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Abstract

In this paper, the authors revisit the previously proposed Image Fusion framework, based on self-trained Indepen-

dent Component Analysis (ICA) bases. In the original framework, equal importance was given to all input images in

the reconstruction of the “fused” image’s intensity. Even though this assumption is valid for all applications involving

sensors of the same modality, it might not be optimal in the case of multiple modality inputs of different intensity

range. The authors propose a method for estimating the optimal intensity range (contrast) of the fused image via

optimisation of an image fusion index. The proposed approach can be employed in a general fusion scenario including

multiple sensors.

Index Terms

Multi-modal Image Fusion, Independent Component Analysis (ICA).

I. INTRODUCTION

Modern technology has enabled the development of low-cost, wireless sensors of various modalities that can be

deployed to monitor a scene. One can create a wireless network consisting of these spatially distributed autonomous

sensors in order to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure,

motion or pollutants, at different locations. The development of wireless sensor networks is strongly motivated

motivated by military and civilian application areas, including battlefield surveillance, environment and habitat

monitoring, health-care applications, home automation and traffic control [1].

In this study, the case of multi-modal imaging sensors of known position, that are employed to monitor a scene,

will be investigated. The information provided by multimodal sensors can be quite diverse. Each image has been

obtained using different instruments or acquisition techniques, allowing each image to have different characteristics,

such as degradation, thermal and visual characteristics. Multimodal sensors are increasingly being employed in

military applications [2]. Therefore, an operator or a computer vision system needs to examine the information
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provided by the individual sensors simultaneously, in order to exploit all the provided information and process the

observed scene. Nonetheless, this process of analysing all input images simultaneously is rather impossible for a

human operator or computationally very expensive for a computer vision system. If there existed a mechanism to

extract all the useful information from the input images to form a new composite one, the analysis system would

need to process a single image only. Image Fusion can be considered as the process of combining visual information,

obtained from various imaging sources, into a single representation, in order to facilitate the information inference.

In this study, the input images are assumed to have negligible registration problems, i.e. correct point-by-point

correspondence between the input images [3]. Let x1(i, j), . . . , xT (i, j) represent T input sensor images of size

M1 ×M2 capturing the same scene, where i, j refer to the pixel coordinates in the image. As already mentioned,

the process of combining the important features from the original T images to form a single enhanced image

f(i, j) is referred to as Image Fusion. Fusion techniques can be divided into spatial domain and transform domain

techniques [4]. In spatial domain techniques, the input images are fused in the spatial domain, i.e. using localised

spatial features. Assuming that g(·) represents the “fusion rule”, i.e. the method that combines features from the

input images, the spatial domain techniques can be summarised, as follows:

f(i, j) = g(x1(i, j), . . . , xT (i, j)) (1)

The main motivation behind moving to a transform domain is to work in a framework, where the image’s salient

features are more efficiently identified than in the spatial domain. Let T {·} represent a transform operator and g(·)
the applied fusion rule. Transform-domain fusion techniques can then be outlined, as follows:

f(i, j) = T −1{g(T {x1(i, j)}, . . . , T {xT (i, j)})} (2)

Several transformations have been proposed for image fusion, including the Dual-Tree Wavelet Transform [4], [5],

[6], Pyramid Decomposition [7] and self-trained Independent Component Analysis bases [8]. All these transforma-

tions project the input images onto localised bases, modelling sharp and abrupt transitions (edges) and therefore,

transform the image into a more meaningful representation that can be used to detect and emphasize salient

features, which is crucial for performing image fusion. In essence, these transformations can discriminate between

salient information (strong edges and other high activity patterns) and constant background or weak edges and also

evaluate the quality of the provided salient information. Consequently, one can employ the information provided

in the transform domain and select the required information from the input images to construct the “fused” image,

following the criteria presented earlier on.

In an earlier work [8], [9], the authors proposed a self-trained Image Fusion framework based on Independent

Component Analysis, where the analysis transformation is estimated from a selection of images of similar content.

The analysis framework projects the images into localised patches of small size. The local mean value of the patches

is subtracted and stored in order to reconstruct the local means of the fused image. In [8], an average of the stored

means was used to reconstruct the fused image. In [10], [11], [12], it was demonstrated that this choice might not

be optimal in several multi-modal cases and proposed an exhaustive search solution of the optimum performance

June 6, 2008 DRAFT



IEEE SENSORS JOURNAL, VOL. 6, NO. 1, FEBRUARY 2008 3

in terms of the Piella and Heijmans Fusion Quality index [13] for the case of two input sensors. In this paper, the

authors examine and provide a complete solution to this problem for the general T sensor fusion scenario, based

on the Fusion Quality Index of [13].

