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ABSTRACT

The task of binarization of historical document images has been in the forefront of image processing
research, during the digital transition of libraries. The process of storing and transcribing valuable
historical printed or handwritten material can salvage world cultural heritage and make it available
online without physical attendance. The task of binarization can be viewed as a pre-processing step
that attempts to separate the printed/handwritten characters in the image from possible noise and stains,
which will assist in the Optical Character Recognition (OCR) process. Many approaches have been
proposed before, including deep learning based approaches. In this article, we propose a U-Net style
deep learning architecture that incorporates many other developments of deep learning, including
residual connections, multi-resolution connections, visual attention blocks and dilated convolution
blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in
combination in a novel U-Net style architecture and the application of DMVAnet in image binarization
for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network
that performs very close or even better than the state-of-the-art approaches with a fraction of the
network size and parameters. Finally, it can be used on platforms with restricted processing power and
system resources, such as mobile devices and through scaling can result in inference times that allow
for real-time applications.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Document Image Binarization is the process of separating
the text from its environment in a document image. The in-
put image is segmented into two layers of information, one for
the background and one for the text. The output image of the
process is essentially a binary map, where the value of each
pixel represents whether it belongs to the text or the background
layer.

The ability to extract text from an image is critical in many
applications. Firstly, scanning handwritten or printed docu-
ments and extracting the text allows the digitisation of the writ-
ten cultural heritage. In addition to that, Optical Character
Recognition can greatly benefit from improved text binarization
algorithms, since extracting the scanned text is a critical task of
the process. Moreover, captured images and video feeds often
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contain text that must be extracted and processed. Written lan-
guage appears everywhere in our urban environments and text
binarization is a method, through which it can be processed by
the machines of the present and future. For these reasons, the
problem of Document Image Binarization is one of the earliest
in the image processing literature and has been addressed with
numerous methods, both based on traditional image processing
(often heuristic methods) and machine learning or deep learn-
ing.

One of the most well-known approaches is Otsu’s method
[1], which performs automatic global image thresholding in its
basic form. Sauvola [2] and Niblack [3] binarization algorithms
operate by calculating local thresholds for every pixel, based on
statistical information from the pixel neighbourhood.

These early methods suffer from the need of parameter tun-
ing. The parameters have to be tuned differently for each bina-
rization context. Heuristic methods have been introduced that
combat this problem. Howe [4] binarizes the image by min-
imising a global energy function, based on a Markov Random
Field model and performing automatic parameter tuning. Su et
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al. [5] construct an adaptive contrast map and based on that
and the Canny edge detection map, the method detects the text
stroke edges, which are used to estimate local threshold values
for binarizing the image. Lelore and Bouchara [6] introduce
the FAIR algorithm, which applies a modified Canny edge de-
tection algorithm and clusters the resulting pixels. To tackle the
defects of parameter selection, the process is applied twice with
different parameters and the final results are merged. Nachi et
al. [7] use phase congruency feature maps, based on Kovesi’s
phase congruency model, as well as a phase-derived denoised
image in order to produce a final binarized version of the input.
Mitianoudis and Papamarkos [8] address the Document Image
Binarization problem by first removing the background with a
long-window low-pass filtering process. The resulting image
is binarized using Local Co-occurrence Mapping (LCM), that
exploits common local character properties, when identifying
the character pixels and Mixture of Gaussians (MoG) cluster-
ing. Finally, a mathematical morphology step removes mis-
classified or noisy items. Jie at al. [9] perform a background
removal process, compute a gradient map from the output and
extract the structural symmetric pixels (SSPs) to calculate local
thresholds for the binarization process. Bhowmik et al [10] em-
ploy Game Theory concepts, such as two-player non-zero-sum
non-cooperative game and the Nash equilibrium, in order to ex-
tract image features that are further fed to a K-means clustering
step for classifying the pixels into foreground and background
groups. In all these methods, there are certain parameters that
need to be defined by hand. Global values can be used, but the
result may not be optimal for each separate case.

