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Abstract—Peripheral oxygen saturation (SpO2) is one impor-
tant vital sign to be monitored in individuals, whose health is
fragile, such as the elderly. Contactless SpO2 monitoring using
RGB cameras has been already developed with satisfactory re-
sults. This work explores the case of achieving an acceptable level
of performance, when the lightning conditions are not optimal,
particularly during night time, by processing solely infrared
low-cost camera recordings. The Eulerian Video Magnification
(EVM) technique was used to enhance the subtle differences
in skin pixel intensity in the facial area. Two approaches were
explored for performing regression: one using 12 novel features
extracted from the amplified photoplethysmography (PPG) signal
and Generalized Additive Models and a second using a 3D
Convolution Neural Network (CNN) architecture on the raw
amplified forehead video. The root mean square error in the
estimated SpO2 levels using both methods is minimal and in the
accepted range for these applications.

Index Terms—Eulerian Video Magnification (EVM), periph-
eral oxygen saturation (SpO2), Infrared (IR), Regression Neural
Networks, Generalized Additive Models (GAM), remote photo-
plethysmography (rPPG)

I. INTRODUCTION

Oxygen saturation, a crucial physiological parameter, has
been providing vital information about a patient’s health
status during treatment therapies, critical surgery operations
or every day activity monitoring. The traditional contact pulse
oximeter, which is most commonly placed on the fingertip, has
been utilized frequently in daily tasks. However, it cannot be
employed in cases of individuals, who have trembling hands
or feet for a variety of reasons or strict health protocols are
applied during a grand disease outbreak, such as the COVID-
19 pandemic. In these cases, any medical equipment must not
be shared among patients, if possible, to avoid any infections.

The peripheral oxygen saturation (SpO2) level is expressed
as the percentage of oxygenated hemoglobin over the total
amount of hemoglobin (oxygenated and deoxygenated) in the
blood [1], [3]. Most people lie within the range of 96%-98%.
There are also cases, where it can reach up to 100% [1]. Its
mathematical definition is given by:

SpO2 =
HbO2

HbO2 +Hb
× 100% (1)

where Hb is the deoxygenated hemoglobin and HbO2 is
the oxygenated hemoglobin. The SpO2 must be continuously

monitored both during surgical operations and in intensive care
units (ICUs). The pulse oximeter is currently the instrument
used most frequently for this purpose. Detecting variations
in blood volume in the microvascular blood–tissue exchange
network [15] is possible with the help of the straightforward,
non-invasive and inexpensive optical technique, known as
photoplethysmography (PPG). The concepts of photoplethys-
mography are used by oximeters to track vital signs. The pulse
oximeter, which measures SpO2, is a tool that typically relies
on a clip fastened to the subject’s index fingertip, earlobe or
toe. Unfortunately, in order to measure, direct contact with
the patient’s skin is required, and this contact is not always
feasible, e.g. in newborns. As a result, continuous monitoring
SpO2 without direct skin contact will improve the quality of
treatment for these patients.

Contactless measuring techniques of vital signs perform
effectively to address the aforementioned issues [2]. These
investigations paved the way for innovations, such as con-
tactless pulse oximetry, image photoplethysmography (iPPG),
and remote photoplethysmography (rPPG). Video frames are
used to analyze variations in the amount of light absorbed by
tissue during contactless vital sign monitoring. To facilitate
this, the Eulerian video magnification (EVM) technique was
used to enhance the subtle differences in skin pixel intensity
using imaging photoplethysmography (iPPG) [7].

There has been previous research on estimating peripheral
oxygen saturation (SpO2) remotely. Some studies processed
signals recorded by RGB cameras using ambient light [3], [4].
Some other previous works have focused on video magnifi-
cation techniques, such as the Eulerian Motion Magnification
[5] or including additional signal transformations (e.g. Hermite
Transform) [6]. Both of these approaches have implemented
Motion Magnification using RGB footage, originated from a
visual camera in a natural or ambient lighting environment
and later applied linear regression to estimate the actual SpO2
levels. One important element is that, in current literature, the
SpO2 is modelled as a function of Ka i.e. the ratio of ratios
[5]. This ratio is obtained by analyzing the association between
the red and green wavelengths [5], the red and IR wavelengths
[4] or between the red and blue wavelengths of the PPG signal
[6].