The combination of the means of the input images defines the contrast of the fused image. Contrast is related to

the local differences in an image intensity that make an object (or its representation in an image) distinguishable

from other objects and the background. In a multimodal fusion scenario, the images have different intensity range.

This intensity range is represented by the local mean information of the extracted patches. Balancing or combining

these means to construct the means of the fused image is equivalent to adjusting the difference between the input

images that highlight different parts of the image, i.e. the contrast in essence. The objective of this work is to find

an optimal contrast setting for the fused image in the ICA-fusion framework.

II. INTRODUCTION TO IMAGE FUSION USING ICA BASES

Assume an image x(i, j) of size M1×M2. An “image patch” xw is defined as an N×N neighbourhood centered

around the pixel (i0, j0). Assume that there exists a population of patches xw, acquired randomly from the image

x(i, j). Each image patch xw(k, l) is arranged into a vector xw(t), using lexicographic ordering (see Figure 1).

The vectors xw(t) are normalised to zero mean, producing unbiased vectors. These vectors can be expressed as a

linear combination of K basis vectors bj with weights ui(t), i = 1, . . . ,K:

xw(t) =
K∑

k=1

uk(t)bk = [b1 b2 . . . bK ]




u1(t)

u2(t)

. . .

uK(t)




(3)

where t represents the t-th image patch selected from the original image. The coefficients ui(t) can be represented

as the projections of the input patches on the trained bases, i.e. ui(t) =< xw(t), bi >, where < a, b > corresponds

to the inner product of vectors a and b. Equation (3) can be expressed, as follows:

xw(t) = Bu(t) (4)

u(t) = B−1xw(t) = Axw(t) (5)

where B = [b1 b2 . . . bK ] and u(t) = [u1(t) u2(t) . . . uK(t)]T . In this case, A = B−1 = [a1 a2 . . . aK ]T represents

the analysis kernel and B the synthesis kernel. The estimation of these basis vectors is performed using a population

of training image patches xw(t) and a criterion (cost function) that selects the basis vectors. Analysis/synthesis bases

can be trained using Independent Component Analysis [14] (ICA) and Topographic ICA [15], as explained in more

detail in [8]. The training procedure needs to be performed only once for similar-content images. In a similar fashion

to [16], a rectangular window is assumed for the patch extraction procedure during the training and fusion phases.

A number of N ×N patches (approximately 10000) are randomly selected from similar-content training images.

We perform Principal Component Analysis (PCA) [17] on the selected patches in order to select the K < N2 most
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Fig. 1. Segmenting an image for the extraction of local bases.

important bases. Subtracting the mean of the input patches introduces a linear dependence between the estimated

bases and therefore the effective number of available bases is N2−1. The ICA update rule in [14] or the topographical

ICA rule in [15] for a chosen L× L neighbourhood is then iterated until convergence. In each iteration, the bases

are orthogonalised using a symmetric decorrelation scheme [14]. In contrast to [10], [11], sample patches from all

multimodal inputs are selected to train the ICA bases.

A. Fusion in the ICA domain

After estimating an ICA or Topographic ICA transform T {·}, Image fusion using ICA or Topographic ICA bases

is performed following the approach depicted in the generic diagram of Figure 2. Every possible N ×N patch is

extracted from each image xk(i, j) and is consequently re-arranged to form a vector xk(t). These vectors xk(t) are

normalised to zero mean and the subtracted local mean MNk(t) is stored for the reconstruction process. Each of

the input vectors xk(t) is transformed to the ICA or Topographic ICA domain representation uk(t), using equation

(5). Optional denoising in the ICA representation is also possible via sparse code shrinkage of the coefficients in

the ICA domain [16]. The corresponding coefficients uk(t) from each image are then combined to construct a

composite image representation uf (t) in the ICA domain. The next step is to move back to the spatial domain,

using the synthesis kernel B, and synthesise the image f(i, j) by averaging the image patches uf (t) in the same

order that were extracted during the analysis step.

In contrast to the proposed framework in [8], Cvejic et al [12], [11], [10] proposed to train different sets of

ICA bases for each sensor of different modality and thus, analyse the input sensor images using different ICA

bases for each modality. However, the bases sets that will be produced by the different ICA training procedures

will have no correspondence to each other. Consequently, it is not viable to combine projections on different bases

sets, in order to form the “fused” image, as claimed in [10], [11]. This is similar to attempting to fuse images

analysed by wavelet decomposition using a different wavelet family for each input image. In addition, one has to

select one of the possible synthesis kernels to transform the fused image to the spatial domain, which will denote

preference on a specific sensor modality. The ICA bases training mechanism is an adaptive procedure that can
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extract interesting local features from all the presented patches. There is no specific need for the training to be

performed independently for each sensor type. Thus, interesting bases from all different modality inputs will be

extracted by iterating on the complete training dataset.