Heuristic methods have considerably lower performance
compared to the recently introduced deep learning methods.
Moreover, even without the need for parameter tuning, they still
cannot handle extensive input image variations as effectively as
deep neural networks. In this paper, we focus on recent deep
learning methods, we evaluate their performance and suggest
an innovative architecture for addressing the problem more effi-
ciently. In [11], Li et al. suggest a deep learning approach to the
classic Sauvola binarization method for eliminating the hyper-
parameters dependency of the algorithm and replacing it with
trainable parameters. The method implements the conventional
Sauvola algorithm into a Deep Neural Network, uses attention
mechanisms for bypassing the need for manually specifying a
window size and finally uses deep networks for calculating the
adaptive binarization thresholds. In [12], He and Schomaker
suggest an iterative deep learning framework for improving the
input images by removing noise and degradations that usually
prevent efficient binarization. The framework “learns” the noise
and degradations present on the original image and after sev-
eral iterations produces a uniform variant that can be finally
binarized with any existing binarization process. Therefore, the
proposed framework acts as a deep learning augmentation pre-
processing step for any binarization process. Calvo-Zaragoza
and Gallego [13] propose the Selectional Auto-Encoder (SAE),
an auto-encoder architecture, implemented only with convolu-
tional machine learning layers, that aims at learning a map-
ping between the input image and a binary representation of
foreground (text) and background pixels. Similarly to the ba-

sic auto-encoder architecture, the SAE gradually downsamples
and upsamples the image in the encoder and decoder parts re-
spectively, until reaching the final prediction layer, where the
binary map of the input is produced. Vo et al. [14] use a multi-
scale hierarchical approach consisting of three Deep Supervised
Networks (DSN) in order to separate text from the background
noise. By using different feature scales, the model tries to opti-
mize the classification of image pixels over large areas as well
as those over the text boundaries. Zhao et al. [15] view the bi-
narization as an image generative task and employ conditional
Generative Adversarial Networks (cGANs) in order to synthe-
size the binarized output images from degraded document im-
ages. A two-stage generator is employed for producing binary
maps, based on the learned input and ground truth images. An-
other generative adversarial model solution is proposed by De
et al. [16], who use a U-Net generator to binarize images and
later discriminate with two distinct discriminator networks, one
for higher level and one for lower level features. Peng et al. [17]
address the Document Image Binarization task by introducing
a convolutional attention block for the block input features that
are most likely to produce the desired output targets. In [18],
Kang et al. implement a model (CMU-Net), consisting of mul-
tiple pretrained U-Nets, connected in a cascaded manner. Each
U-Net is trained to perform an image binarization task, such
as erosion, dilation, binarization and Canny-edge detection. In
conventional image processing, the above methods serve as
steps in a binarization algorithm. The goal of the authors is to
reproduce such a pipeline of methods with individually trained
U-Nets, interconnected with appropriate skip connections. The
CT-Net, is an architecture proposed by He and Schomaker [19],
who describe a novel T-net architecture that consists of one en-
coder and two decoders, the first of which performs an image
enhancement task and the other a binarization task. In order to
achieve better performance, the T-net blocks are cascaded re-
sulting in a CT-net model. The connections between the T-nets
are placed along the enhancement outputs, so that each T-net
along the pipeline receives a more and more enhanced image as
input. Finally, Jemni at al. [20] train a multipart GAN architec-
ture to enhance images before binarization tasks. The architec-
ture consists of a U-Net generator that produces a clean binary
version of the degraded input image, followed by a discrimi-
nator that decides whether the cleaned images come from the
generator or are ground truth images. The final binary image
is passed through a Convolutional Recurrent Neural Network
(CRNN), which serves as a Handwritten text line recogniser
that outputs plain text. Finally, Ju et al. [21, 22] introduce a
GAN inspired three-stage method for enhancing and binariz-
ing degraded document images (CCDWT-GAN). Stage-1 en-
hances the image by applying the Discrete Wavelet Transform
(DWT) and retaining the Low-Low (LL) subband images. The
proposed pipeline continues with stage-2, where each input im-
age channel is trained with independent adversarial networks.
The extracted channel-wise information is trained again with
the input image in an adversarial network for final document
binarization.

