
through processing the sorted data using equations (12) and (13) to 
keep a running sum of the mutual information. For each level of 
the binary representation a tally is kept of the number of points 
within the current box. Two successive vectors in the sorted data 
are compared. When the two vectors differ on a given level, we 
know that we have moved to a new box on that and all lower 
levels, and so the number of points in each of these boxes is added 
to 0 (0)F . 

The minimum value of the information occurs when  1 2, ,... nX X X  

are completely independent. In which case, 
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1 2 1 2( , ,... ) ( ) ( )... ( )n np x x x p x p x p x=  and 0nI = . The maximum 

value of the mutual information occurs when  1 2 ... nX X X= = . In 

which case 1 2 1 2( , ,... ) ( ) ( ) ... ( )n np x x x p x p x p x= = = =  and  

      
2 1

0

( )
( ) log ( 1)

( )

nK

K
n K n

j K

P j
I P j n K

P j

−

=

= = −∑             (14) 

This gives an invariant measure for a data set. ( 1)nI n K−  

represents the probability of a bit in a measurement being 
redundant, given the total size of the data set.  

RESULTS 
Blind signal separation (BSS)[7-9] is the recovery of unobserved 
independent signals or sources from several observed sources. The 
classic example of such a problem is when m microphones are 
placed in a room and used to record n people speaking 
simultaneously. BSS then involves the recovery of the m voices 
from the n recordings. The general case is depicted in Figure 2. 

 

Figure 2. Blind source separation involves the determination 
of M sources when only N mixed signals are known. This is 
done using an unmixing matrix that attempts to reverse the 
operation of the unknown mixing matrix.  

Mutual information is an appropriate statistical measure for the 
success of a BSS algorithm. If two sources are truly independent, 
then no information should be shared between them. Highly mixed 
sources would share considerable information, and identical 
sources would share the maximum allowable information (the 
entropy of the source H(X)). The same is true of the mutual 
information as applied to n sources, except that the maximum 
allowable information shared becomes (n-1)H(X). 

Real life microphone recordings were not used because in such a 
case, the original source signals would not be known. In order to 
definitively measure the success of a blind source separation 
algorithm, the source signals must be compared against the output 
of the separation method. Therefore, microphone recordings were 
synthetically simulated from prerecorded sources. The  
microphone recordings were modeled as linearly mixed 
combinations of the original sources. This is an oversimplification 
of a real life recording but still suitable for a simple test of the 
analysis method. A more sophisticated approach would take into  
consideration reflections and delayed versions of the source signals 
produced due to the room acoustics, i.e convolved mixtures. For 
simplicity,  the number of original sources and sensors 
(microphones) is equal. Using the notation given in the Method 
Section, the  mixing process is described by equation (15). 

1 11 12 1 1

2 21 22 2 2

1

( ) ... ( )

( ) ... ( )
( ) ( )

... ... ... ... ... ...

( ) ... ... ( )

n

n

n n nn n

X i a a a S i

X i a a a S i
X i AS i

X i a a S i

     
     
     = ⇒ =     
     
          

    (15) 

The BSS problem is to calculate an unmixing matrix W, using the 

observation signals (1), (2),... ( )X X X N , so that the product 

( )WX i  could retrieve the original signal ( )S i , 

( ) ( ) ( )U i WX i S i= ≈ . 

If W=A-1, then the original signal can be retrieved exactly. 
However, the original signal is unknown, and real world mixing of 
audio signals is convolved (acoustic reflection), somewhat 

nonstationary (changing room dynamics) and noisy (other signals 
modelled as noise). Thus W is an approximation to A-1. 

In our tests, we have performed BSS using Independent 
Component Analysis (ICA)[7, 8, 10]. ICA is a group of recently 
developed linear transformation methods that aim to minimize the 
statistical dependence of the observed signals.  Each of these 
methods employs a different metric of measuring statistical 
dependence. One fast and robust method is the FastICA 
technique,[10] which employs negentropy (a normalized version of 
the differential entropy), as a measurement for the statistical 
dependence of the observed signals. 

Case 1: 3 Channels 
Three independent audio signals were linearly mixed and then 
separated using the FastICA technique. Each monophonic signal 
consisted of 215 16-bit data points sampled at 8kHz. The first two 
signals represented different pieces of music and the third signal 
was pure Gaussian noise of zero mean and unit variance. 

Comparison of 1 2( , ,... )nI X X X , 1 2( , ,... )nI S S S , and 

1 2( , ,... )nI U U U  should yield insight into the success of the 

separation.  