B. Various fusion rules using ICA bases

Some basic rules that can be used for image fusion in the ICA-bases domain are described in this section.

Fusion by the absolute maximum rule has been used widely by the image fusion community. This rule selects

the greatest in absolute value of the corresponding ICA-domain coefficients in each image (“max-abs” rule). This

process seems to convey all the information about the edges to the fused image, however, the intensity information

in constant background areas seems to be slightly distorted. In contrast, fusion by the averaging rule averages the

corresponding coefficients (“mean” rule). This process seems to preserve the correct contrast information, however,

the edge details seem to get smoother. A Weighted Combination (WC) pixel-based rule can be established using

the ICA framework [8]. The fused image coefficients are constructed using a “weighted combination” of the input

transform coefficients, i.e.

uf (t) =
T∑

k=1

wk(t)uk(t) (6)

To estimate the contributions wk(t) of each image to the “fused” image, the mean absolute value (L1-norm) of

each patch (arranged in a vector) in the transform domain can be employed as an activity indicator. The L1-norm is

preferred because it fits a more general sparse profile of the ICA coefficients, denoted by a Laplacian distribution.

Ek(t) = ||uk(t)||1 k = 1, . . . , T (7)

The weights wk(t) should emphasise sources with more intense activity, as represented by Ek(t). Consequently,

the weights wk(t) for each patch t can be estimated by the contribution of the k-th source image uk(t) over the

total contribution of all the T source images at patch t, in terms of activity.

wk(t) = Ek(t)/
T∑

k=1

Ek(t) (8)

In some patches, where
∑T

k=1 Ek(t) might be very small, one can use the “max-abs” or “mean” fusion rule to avoid

numerical instability. A regional approach can also be established, by dividing the observed area into areas of “low”

and “high” activity. The areas of “high” activity contain salient information and can be fused using a “max-abs” or

a “weighted-combination” fusion rule and the areas of “low-activity” contain background information and can be

fused using the “mean” rule. A heuristic approach to differentiate between a “low” and a “high” activity region is to

use the L1-norm based Ek(t) measurement. Another regional approach can be to use alternative segmentations of

the observed scene, based on the input sensor images and consequently fuse the different regions independently [10],

[11]. In this work, the weighted combination rule will be used for ICA-based fusion for simplicity.
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Fig. 2. The proposed fusion system using ICA / Topographical ICA bases.

III. LOCAL MEANS RECONSTRUCTION CONSIDERATIONS ON THE ORIGINAL FRAMEWORK

The next step is to estimate the spatial-domain representation f(i, j) of the fused image. To reconstruct the

image in the spatial domain, the process described in Section II is inverted. The vectors uf (t) are re-transformed

to the local N × N patches uf (k, l). The local mean of each patch is restored using the stored patches means

MNk(t). There exist T local intensity values for each patch of the reconstructed image, each belonging to the

corresponding input sensor. In the case of multi-focus image fusion, it is evident that the local intensities from all

input sensors will be similar, if not equal, for all corresponding patches. Therefore, the local means are reconstructed

by averaging MNk(t), in terms of k. In the case of multi-modal image fusion, the problem of reconstructing the

local intensities of the fused image becomes more serious, since the T input images are acquired from different

modality sensors with different intensity range and values. The fused image is an artificial image, that does not

exist in nature, and it is therefore difficult to find a criterion that can dictate the most efficient way of combining

the input sensors intensity range. The details from all input images will be transferred to the fused image by the

fusion algorithm, however, the local intensities will be selected to define the intensity profile of the fused image. In

Figure 3, the example of a multi-modal fusion scenario is displayed: a visual sensor image is fused with a micro

Long-Wave (microLW) sensor image. Three possible reconstructions of the fused image’s means are shown: a) the

contrast (local means) is acquired from the visual sensor, b) the contrast is acquired from the microLW image and

c) an average of the local means is used. All three reconstructions contain the same salient features, since these

are dictated by the ICA fusion procedure. Each of the three reconstructions simply gives a different impression of

the fused image, depending on the prevailing contrast preferences. The average of the local means seems to give

a more balanced representation compared to the two extremes. The details are visible in all three reconstructions.

However, an inappropriate choice of local means may render some of the local details, previously visible in some

of the input sensors, totally invisible in the fused image and therefore, deteriorate the fusion performance.
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(a) Visual Sensor (b) microLW Sensor

(c) Means from Visual Sensor (d) Means from microLW Sensor (e) Average of Means

Fig. 3. Effect of local means choice in the reconstruction of the fused image.