Most of the presented deep learning approaches use large ar-
chitectures that cannot easily be executed on devices with lim-
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ited resources. Memory and inference time can be prohibitive
issues for general reception and usage. In addition, some deep
learning methods act merely as a pre-processing step, or build
multiple-step processing pipelines in order to achieve their bi-
narization goals, which again poses restriction on the device
capabilities tolerance.

In this paper, we aim to propose a simple, lightweight yet
effective deep learning architecture that addresses the binariza-
tion problem without using pre- and post- processing or ensem-
ble of different networks. We start from a baseline U-Net archi-
tecture and we introduce a number of modifications that lead
to a comparatively low-complexity architecture that manages
to outperform most of the state-of-the-art (SOTA) binarization
methods. First, we introduce residual connections [23] and re-
place the convolution blocks on each layer by residual blocks,
as described in Section 2.2. Consequently, we weigh the skip
connections with visual attention blocks, before concatenating
them to the decoder layers (Section 2.3). Next, we replace the
residual blocks previously added with multi-resolution blocks
and also add residual paths along the skip connections. Both
blocks and the resulting architecture are described in Section
2.4. Finally, we further optimize our network with atrous con-
volutions (Section 2.5).

The proposed Dilated MultiRes Visual Attention U-Net
(DMVAnet) architecture is a composite U-Net network with the
following key advantages, contributions and innovations:

• DMVAnet exhibits state-of-the-art performance in a
single-step approach with comparatively low complexity

• DMVAnet contains carefully selected features from pre-
vious networks to form a novel architecture that has not
been applied or tested in the context of image binarization
before, to the best of our knowledge

• DMVAnet is a single network, trained only once, while
related SOTA methods, either consist of multiple separate
deep neural networks, different pre- or post- processing
steps, or have to be applied iteratively. Due to the above,
they feature complex implementation steps or serve as an
enhancement step that should be followed by other bina-
rization methods

• Most SOTA networks feature far more complex architec-
tures (with up to 32 times more parameters than DM-
VAnet), yielding no or minimal performance gain com-
pared to their added complexity

The paper is organised, as follows. In Section 2, the proce-
dure of constructing the proposed architecture is described in an
illustrative step-by-step manner. Section 3 contains an ablation
study that justifies the appropriate changes and choices in the
proposed deep learning architecture. Section 4 compares the
computational complexity of the proposed approach with other
SOTA approaches. Section 5 compares the proposed approach
with other state-of-the-art methods on commonly-used datasets
by the community. Finally, Section 6 concludes the article and
proposes steps for future work.

2. The Proposed DMVAnet

In this section, we start from a baseline U-Net architecture
and gradually build a semantic segmentation model that incor-
porates elements from modern deep learning structures, im-
proving the performance of the final proposed model. The
proposed modifications to the basic U-Net network are grad-
ually introduced, either by adding new blocks or by altering
key architectural components. This procedure has been vali-
dated through experiments, the most indicative of which will
appear in the ablation study. In this study, we will be present-
ing only structural changes that led to performance improve-
ment. However, many other architectures (U-Net with dense
connections [24], UNet++ [25] and DeeplabV3+ [26]) were
also tested without improving performance.

2.1. Basic U-Net architecture

The baseline architecture consists of a simple U-Net [27], a
simple encoder-decoder network with skip connections, which
is the basis of most deep learning architectures used in semantic
segmentation problems.

convolution 3x3 + BN + ReLU

convolution 1x1 + sigmoid

D
 =

 0
.2

2

D

convolution 3x3 + BN + ReLU + dropout (D = dropout rate)

skip connection + concatenation

D = 0.1

Fig. 1: Modified U-Net architecture.

