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Abstract. The estimation of depth in two-dimensional images has long
been a challenging and extensively studied subject in computer vision.
Recently, significant progress has been made with the emergence of Deep
Learning-based approaches, which have proven highly successful. This
paper focuses on the explainability in monocular depth estimation meth-
ods, in terms of how humans perceive depth. This preliminary study
emphasizes on one of the most significant visual cues, the relative size,
which is prominent in almost all viewed images. We designed a specific
experiment to mimic the experiments in humans and have tested state-
of-the-art methods to indirectly assess the explainability in the context
defined. In addition, we observed that measuring the accuracy required
further attention and a particular approach is proposed to this end. The
results show that a mean accuracy of around 77% across methods is
achieved, with some of the methods performing markedly better, thus,
indirectly revealing their corresponding potential to uncover monocular
depth cues, like relative size.

Keywords: computer vision · monocular depth estimation · explain-
ability.

1 Introduction

Research by Nagata [1], further classified by Cutting and Vishton [2], presented
a complete set of visual depth cues, as a result of specifically designed exper-
iments in humans. These cues include occlusion, relative size, relative density,
height in the visual field, aerial perspective, motion perspective, convergence, ac-
commodation, and binocular disparity. The combination of these visual depth
cues appears to be associated with the comprehensive understanding of a scene.
Later, other researchers tried to systematically review the domain and present
a more thorough view of depth estimation in humans [3].

The scientific community has long faced a significant challenge in achieving
depth perception in mechanical systems. The accurate estimation of depth is a
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crucial task in machine visual perception. Depth estimation involves reconstruct-
ing the missing dimension, which represents the distance between the objects and
the observer in a three-dimensional (3D) scene, through a two-dimensional (2D)
projection of the scene.

Nevertheless, there is no study, to the best of our knowledge, that clearly
connects depth cues, as defined for humans, with the ability of modern depth
estimation methods to estimate depth in monocular 2D images, thus affecting
the explainability of those methods. In this paper, we explore towards addressing
this issue, by using specifically designed data, and focus on the relative size
depth cue, a prominent cue in projected scenes. We evaluate selected state-of-
the-art depth estimation methods using those data and provide insights into
their explainability, within our context.

2 Deep Learning-Based Monocular Depth Estimation

Traditional methods relied on assumptions, constraints, and optimizations to
provide detailed depth estimates. However, these methods faced limitations such
as a restricted measurement range, sensitivity to outdoor lighting conditions,
calibration requirements, and high energy consumption, which hindered the uti-
lization of sensor-based techniques involving RGB-D and LiDAR sensors. Ad-
ditionally, approaches based on image pairs or sequences could only calculate
depth values for sparse points.

To tackle these challenges, researchers proposed the usage of deep learning.
Deep Learning methods achieved high performance in estimating dense depth
maps. In tasks like depth calculation with high complexity, where it is nearly
impossible to apply classical pattern recognition approaches, deep learning meth-
ods achieved remarkable results. In the following study we focus on the signif-
icant work by Ibraheem et al. [4], Godard et al. [5], and Ranftl et al. [6], who
made important contributions to the field. Ibraheem et al. [4] proposed a novel
approach (DenseDepth) to estimate high-resolution depth maps from RGB im-
ages using a transfer learning-based encoder-decoder network. The encoder was
a pretrained DenseNet-169, fine-tuned on NYU Depth v23 and KITTI datasets4.
The authors reported state-of-the-art results in typical and qualitative aspects
and in terms of generalisation. Godard et al. [5] focused on estimating depth
using video sequences, stereo pairs, or a combination of both (Monodepth2).
They introduced several improvements. The system was trained on subsets of
the KITTI dataset. The authors reported state-of-the-art results, outperform-
ing other methods at that period. Ranftl et al. [6] proposed a novel approach
(MiDaS) to enhance the robustness of depth estimation models and address the
challenge of dataset bias. The authors reported results outperforming previous
methods and particularly in terms of generalisation, making their method one
of the most effective to date.
3 NYU-v2, indoor images (rooms & hallways scenes) [7].
4 KITTI, outdoor images (urban & street scenes) [8].
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Fig. 1. Process example: (a) original image, (b) predicted depth, (c) pseudo-coloured
groundtruth depth, (d) pseudo-coloured masked predicted depth.