IV. A NOVEL APPROACH FOR AUTOMATED CONTRAST CORRECTION

In this section, an automated mechanism to calculate the optimal means for the local patches of the fused image

in the ICA bases framework for N (N > 2) input sensors will be described. In the initial design of the algorithm [8],

the local means of the fused image were created by averaging the corresponding local means of the input sensor

images. In [10], [11], the authors demonstrated that this might not be an optimal solution to the problem, where

optimality is defined in terms of the Piella and Heijmans index [13]1. They proposed a method to estimate a

weighted averaging of the corresponding local means in a two-sensor fusion scenario. In the two-sensor case, the

proposed 2D optimisation problem can be reduced to an 1D problem, since the second weight q2 can be expressed

as a function of the first weight q1 via q2 = 1− q1. The 1D optimisation was solved by numerically assessing the

Piella index for quantised values of q1 ∈ [0, 1] with a step value of 0.1 to infer approximately the value of q1 that

maximises the Piella index. This approach relies on a valid concept to solve the above mentioned problem, however,

the proposed implementation in [10], [11] exhibits several drawbacks. More specifically, this approach can not be

easily expanded in a multiple sensor scenario, since the exhaustive search for the optimum in the (N-1)-D half

unit cube will be rather computationally expensive. In addition, the approach in [10], [11] assumes the existence

of a single global optimum of the cost function based on the Piella Index, an assumption for which no theoretical

justification was provided.

1For simplicity we will refer to this index as the Piella Index for the rest of the document
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A. Optimising Piella’s Index

Assume that mx1 ,mx2 , . . . , mxT
are the means of the input sensors images, mf is the mean of the fused image

and q1, q2, . . . , qT are the weights that will be used to estimate mf via the equation:

mf = q1mx1 + q2mx2 + · · ·+ qT mxT
(9)

The Wang and Bovik Image Quality Index [18] of an estimated image f in relation to the original image x is given

by the following formula:

Q(x, f) =
2σxf

σ2
x + σ2

f

2mxmf

m2
x + m2

f

(10)

where σxf represents the correlation between the two images and σf , σx represent the standard deviations of the

two images respectively. Let Qσ(x, f) = 2σxf

σ2
x+σ2

f

and Qm(x, f) = 2mxmf

m2
x+m2

f

. It is straightforward to see that the

Image Quality Index can be factorised into the term Qσ that is dependent on correlation/variance figures and the

term Qm that is dependent on mean values. More specifically,

Q(x, f) = Qσ(x, f)Qm(x, f) = Qσ(x, f)
2mxmf

m2
x + m2

f

(11)

The first version of the Piella Index is based on the Wang and Bovik index. The Piella Index simply segments the

input sensor images and the fused image into multiple overlapping patches and estimates the contribution of each

input patch to the fused image in terms of the Image Quality Index. These scores are weighted according to the local

information quality λi of each patch, (e.g. local variance), in order to emphasise the information-transfer scores

of patches with strong local activity. Note that λi is normalised to the total local information quality (saliency) of

the corresponding input patches. This implies that
∑T

i=1 λi = 1. Therefore for a single patch, the Piella Index is

defined as:

Qn
p = λ1Q(x1, f) + λ2Q(x2, f) + · · ·+ λT Q(xT , f)

=
T∑

i=1

λiQ(xi, f) (12)

The next step is to estimate the expected value of the Piella index for all the extracted image patches, i.e.,

Qp = E{
T∑

i=1

λiQ(xi, f)} (13)

The expectation in the above equation will be approximated by an average of all patches, producing the first version

of the Piella Index. This is similar to attributing equal probability for each patch, i.e. assuming a uniform prior

and consequently the expectation is approximated by the sample mean. There is also a second version of Piella’s

index, where this expectation is approximated by a weighted sum of the individual terms. The imposed weights

are based on the importance of each frame, in terms of maximum input sensor saliency, compared to the total

maximum saliency of the samples. A third version was also proposed in [13], by estimating the second version

of the index for the edge maps of the input sensors and fused images and multiplying it with the original second

index version [13]. In this optimisation the first version is considered for simplicity.
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The next step is to optimise Qp in terms of q in order to estimate the mean mf and essentially the weights q.

This adaptation will not necessarily affect the energy, i.e. the local activity of the patch in the fused image and its

comparison to the activity input sensor patches. The bias (i.e. the local mean) is the only factor that is affected by

the adaptation of mf . Let Aσxi
= λiQσ(xi, f), then (13) can be expressed as:

Qp(q) = E
{

T∑

i=1

Aσxi

2mximf

m2
xi

+ m2
f

}
(14)

The objective is to estimate q = [q1 q2 . . . qT ]T by maximising Qp. The derivative of Qp in terms of q is given

by

∂Qp

∂q
=




∂Qp

∂q1

∂Qp

∂q2

. . .