U-Net architectures primarily consist of an encoder and a de-
coder block. The encoder gradually transforms the input image
into feature maps of encoded information of lower resolution.
The encoded information is then gradually decoded by the de-
coder into the desired form of information. For semantic seg-
mentation tasks this is a list of binary output maps, one for each
semantic class, where 1’s mark the pixels that belong to the
class. For document image binarization, a single binary map is
produced, with 0’s being the background and 1’s the text pixels.
The output map resolution is the same as or similar to the input
resolution.

Starting with a baseline U-net, to tackle overfitting, we have
included a Dropout layer [28], on each encoder and decoder
level, with gradually increasing and decreasing rate respec-
tively. In addition, our experiments have shown that upscaling
with transpose convolution layers [29] performed better than
upsampling with any other interpolation method. The parame-
ters chosen were 1 × 1 kernel, strides of size 2 and appropriate
input padding (’same’), such that the output feature maps di-
mensions are doubled with the stride effect. Another benefit of
using transpose convolution for upscaling the image is that it
can reduce the number of output filters at the same time, while
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mathematically upscaling would require a subsequent convolu-
tion layer for this purpose. Fig. 1 shows the modified U-Net,
which will be the starting point for further modifications that
will help us improve its performance on the Document Image
Binarization task.

2.2. Residual U-Net (Res-U-Net)
A residual U-Net is a U-Net network with residual connec-

tions along the paths of the encoder and decoder. The residual
connections were introduced in the seminal paper on ResNets
[23]. The residual connections are implemented in a residual
connection block, as shown in Fig. 2.

convolution 3x3 + BN + ReLU

convolution 3x3

convolution 1x1

BN + ReLU

input

Fig. 2: A Residual block used in the Res-U-Net architecture.

Training a deep neural network can exhibit the vanishing gra-
dient problem, where the error back propagation may have in-
significant effect on early network layers. This happens because
of the continuous application of the chain rule for computing
the gradients. The deeper the network, the stronger the ef-
fect might become. The residual block identity connection has
shown that it can protect the network from this shortcoming
[23]. Essentially, the residual U-Net architecture is a basic U-
Net, where we have replaced the convolutions on each level of
the encoder and decoder with the residual block. The resulting
network is shown in Fig. 3.
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convolution 3x3 + BN + ReLU

convolution 3x3 + BN + ReLU +

dropout (D = dropout rate)

residual block

convolution 1x1 + sigmoid

residual block + dropout (D = dropout rate)

skip connection + concatenattion

Fig. 3: Residual U-Net architecture.

2.3. Visual attention U-Net (VAnet)
We further extended the residual U-Net architecture, by

adding a visual attention block. In general, the visual attention

block is used to scale its input data in order to focus on those
image parts that contain the most relevant to the task informa-
tion [30]. In U-Net architectures, the visual attention block is
used for scaling the skip connection encoder output with the use
of the respective decoder level output, before concatenating the
two sets of feature maps [31]. The visual attention block used
here is shown in Fig. 4.

convolution 3x3

Global Average Pooling
MLP

Channel attention block

Mean along channel

dimension

Spatial attention block

Fig. 4: The proposed Visual attention block.

The visual attention block used in this work, consists of two
modules, the Channel attention module and the Spatial atten-
tion module, similarly to [30]. Within the context of a U-Net
architecture, the decoder input is modulated within each block
in order to provide a weight to scale the input coming from the
encoder skip connection.

The Channel attention module first performs a global aver-
age pooling operation on the decoder input, reducing its size to
1 × 1 ×C, essentially reducing the input features maps to a sin-
gle vector of size C × 1, where C is the number of input feature
maps. Subsequently, a 2-layer fully-connected neural network
maps the vector to the channel attention output, which is multi-
plied element-wise with the encoder skip connection input.