Time Series Mutual Information 

All 3 input sources 1.251 

All 3 mixed signals 5.976 

All 3 output signals 1.256 

Input Signals 1 and 2 0.906 

Input Signals 1 and 3 0.912 

Input Signals 2 and 3 0.903 

Mixed Signals 1 and 2 1.657 

Mixed Signals 1 and 3 1.098 

Mixed Signals 2 and 3 2.065 

Output Signals 1 and 2 0.929 

Output Signals 1 and 3 0.915 

Output Signals 2 and 3 0.925 

Table 1.  Measurements of mutual information from 3 
channel audio. Independent sources were linearly mixed and 
then separated using independent component analysis. 
Differences in the mutual information between the mixed and 
unmixed (input and output) signals are compared. The three 
dimensional mutual information (I3) used in the first three 
computations is a better measure of independence than the 
traditional mutual information (I2) used for comparing 2 
signals. 

The results of computation of the mutual information are shown in 
Table 1. Measurements of I3 for the input sources and output 
signals differ by less than 0.5%, thus indicating that the attempt to 
separate the signals was highly successful. I3 is much larger for the 
mixed signals than for either the input signals (4.777 times) or the 
output signals (4.758 times), and may serve as a measure of the 
amount of mixing. Although these effects are also seen using I2, 
they are much less obvious. I2 for the mixed signals is only up to 
2.065 times as large as I2 for the input signals and 2.257 times I2 
for the output signals. This indicates that, for 3 signals, I3 may be 
an appropriate tool to use in blind signal separation. 

Case 2: 5 channels 
We chose a particularly difficult case for five channels. Here, there 
are five male speakers, each saying the same phrase. Each 
recording was monophonic, and consisted of 214 16 bit data points 
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sampled at 8 KHz (total duration of 2.048 seconds). The 5 
channels were then mixed using the matrix 

-0.5945 -0.9695 -0.1627 0.6762 0.0056

-0.6026 0.4936 0.6924 -0.9607 0.4189

0.2076 -0.1098 0.0503 0.3626 -0.1422

-0.4556 0.8636 -0.5947 -0.2410 -0.3908

-0.6024 -0.0680 0.3443 0.6636 -0.6207

A

 
 
 
 =
 
 
  

 (16) 

Three different techniques for ICA were used: FastICA,[10] 
FixedPointICA,[7] and Maximum Likelihood estimates.[11] Table 2 
indicates the results of generalized mutual information estimates 
for each case. All 3 methods do an excellent job of separating the 
signals. However, each method results in a slightly higher mutual 
information than in the original source signals. This indicates that 
the separation was not perfect. [7-9] 

Time Series Mutual Information 

All 5 input sources 2.279 

All 5 mixed signals 7.239 

Separated (FICA) 2.534 

Separated (FixedICA) 2.411 

Separated (Maximum LikelihoodICA) 2.484 

Table 2.  Measurements of mutual information from 5 
channel audio. Independent sources were linearly mixed and 
then separated using independent component analysis. 
Three different implementations of ICA were compared. 
Each method is very successful at separating the signals, 
although each method gives slightly more shared information 
than in the original signal. 
 
Mutual Information as a contrast function 

The mutual information has been used as a contrast function in 
ICA in many previous works. However, these implementations 
make assumptions about the prior distribution of the sources,[8, 9] or 
use approximations to the mutual information that may be 
circumspect.[7] We attempted to use the mutual information as 
calculated above as a contrast function. 

210 points were mixed using the matrix  

0.5 0.5

0.3 0.7
A

 
=  

 
 (17) 

The indices of the unmixing matrix were varied in an attempt to 
minimize the mutual information of the resulting unmixing matrix 
A. Using the mutual information as the contrast function to be 
minimised, the unmixing is fairly successful 

1.087 -0.001

0.000 0.762
WA

 
=  

 
 (18) 

This is compared with ICA using the maximum likelihood method, 
which yields 

0.290 0.003

0.001 1.072
WA

 
=  

 
 (19) 

The mutual information actually acts as a better discriminating 
statistic than the maximum likelihood. This agrees with the view 
that mutual information is a good candidate as a contrast 
function.[12] 

CONCLUSION 
It has been demonstrated that the mutual information between any 
number of time series can be estimated using a quick and efficient 
routine. It is an effective method of determining the redundancy in 
vector measurements and hence can be used as a measure of the 
success of blind signal separation algorithms. It can also be 
implemented as a contrast function for use in implementing new 
ICA methods. 
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