∂Qp

∂qT




(15)

The term ∂Qp/∂qi can be expressed, as follows:

∂Qp

∂qi
=

∂Qp

∂mf

∂mf

∂qi
= mxi

∂Qp

∂mf
(16)

Consequently,

∂Qp

∂q
=

∂Qp

∂mf




mx1

mx2

. . .

mxT




=
∂Qp

∂mf
mx (17)

∂Qp

∂mf
= E

{
T∑

i=1

Aσxi
mxi

m2
xi
−m2

f

(m2
xi

+ m2
f )2

}
(18)

Performing gradient ascent on the proposed cost function yields the following update rule for the weight vector q:

q+ ← q + ηE
{

mx

T∑

i=1

Aσxi
mxi

m2
xi
−m2

f

(m2
xi

+ m2
f )2

}
(19)

where η denotes the learning rate. The above rule is iterated until convergence and consequently the estimated

weights are employed to reconstruct the means of the fused image. To avoid extreme situations or deformations in

the weights qi during the adaptation, the following restriction is imposed during each step:

q+ ← |q|/([ 1 1 . . . 1 ]|q|) (20)

This restriction ensures that the weights remain positive during the adaptation and their summation is restricted to

unity.
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B. Uniqueness of solution ?

In [10], [11], the authors state that the cost function that was optimised numerically tends to have a single optimum,

which is always a maximum. In this section, the validity of the assumption is investigated mathematically. Looking

at (14), we can rewrite the cost function for a single patch, as follows:

g(mf ) =
T∑

i=1

λi
mxi

mf

m2
f + m2

xi

∀mf ∈ [mxmin ,mxmax ] (21)

where mxmin
= min mxi

and mxmax
= max mxi

. Following the investigations in Appendix A, it can be shown

that the above cost function is not guaranteed to have a single maximum in the solution space. It is also shown

that a sufficient condition for the above cost function to have a single maximum is mxmax
≤ √

3mxmin
. In the

case that the condition does not hold, it is dubious whether the cost function will meet the requirements of a single

maximum. The physical interpretation of the above condition is that the corresponding input sensor patches should

have similar means (i.e. intensity values) or at least within a margin of similarity. Of course, this is not always

true especially in the case of several objects and their multimodal representation, e.g. a human will appear much

more whiter in terms of intensity in a thermal representation than in a visual representation. Therefore, in theory,

the above cost function is not guaranteed to have a single maximum in the solution space.

On the other hand, in the optimisation process, all the image patches are taken into account and are averaged

to infer an estimate for the mean weights. Therefore, the final cost function is computed by averaging (21) for all

input patches. If the required condition holds for the majority of input patches then the final cost function will

feature a single maximum that needs to be estimated. In our experimentation with the complete “Dune”, “Trees”

and “Uncamp” datasets (see section V), no single case of multiple optima was encountered. In Figure 4, a typical

example is depicted to demonstrate that the majority of pixels follows the sufficient condition that was derived

previously and thus the final cost function features a single maximum. Nevertheless, no full assurance can be

provided about the existence of a single optimum.

One can always devise a tactic to ensure the uniqueness of solution. The patches for which the condition does

not hold are isolated at first. Essentially, one can add a constant c to these mxi and satisfy the required condition.

The required constant for a given set of mxmax ,mxmin is calculated as follows:

mxmax + c

mxmin + c
≤
√

3 ⇒ c ≥ mxmax −
√

3mxmin√
3− 1

(22)

Then, we can calculate all the required constants c in order to ensure that all the patches satisfy the condition. The

maximum of these constants cmax can be added to all mxi of all image patches ensuring a single optimum for all

patches. Once the optimum means of the fused image are calculated, the added constant cmax can be subtracted to

return the fused image to the required intensity range.

V. EXPERIMENTS

To test the performance of the proposed scheme, a variety of multi-modal scenarios that exist in the literature are

employed. The first step is to use the “Dune”, “Trees” and “UNcamp” datasets of surveillance images from TNO
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Fig. 4. Checking the single maximum condition in the case of the “Dune” dataset. The majority of patches (corresponding to every image

pixel) satisfy the proposed condition and thus will contribute towards a single optimum for the total cost function.

Human Factors, provided by L. Toet [19] in the Image Fusion Server [20]. The datasets consist of two series of

visual and infrared frames capturing a human subject walking through various areas. The above multimodal datasets

are used to evaluate the performance of the adaptive scheme on finding the optimal means in terms of the Piella

Index. We used the typical training procedure for the ICA framework, training 60 8×8 ICA bases for each dataset.

The fusion method that is employed in the following experiments is the “weighted-combination” fusion rule. For

performance comparison, the Dual-Tree Wavelet Transform (DT-WT) method using the “max-abs” rule will also

be employed2. The Piella Index that is calculated in this section will constantly represent the second version of the

Piella Index, as explained earlier.