The Channel attention module focuses on the information
captured across the channels. By collapsing the 2D decoder
feature maps, through the 2D averaging operation, the spatial
information is ignored. The remaining channel vector acts as a
vector of “what” was represented on the collapsed feature maps,
ignoring the “where”. The neural network, that follows, acts as
a regressor that predicts the scale that should be applied to each
encoder skip connection input features map. This way, the de-
coder input acts as a guide, as to how important each individual
feature map of the encoder is.

On the other hand, the Spatial attention module focuses on
the spatial characteristics of the feature maps. The channel
dimension collapses by averaging and the result is the 2D in-
formation of the feature maps. The convolution operation that
follows, along with the sigmoid activation function, creates a
binary representation of “where” important information exists
on the feature maps.

The selected form of the visual attention mechanism was the
result of experimentation, based on the architectures described
in [30] and [31]. The selected architecture was the one that per-
formed best in the context of the Document Image Binarization
problem in our experiments.
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Fig. 5: A U-Net with Visual Attention modules.

In our implementation, we have used the visual attention
block on the decoder levels of the U-Net, where we connect the
encoder skip connection and the decoder input from the previ-
ous level (after the transpose convolution). The block output is
propagated to the rest of the decoder level blocks. The resulting
architecture is shown in Fig. 5.

2.4. MultiRes Visual Attention U-Net (MVAnet)
In [32], Ibtehaz and Rahman propose the replacement of In-

ception blocks with MultiRes blocks as a means to enhance the
performance of a U-Net network, while minimising the addi-
tional memory overhead from the increased complexity.

A simple Inception block consists of the concatenation of the
output of convolutions at different scales, such as 3 × 3, 5 × 5
and 7× 7. Introduced in [33], convolutions at different sizes are
used in order to capture information at different image scales.
The larger convolutional layers of the Inception block perform
better at various contexts but cause significant overhead to the
memory requirements of the network.

The MultiRes block replaces the larger convolutions with a
sequence of 3 × 3 convolutional layers. The 5 × 5 is replaced
with two 3 × 3 layers and the 7 × 7 with three 3 × 3 layers.
In a sequence of only three 3 × 3 layers, the intermediate out-
puts represent all the above convolutions, as depicted in Fig. 6.
The block is finalized by concatenating the intermediate out-
puts, while a residual connection completes the MultiRes block.
As also described in [32], the number of filters in the three con-
secutive convolutional layers is gradually increased, for keeping
the memory requirements low. In the opposite case, the con-
volution layer cascade would keep the memory requirements
large.

In addition to the MultiRes block, the authors also suggest
replacing the simple skip connections with Residual paths (Res
paths) as depicted in Fig. 7. The Res paths pass the encoder
output through a series of convolutional blocks with skip con-
nections, before the concatenation with the respective decoder

convolution 3x3 + BN

Concatenate

W/2W/3W/6 W

BN

Fig. 6: The MultiRes block used in the U-Net concept.

features. The rationale behind this architectural trait is that the
decoder features go through much more processing before their
concatenation with the respective encoder features. This pro-
cessing imbalance arguably causes incompatibilities in the se-
mantic information carried by the concatenated encoder and de-
coder features maps. The additional convolutions along the Res
paths aim at bridging this gap.

convolution 3x3 + BN + ReLU

input

Residual path block

Residual path block Residual path block Residual path block

convolution 1x1 BN + ReLU

Fig. 7: The Residual path used in the MultiRes Visual Attention U-Net.

The number of processing blocks on the Res paths along the
skip connections is not constant. The deeper the skip connec-
tion, the shorter the Res paths, since less additional processing
is needed for the encoder feature maps.

In our implementation, we have replaced the residual blocks
on all encoder and decoder levels of the Visual attention U-
Net of the previous section, with the MultiRes block and also
replaced the skip connections with the Res path scheme, de-
scribed above and shown in Fig. 8.
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Fig. 8: MultiRes Visual Attention U-Net.