3 The explainability experiment and results

To create meaningful explainability experiments we tried to mimic the relevant
work done in humans. In the original experiments, as described in the Introduc-
tion, humans were asked to assess the relative distance of partially viewed untex-
tured objects against neutral backgrounds. Thus, a particular artificial dataset
had to be created, using 3D modeling software. The new dataset consists of 23800
2D images of black cylindrical objects at various distances against a white back-
ground, created through perspective projections of the corresponding virtual 3D
scenes. Those data were used to test the three selected pretrained state-of-the-art
methods. The core idea is to indirectly assess the explainability of the methods
in learning the relative size cue, by providing test examples which contain only
this single cue. We considered all published variations of the considered models.
Furthermore, to evaluate the models, binary masks were applied to focus only on
the pixels associated with objects in the scene. In addition, we adopted the scale
and shift pre-alignment suggested by [6]. The assessment of depth predictions
was based on common error and accuracy metrics, the most popular of which
were introduced by Eigen [9]; we used those definitions. An indicative example
of the process is shown in Fig. 1, where an original image of two objects at dif-
ferent distance is shown in (a), the predicted depth in (b), and pseudo-coloured
representations of the groundtruth (c) and the predicted depth (d).

Additionally, we observed that the size of the objects in the images plays
a significant role in the estimates of the error and accuracy. In the example
shown, an error in the estimated depth of the far object (depicted significantly
smaller) will have a negligible impact on the metrics, while the estimate should
be balanced. This observation led to the introduction. After the objects become
equally sized, the metrics are calculated, ensuring equal significance in error
estimates for both objects in the scene. Fig. 2 depicts the overall average results.
The gray bars represent results obtained by using the metrics in the typical way,
whereas the black bars represent results obtained after the rescaling process. As
expected, rescaling the smaller object results in lowering the accuracy (increasing
the error) on the average.

Apparently, the three first variations of MiDaS outperform the other meth-
ods, particularly when using rescaling, and achieve an average of �1 = 0.85
(85%). The same is reflected in the error estimates. From the experiments, it
seems possible that MiDaS partially learns the relative size cue, although more
experiments are needed to generalise this remark. In addition, the DenseDepth
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Fig. 2. The accuracy with a threshold �1 of the pertained models tested on our dataset.

method pretrained on NYU-v2 also exhibits increased accuracy compared with
MiDaS, whereas the same model pretrained on KITTI is among the worst cases.
This shows that the training dataset plays a significant role in learning depth
cues and this should be considered in situations where a connection with ex-
plainable results is required.

This is a preliminary study, focusing on a single monocular depth cue, the
relative size, and only a small set of methods. Explainability in depth estimation
was considered on the basis of how humans estimate depth and a connection
between the visual depth cues was attempted with the depth estimation provided
by state-of-the-art approaches. To enable this, a new dataset was created, to
mimic the original experiments in humans. This meant that the relative size cue
should be isolated and no other depth cues should be present in the images.
This study is ongoing and more datasets are created for each of the visual depth
cues to assess the effectiveness of the existing methods, and thus, to conclude on
the potential explainability in learning those cues. Overall, the final dataset will
become a benchmark for testing the explainability of depth estimation methods.

4 Conclusion

In this study, we tried to approach explainability in depth estimation deep learn-
ing methods in terms of human perception. To this end, a specific visual depth
cue was selected (the relative size) and a new dataset was created to mimic the
experiments in humans. Three state-of-the-art pretrained methods were selected
and tested against this dataset. As this dataset is limited to provide only a sin-
gle cue, the accuracy of the methods indirectly reflects their success in learning
the selected depth cue. In addition, it has been observed that the typical as-
sessment metrics should be applied on rescaled versions of the image objects,
in order to balance the estimated accuracy. Overall, the methods returned in-
teresting accuracy results. Currently, we are expanding the dataset to include
other visual depth cues and design new experiments to evaluate the efficiency of
state-of-the-art methods.
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