In Figure 5, several results of optimal contrast correction of a sample image (frame 1812) from the UNCamp

dataset are depicted. Figures 5 (a), (b) depict the input images: one infrared sensor capture and one visual sensor

capture. The Optimal Contrast algorithm, described in the previous sections, is initialised with q = [0.5 0.5]T and

the learning rate was set to η = 2.5. The learning rule of (19) is iterated until convergence producing the following

result q
opt

= [0.4156 0.5844]T . This implies that the algorithm has identified the optimal contrast in terms of the

Piella index with relatively high accuracy. In Figure 5 (c), the original ICA framework output, assuming equal

weights for the means, is depicted. In Figure 5 (d), the produced fused image using optimal means selection is

depicted. Obviously, there is no much difference between the two results, since the estimated optimal point is very

close to the assumption of equal weights. In Figure 5 (f), the produced fused image using the DT-WT transform

and the “max-abs” rule is shown.

In Figure 6, a similar example using a sample image (frame 4904) from the Trees dataset is depicted. In this case,

the algorithm converged at the weights q
opt

= [0.3832 0.6168]T and the resulting fused image featured a Piella

Index of 0.7968 compared to that of 0.7920, achieved by the traditional ICA framework. Hence, the proposed

optimisation offered improvement compared to the original scheme and still performed better than the DT-WT

scheme with a Piella Index of Q = 0.7758. In Figure 7, the convergence plot of the proposed algorithm for this

2Code for the Dual-Tree Wavelet Transform available online by the Polytechnic University of Brooklyn, NY at

http://taco.poly.edu/WaveletSoftware/
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(a) InfraRed Image (b) Visual Image

(c) Equal Weights (d) Optimised Weights (e) DT-WT

Fig. 5. Optimal Contrast correction for the “UN camp” dataset. The fused image that features optimal mean selection is not essentially different

to the original fused image, since the optimal weight selection, according to Piella’s index, is close to assuming equal weights.

example is shown. The convergence plot was similar for all tested datasets and image sets in this experimental

section. Consequently, the gradient-based rule features fast convergence to the optimal value with high accuracy,

thus, avoiding the exhaustive search solution proposed in [10], [11].

Next, the aim is to visualise the shape of the cost function that was optimised for all images in the three datasets.

The 2D problem can be reduced to an 1D problem, since the two weights can be represented by q and 1− q. The

above simplification is not necessary for our approach, as it is evident from the previous analysis, however, it will

be employed in this example for visualisation purposes only. For all images of the three datasets, the Piella Index

was evaluated for all values of q and the optimal Piella Index was estimated using both the proposed algorithm and

numerical evaluation. In Figure 8, the proposed cost function is evaluated in terms of q for all frames and values

of q for the three datasets. It is clear that the functions are smooth and feature a single optimum in all examined

cases, which supports our statements and observations in the previous section. Consequently, no extra steps are

needed for tackling multiple optima situations. In Figure 9, the achieved Piella Index using the proposed algorithm

is compared to the optimal Piella Index that was numerically estimated from the cost function for all the three

datasets. In the same figure, we plot the Piella Index achieved by the original ICA-based framework. It is clear

that the proposed algorithm managed to identify the real optimum in performance in the majority of the cases with

a small error margin. In most cases, the proposed algorithm outperformed the previous ICA-based framework. In

Table I, the average Piella Indexes for the datasets “Dune”, “Trees”, “Uncamp” are depicted. The proposed approach

outperformed the original ICA-based framework and the DT-WT-based framework. The second experiment was to

employ two images that can demonstrate the usefulness of Image Fusion and the rectification in contrast to the
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(a) InfraRed Image (b) Visual Image

(c) Equal Weights (Q = 0.7920) (d) Optimised Weights (Q =

0.7968)

(e) DT-WT (Q = 0.7758)

Fig. 6. Optimal Contrast correction for the “Trees” dataset. The optimised means featured enhanced performance compared to the traditional

ICA framework and the DT-WT-based scheme and compared to the Dual-Tree Wavelet Transform (DTWT) scheme.
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Fig. 7. Convergence of the adaptive scheme for contrast correction for multi-modal image fusion.
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(c) Uncamp

Fig. 8. The estimated cost functions using the Piella Index for the datasets “Dune”, “Trees” and “Uncamp”. This verifies the statement that

in practice most cost functions feature a single maximum.

TABLE I

AVERAGE FUSION PERFORMANCE MEASUREMENTS USING PIELLA’S INDEX FOR THE FIVE DATASETS OF THIS EXPERIMENTAL SECTION.

THE PROPOSED ICA-BASED SCHEMES ARE COMPARED WITH THE ORIGINAL ICA-BASED FRAMEWORK AND THE DUAL-TREE WAVELET

FRAMEWORK.