2.5. Dilated MultiRes Visual Attention U-Net (DMVAnet)

Inspired by the DeepLab network series [34, 26, 35] we in-
corporate a-trous (dilated) convolutions in our network layers.
Dilated convolutions remedy the spatial resolution loss after a
series of consecutive pooling layers. Dilated convolutions en-
large the receptive field of filters and also allow for dense fea-
ture extraction without excessive memory requirements.

If all convolutions are replaced by their dilated counterparts,
network feature maps can ideally retain the original high reso-
lution. However, such an architecture would introduce exces-
sive resource requirements. For this reason, we only convert
some of our network levels. If we only replace the last two en-
coder layers before the bottleneck, the network size, in terms
of trainable parameters, already becomes too large. If we re-
place the last layer only, we do not benefit enough. In order to
balance between the two concepts, we introduce an extra en-
coder (and decoder) layer right before the bottleneck and apply
dilated convolution on that as well.

Fig. 9 shows the introduction of dilated convolutions in our
MultiRes U-Net structure. We have added an extra encoder
level with dilated convolutions and also used dilated convo-
lutions in the bottleneck layer. We have also added an extra
decoder level without increasing the feature maps dimensions.
The feature maps dimensions of the first two decoder layers
remain the same, while only the filter number increases. The
residual paths and visual attention blocks follow the size of the
encoder levels they are connected to. The network in Fig. 9
constitutes the proposed Dilated MultiRes Visual Attention U-
Net (DMVAnet).

3. Ablation study

In this section, we present an extensive ablation study, in or-
der to quantify the benefits of introducing several features to the

proposed architecture, which served as a guide regarding the fi-
nal network architecture and training process. In order to make
the study more transparent unbiased against any specific net-
work adaptation, we have performed the ablation study on the
basic U-Net model (Section 2.1).

Several metrics were estimated for the evaluation purposes,
but the final study ranking was based on the F-measure, Dis-
tance Reciprocal Distortion (DRD) and PSNR. Results were
ranked according to each of these metrics, with the best receiv-
ing the highest value. When n different items were evaluated,
the available ranks were 0, . . . , n − 1. The overall rank was the
sum of the individual metric ranks.

The evaluation metrics were measured separately on three
evaluation datasets, the DIBCO 2011 [36], the H-DIBCO 2014
[37] and H-DIBCO 2016 [38], in order to investigate the con-
sistency of the binarization process in different scenarios. The
training datasets were DIBCO 2009 [39], H-DIBCO 2010 [40],
H-DIBCO 2012 [41], Bickley-diary [42] and Synchromedia
Multispectral datasets [43]

Individual ablation studies were performed in a cascaded
manner, meaning that whenever a study resulted in a conclu-
sion, the selected parameter option was finalized for the sub-
sequent studies. For example, when the best upscaling method
was identified, it was used in the subsequent experimentation.

3.1. Dropout usage

We compared our model with and without dropout layers and
the results have shown that dropout gives marginally better re-
sults in two out of the three evaluation datasets. This led to the
inclusion of dropout layers. The results are shown in Table 1.

DIBCO 2011

Method F-measure PSNR DRD Rank
without dropout 91.19 18.90 3.45 2

with dropout 91.6 19.12 3.18 1

H-DIBCO 2014

Method F-measure PSNR DRD Rank
without dropout 92.61 21.71 2.58 2

with dropout 93.93 21.90 2.10 1

H-DIBCO 2016

Method F-measure PSNR DRD Rank
without dropout 89.90 18.87 3.52 1

with dropout 89.75 18.81 3.59 2

Table 1: Ablation study on the use of dropout layers

3.2. Upscaling method

Since upscaling is a crucial part in U-Net architectures, we
have examined whether it is better to upscale with the use of
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Fig. 9: The proposed Dilated MultiRes Visual Attention U-Net (DMVAnet)

a transpose convolution or with an upscaling interpolation al-
gorithm. Transpose convolution also offers choices on the ker-
nel size (among other parameters) that can result in the desired
resolution. In our study, we have examined 1 × 1 and 3 × 3
kernel sizes, to keep complexity low. In total, the methods
examined were transpose convolution with 1 × 1 kernel (k1),
transpose convolution with 3× 3 kernel (k3), Nearest-Neighbor
(NN) interpolation and Bilinear (Bil) interpolation. The results
are shown in Table 2.