In this work, the main objective is to devise a method



that estimates the SpO2 remotely using only infrared low-
cost cameras, in order to operate during night-time. To the
best of our knowledge, this is a novel effort that has many
applications. To tackle the problem, we used Eulerian Motion
Magnification to enhance the video and then experimented
with two methodologies: one that uses 12 novel statistical
features and traditional machine learning tools, such as Gen-
eralized Additive Models and a second that uses a CNN
architecture on the raw magnified video. The presented results
show that this task is possible with accurate predictions.

II. PROPOSED METHODOLOGY

A. Preprocessing

In this paper, the interest is to obtain an SpO2 estimate
without contact using an infrared camera. The facial area
was chosen to be used for the estimation of SpO2 and more
specifically the forehead and the left/right cheek areas. The
method uses 2-minute video clips from an infrared camera
as inputs. At first, the face is detected in the video using the
Viola-Jones algorithm [16], which seems to operate accurately
in infrared videos. The next step was to identify the forehead
and the left/right cheek region in the detected face. Based on
the analysis in [8], [10], [11], it was possible to determine
accurately and calculate the coordinates of the desired regions
of interest (ROI), as shown in Fig. 1. It is ordinary calculus to
use the presented ratios on the face detection bounding box,
in order to estimate the coordinates of the three desired ROIs.

The next step is to use the Eulerian Video Magnification
method, as proposed by Wu et al. [7] to amplify the facial
blood-flow in the infrared stream. This method is of great
importance, due to the fact that subtle variations on skin’s
surface, which are commonly unnoticeable to the naked eye,
are now highlighted. The amplification factor was set to
α = 120, while the frequency range of amplification was set
between 0.4 and 4Hz. This is slightly larger than the range
used in [3], because in cases of supraventricular tachycardia
(SVT), the heart rate could peak at 240 bpm [9].

B. Feature Extraction

Inspired by [3], [5], a number of novel features that are
intrinsically linked with the statistical properties of the iPPG
signal can be extracted from the 3 desired regions. Extending
those initially proposed by [3], [5], the following features are
selected: a) the average of all frames’ intensity averages, b)
the standard deviation of all frames’ intensity averages, c)
the average of all frames’ standard deviation of intensity and
d) the standard deviation of all frames’ standard deviation of
intensity. Four features for three distinctive regions of interest
sums up to twelve features in total. These features will be used
as input to traditional machine learning regression algorithms
in the experimental section.

C. Generalized Additive Models

In this paper, we examine the application of Generalized
Additive Models (GAM) for regression [14]. The main dis-
tinction between a GAM and Generalized Linear Models

Fig. 1. Proportion analysis of the human face. The desired regions of interest
(forehead, left-right cheek) are highlighted.

(e.g. Linear Regression) is that a GAM is permitted to learn
non-linear relationships between dependent and independent
variables. GAMs can offer regression results that can be
represented by the sum of any number of flexible functions
of each feature, known as splines. Splines are composite
non-parametric functions that reveal non-linearities for each
feature. Thus, a GAM can express the inference of a r.v. Y as
the sum of a set of predictor r.v.s X1, X2, . . . , Xp, as follows:

E{Y |X1, X2, . . . , Xp} = f0 +

p∑
j=1

fj(Xj) (2)

where fj(·) are smooth nonparametric functions standardized,
so that E{fj(Xj)} = 0 [14]. GAMs are particularly suitable
for regression tasks, since the marginal effect of a single
variable is independent of the other variables’ values, and
thus are able to capture nonlinear relationships and patterns.
The GAM framework enables us to regulate the predictor
functions’ smoothness to avoid overfitting.