Method ICA ICA DT-WT

Equal Weights Opt. Weights

‘Dune’’ 0.7311 0.7325 0.7156

‘‘Trees’’ 0.7770 0.7814 0.7595

‘‘Uncamp’’ 0.7441 0.7452 0.7317

Octet 1 0.8251 0.8354 0.8254

Octet 2 0.8176 0.8677 0.8602

Car Image 0.6822 0.6857 0.6392

previous ICA-based framework offered by the proposed approach. The two Octet image sets were employed, as

provided by the ImageFusion Server [20]. These images, captured by Octec Ltd., show men and buildings with

(Test Images 2, see Figure 11) and without (Test Images 1, see Figure 10) a smoke screen. They were captured with

a Sony Camcorder and a Long Wave Infrared (LWIR) sensor. We employed the original ICA-based scheme, the

proposed ICA-based scheme and the DT-WT framework to perform fusion of the two images. In Figures 10, 11,

the fusion results of the three algorithms were depicted. The second example clearly demonstrates the problem of

the original ICA-based framework. The equal weights on the input images’ intensities will result in the foreground

smoke of the visual image being transferred to fused image. This rather decreases the perception quality of the

fused image. The optimal contrast approach weights the significance of the local intensities of the two images,

resulting into a more balanced representation in the fused image, where the main desired targets are less hindered

by the smoke in the visual input, although still visible due to its contrast and salient features. The Piella Indexes

for the three methods and the two tests are shown in Table I.

A third example is used to demonstrate the efficiency of our algorithm in the case of more than two sensors.

We used some surveillance images from TNO Human Factors, provided by L. Toet [19], obtained from the Image
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Fig. 9. Comparison between the Piella Index achieved by the proposed algorithm and the estimated maximum Piella Index by exhaustive

search for the datasets “Dune”, “Trees” and “Uncamp”.

Fusion Server [20]. The images are acquired by three kayaks approaching the viewing location from far away.

As a result, their corresponding image size varies from less than 1 pixel to almost the entire field of view, i.e.

they are minimal registration errors. The first sensor (AMB) is a Radiance HS IR camera (Raytheon), the second

(AIM) is an AIM 256 microLW camera and the third is a Philips LTC500 CCD camera. The three input sensor

images are depicted in Figures 12 (a), (b), (c). To examine the nature of our cost function in this case, we evaluate

the Piella Index, in terms of the normalised weights q1, q2 and 1 − q1 − q2. The cost function, which is now

a surface, is depicted in Figure 13. The function is again considerably smooth. There is a single maximum in

the surface, nevertheless, it is not very well pronounced, giving a weak optimum. The proposed algorithm was

initialised as previously and converged smoothly to the value of qopt = [0.6111 0.1289 0.2601]T . The Piella index

for the estimated weights is Qp = 0.6857. In Figure 12 (d), (e), we plot the fused image assuming equal weights

and optimised weights respectively. The Piella index for the equal weights image is Qp = 0.6822, which implies

that the proposed approach has achieved improved performance compared to the original scheme and the DT-WT

scheme. The convergence in the three-dimensional case was similar to the one depicted in Figure 7, which implies

that the fusion using ICA bases of more than two input sensors is possible and efficient.

VI. CONCLUSION

In this paper, the authors proposed an improvement to their previous ICA-based Image Fusion framework. In the

original framework, the input sensor images are projected on localised patches of small size. The local mean value

of the patches is subtracted and stored in order to reconstruct the local means of the fused image. Originally, an

average of the stored means was used to reconstruct the fused image, nonetheless, it was demonstrated that this

choice might not be optimal in several multi-modal cases in [10], [11]. In the same work an exhaustive search

solution of the optimum performance in terms of the Piella index [13] was proposed for the case of two input sensors

only. In this paper, the authors provide a generalised iterative solution of this problem using a detailed optimisation

of the Piella index in the general case of T input sensors. The existence of a single solution to this optimisation
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(a) Visual sensor (b) LWIR sensor

(c) Equal Weights (d) Optimised Weights (e) DT-WT

Fig. 10. The Octet 1 example of image fusion of a visual and a Long-Wave InfraRed sensor.

(a) Visual sensor (b) LWIR sensor

(c) Equal Weights (d) Optimised Weights (e) DT-WT

Fig. 11. The Octet 2 example of image fusion of a visual and a Long-Wave InfraRed sensor.
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(a) micro LW sensor (b) HS IR sensor (c) Visual sensor (d) Equal Weights

(e) Optimised Weights (f) DT-WT

Fig. 12. Optimal Contrast correction for the TNO Human Factors dataset. The optimal contrast selection scheme chooses to emphasize the

contrast of the two Infrared images to the low-contrast night visual image.

problem is investigated and conditions that can guarantee the existence of single maxima are presented. The proposed

gradient-descent optimisation can identify the optimal value of contrast in maximum 70 iterations, providing an

efficient and general solution for the case of T input sensors, removing the need of analytic evaluation of the whole

solution space in [10], [11]. The proposed approach enhances the performance of the original ICA-based fusion

framework, improving the perception of the produced “fused” image.
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APPENDIX

A SUFFICIENT CONDITION FOR THE EXISTENCE OF A SINGLE SOLUTION

The mean term Qm in the Wang and Bovik metric can be represented by the following function:

f(x) =
ax

x2 + a2
x > 0 (23)
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Fig. 13. Values of the Piella Index spanning the solution space of q1, q2 and 1− q1 − q2.

where a > 0. We estimate the first and the second derivative of f(x), as they will be employed in the following

analysis:
df(x)
dx

= a
a2 − x2

(x2 + a2)2
x > 0 (24)

d2f(x)
dx2

= −a
x(3a2 − x2)
(x2 + a2)3

x > 0 (25)

The first derivative has positive roots at x = a and the second derivative has positive roots at x = 0 or x =
√

3a.

Let g(x) be a function that resembles the Piella index for a single patch and amin = min(ai), amax = max(ai).

g(x) =
T∑

i=1

bi
aix

x2 + a2
i

∀x ∈ [amin, amax] (26)

Also we have that
∑T

i=1 bi = 1. The function g(x) is continuous and infinitely differentiable. Therefore, we can

calculate the first and second derivatives, as follows:

g′(x) =
dg(x)
dx

=
T∑

i=1

biai
a2

i − x2

(x2 + a2
i )2

∀x ∈ [amin, amax] (27)

g′′(x) =
d2g(x)
dx2

= −
T∑

i=1

biai
x(3a2

i − x2)
(x2 + a2

i )3
∀x ∈ [amin, amax] (28)

• Existence of optimums in [amin, amax]

The existence of optimums in the interval [amin, amax] can be supported by simply verifying the validity of

Bolzano theorem for this interval. More specifically,

g′(amin) =
T∑

i=1

biai
a2

i − a2
min

(a2
min + a2

i )2
(29)

g′(amax) =
T∑

i=1

biai
a2

i − a2
max

(a2
max + a2

i )2
(30)

Since ai, bi ≥ 0 and amin ≤ ai ≤ amax ∀i, it is straightforward to infer that g′(amin) > 0 and g′(amax) < 0.

According to the Bolzano theorem, there exists at least one root of the equation g′(x) = 0 in the examined
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interval. In other words, there exists at least one optimum (maximum or minimum) of the cost function g(x)

in [amin, amax].

• Sufficient condition for the existence of a single maximum in [amin, amax]

In this section, a sufficient condition for the existence of a single maximum in the requested interval is

introduced. The existence of optimums in the interval [amin, amax] is shown in the previous paragraph. The

cost function g(x) will have a single maximum in the requested interval, if the function remains concave

∀x ∈ [amin, amax]. The curvature of a function can be determined from the second derivative of the function.

More specifically, the function g(x) will be concave, if it is shown that g′′(x) < 0, ∀x ∈ [amin, amax]. First,

the values of the second derivative at the two extreme points are evaluated:

g′′(amin) = −
T∑

i=1

biai
amin(3a2

i − a2
min)

(a2
min + a2

i )3
(31)

Again since ai, bi ≥ 0 and amin ≤ ai <
√

3ai ∀i, we can infer that g′′(amin) < 0.

g′′(amax) = −
T∑

i=1

biai
amax(3a2

i − a2
max)

(a2
max + a2

i )3
(32)

As previously, ai, bi ≥ 0, however, the sign of 3a2
i − a2

max can not be directly determined. Assuming that

3a2
i ≥ a2

max or equivalently amax ≤
√

3ai, ∀i then it is straightforward to infer that g′′(amax) < 0 and also

g′′(x) < 0 for all x ∈ [amin, amax], because

g′′(x) = −
T∑

i=1

biai
ak(3a2

i − x2)
(x2 + a2

i )3
(33)

In the case that x ≤ ai the term 3a2
i − x2 will still remain positive. In the case that x ≥ ai, the term will

still remain positive, due to the imposed condition, since x2 ≤ a2
max ≤ 3a2

i . This condition is equivalent to

the condition amax ≤
√

3amin. Consequently, in the case that the condition amax ≤
√

3amin holds, the cost

function g(x) has certainly a single maximum in the interval [amin, amax]. In the opposite case, there might

also exist bi, ai for which g′′(x) < 0 in the requested interval, however, there might be cases of curvature

changes in that interval and thus existence of multiple optima (maxima and minima). The nominator of g′(x)

is a polynomial of degree 4T − 2, that may generally have more than a single root in the requested interval

and i.e. multiple optima, unless the sufficient condition holds.
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