D. Deep Learning Regression

Due to their greater capability of collecting spatio-temporal
features from video frames, convolutional neural networks
with 3D kernels (3D CNNs) have recently gained a lot of
popularity in the computer vision community. In this paper,
we explore their efficiency in this regression task. More
specifically, we decided to exploit only the motion amplified
forehead video of size 64× 128× 300, denoting D = 300 the
number of frames and (H = 64)× (W = 128) the frame size.
The input video is normalised to the [0, 1] interval, whereas the
SpO2 output values also normalised to the [0, 1] interval. The
proposed network consists of two Conv3D layers, which are
then followed by two Fully-Connected layers and a final output



layer, which features a linear activation function and yields the
inferred value. The complete architecture of the proposed 3D
CNN is shown in Table I. The loss function was the Mean
Square Error (MSE), which was optimised using the Adam
Optimizer with a learning rate of η = 0.001.

III. EXPERIMENTS

A. Dataset - Implementation

A dataset of infrared facial videos with SpO2 measurements
had to be constructed, in order to evaluate the performance of
the proposed methods. In total, 16 subjects participated in two
experiments each. It was determined that 2 minutes would be
an adequate monitoring duration for each subject, in order to
remain calm and relaxed. A commercial pulse oximeter (JPD-
500D ControlBios Oxicore Pulse Oximeter) was employed as
the reference point that continuously tracked each participant’s
oxygen saturation during the two 2-minute length trials. Half
of the subjects were captured in a dark room and the other
half were captured in a room with natural sunlight, using the
infrared camera in either case. Each participant was asked to
remain as still as possible for 2 minutes twice. During the
first video recording, all participants were asked to breathe
normally. During the second video recording, the subjects
were asked to hold their breath, as many times and as long
as they felt comfortable, in order to capture lower SpO2
measurements. A wired Google Nest Cam (1920× 1080/Full
HD, 15 fps@night time & 30 fps@day time) was used for
capturing, which was placed at eye-level and switched to
the ”Infrared Always” mode. The participants were seated at
75 cm away from the camera. This distance was chosen in
order to avoid excessive distortion, caused by the wide-angle
camera lenses. All data and SpO2 reference values are publicly
available and can be found on the paper’s GitHub page .

The motion magnification step was run on MATLAB
R2018b, based on the code, available by [7]. The machine
learning regression models and GAM were available in Python
from the scikit-learn and pygam libraries. The proposed 3D
CNN architecture was implemented in Tensorflow v.2.9.1
on a machine running Ubuntu 22.04, with an Intel i9-
11900KF@3.5GHz with 64GB RAM and an NVidia RTX
A6000 with 48GB RAM1.

B. Comparison

The ISO 80601-2-61:2019 [13] defines the accuracy as the
root mean square difference between the estimated values
SpO2i and reference values SRi and is given by:

Arms =
√
MSE =

√∑n
i=1(SpO2i − SRi)2

n
(3)

where n is the number of samples. According to BS EN ISO
80601-2-61:2019, the root mean square accuracy must not
exceed 2% of SpO2 range [13] or alternatively the mean square
error of the testing pair values must not exceed 4%.

1The developed code can be found at [20]

TABLE I
THE PROPOSED 3D CNN ARCHITECTURE FOR VIDEO SEQUENCES

Layer/Stride Contents Output
Size
(HxWxDxC)

Input Clip - 64x128x300x1

Conv3D


Conv3D(16, kernel = (5, 5, 5))
MaxPooling3D(pool = (3, 3, 3))

Dropout(p = 0.5)
Activation = ReLU

initializer = he uniform

 20x41x98x16

Conv3D


Conv3D(16, kernel = (5, 5, 5))
MaxPooling3D(pool = (3, 3, 3))

Dropout(p = 0.5)
Activation = ReLU

initializer = he uniform

 5x12x31x32

Flatten - 59520

FC1

 Dense(128)
Activation = ReLU

initializer = he uniform

 128

FC2

 Dense(128)
Activation = ReLU

initializer = he uniform

 128

Output
[

Dense(1)
Activation = Linear

]
1

The aim of this paper was to verify whether there is any
correlation between the collected infrared data, i.e. grayscale
video, and the peripheral oxygen saturation (SpO2). We tested
machine learning and deep learning regression algorithms to
demonstrate that features of the iPPG signals, extracted from
the forehead and left and right cheeks, are adequate to fulfil
medical standards and accuracy criteria, such as those stated
from USA [12] and EU/UK (BS EN ISO 80601-2-61:2019)
[13]. For the machine learning regression, apart from the
proposed GAM models, we also tested linear regression [17],
Ridge regression [18] and Lasso regression [19] for alpha =
0.0001 and alpha = 0.001.

The developed dataset of 190 video clips was shuffled
and divided into 152 clips for training and 38 clips for
testing, while applying 5-fold cross validation and multiple
runs (20 runs per algorithm). No division between different
light conditions was made. The accuracy of each algorithm is
estimated by the mean of the 5 folds and 20 runs using the
definition in (3).

C. Results

The results from the conducted experiments are summarised
in Table II, where the best performance is indicated in bold. It
is evident that all models have not exceeded the 2% tolerance
of RMSE that is dictated by the aforementioned directive.
From all the tested frameworks the GAM seems to predict
the correct SpO2 more accurately. The 3D CNN, although it
performs favourably, falls behind many traditional machine
learning regression techniques. This might be due to the
relative small number of data of the dataset and the fact that
only the forehead data are used.



TABLE II
COMPARISON IN TERMS OF MEAN ABSOLUTE ERROR, MEAN SQUARE

ERROR AND ROOT MEAN SQUARE ERROR

Model MAE MSE RMSE

Linear Regression 1.266 2.982 1.727
Ridge Regression 1.410 2.903 1.704

Lasso (alpha = 0.0001) 1.396 2.874 1.695
Lasso (alpha = 0.001) 1.445 3.019 1.738

GAM 1.123 2.662 1.632
3D CNN 1.417 2.935 1.713

TABLE III
NUMBER OF FEATURES INVESTIGATION AND BEST PERFORMANCE

Model Min RMSE No. of features

Linear Regression 1.517 4
Ridge Regression 1.671 8

Lasso (alpha = 0.0001) 1.659 9
Lasso (alpha = 0.001) 1.727 5

GAM 1.440 12
3D CNN 1.687 -

In the previous study, all 12 features are presented as input
to the machine learning approaches, except for the 3D CNN,
which uses the amplified video stream. As an ablation study,
we wanted to check whether all these 12 features are useful
for each algorithm. As a result, all possible combinations of
subsets of these features were tested with each regression
algorithm. In Table III, we depict the best attained RMSE score
for each method and the number of features that produced this
score. It appears that only the GAM produces the best score us-
ing all 12 features, whereas the other methods, rely on subsets
of the original features. It is noteworthy that Linear Regression
uses only 4 features to produce its best result, which include
statistical measurements from all examined facial areas. This
shows that all the selected regions are important for this task.
Finally, Table III shows the best attainable result (RMSE) from
each method (including 3D CNN) and not the average that is
depicted in Table II.

One limitation of the current research can be seen in
Fig. 2 and Fig. 3, where the distribution of actual SpO2
measurements and the age distribution of the participants
are visualised. The vast majority of the participants were
undergraduate and postgraduate students without any health
complications, even though heavy smokers were included.
Even when the students were asked to hold the breath in order
to cause controlled drop in oxygen concentration, as suggested
in previous studies, in most cases the measurement drop
was small or negligible. Consequently, most measurements
lie within the 96%-100% range and only a few below 95%,
which demonstrates a situation that requires possible medical
assistance. Hence, the experiments would be more complete,
if more people with low levels of SpO2 could be captured.

IV. CONCLUSIONS

In this work, we attempt to measure SpO2 levels from
human subjects in a contactless low-light scenario. The only
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Fig. 2. Distribution of SpO2 measurements.
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Fig. 3. The age distribution of subjects.

required equipment is a commercial low-cost infrared camera,
such as those available for home surveillance. Using motion-
amplified infrared video and 12 novel statistical features, we
have shown that it is possible to estimate the actual levels of
SpO2 with very small tolerance that satisfies the world’s stan-
dards. We have tested a variety of machine learning regression
techniques, as well as a 3D CNN, with the one based on GAM
producing the most accurate estimates. The produced dataset
and methods are available online. The proposed method’s key
advantage is the potential of full-day use in cases, such as
elderly care facilities, hospitalized patients where a medical
emergency, serious or not, may occur at any time. For future
work, we would like to expand the current dataset with more
people that exhibit lower (pathological) levels of SpO2.
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