The results show that upscaling with a transpose convolu-
tion and a 1 × 1 kernel is better in two out of three cases. In
DIBCO2011, where it is not consistently best, it still yields the
best PSNR score, therefore it was chosen as the preferred up-
scaling method. Transpose convolution provides the additional
advantage of adjusting the number of filters at the same time,
while an interpolation-based upscaling function would require
a subsequent convolutional layer.

3.3. Loss function choice

The choice of a loss function is a vital part of the training of
deep learning systems. We have examined the following loss
functions:

• Binary Cross-Entropy (BCE)

• Mean Square Error (MSE)

• Dice loss (Dice)

• Inverse Peak Signal-to-Noise Ratio (InvPSNR)

• Differentiable F-Measure (DFM)

The Binary Cross-Entropy function is defined, as follows:

L = −
1
N
·

N∑
i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (1)

where N is the number of samples, yi is the label for sample
i and ŷi is the predicted value for that sample. The Binary
Cross-Entropy function is commonly used in binary classifica-
tion tasks.

The Mean Square Error function definition is given by:

L =
1
N
·

N∑
i=1

(yi − ŷi)2 (2)

where again N is the number of samples, yi is the label for sam-
ple i and ŷi is the predicted value for that sample. It is a com-
monly used measure of the performance of an estimator.

Document image datasets, such as the ones we use in this
study, are inherently imbalanced, since the text pixels are con-
siderably fewer than the background pixels. Dice Loss is a dom-
inant loss function that aims to remedy such imbalances. Based
on the Dice coefficient and originally proposed as a loss func-
tion in [44] and [45], it is mathematically formulated as:

L = 1 −
2
∑N

i=1 yi · ŷi∑N
i=1 yi + ŷi

(3)

In semantic segmentation, the Peak Signal-to-Noise Ratio is
a measure of how the representation error (noise) compares to
the maximum ground truth signal power. In the case of binary
discrete signals, the metric is defined as

PS NR = 10 · log10
1

MS E
(4)

where MS E = 1
N ·
∑N

i=1(yi − ŷi)2.
Since the loss function is a measure of cost or error, we use

the inverse PSNR (InvPSNR):

L =
1

PS NR
(5)

In [46], Pastor-Pellicer et al. proposed the use of F-Measure
as the loss function for problems with imbalanced datasets.
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DIBCO 2011

Method F-measure PSNR DRD Rank
Transpose conv2d k1 88.17 17.80 5.38 3
Transpose conv2d k3 88.50 17.72 4.71 2

Nearest-Neighbor 88.62 17.72 4.96 1
Bilinear 88.30 17.70 4.99 4

H-DIBCO 2014

Method F-measure PSNR DRD Rank
Transpose conv2d k1 89.17 20.68 3.42 1
Transpose conv2d k3 88.54 20.23 3.66 2

Nearest-neighbor 87.79 20.13 3.86 4
Bilinear 89.14 20.39 3.54 3

H-DIBCO 2016

Method F-measure PSNR DRD Rank
Transpose conv2d k1 89.16 18.57 3.90 1
Transpose conv2d k3 89.04 18.47 3.98 2

Nearest-neighbor 86.91 18.30 4.53 4
Bilinear 88.44 18.44 4.21 3

Table 2: Ablation study on various upscaling methods used for the baseline
U-Net training

More precisely, they suggested a differentiable version of the
F-Measure function that can be incorporated into the back prop-
agation process. It is given by the following formula:

L = −
(1 + β2)

∑N
i=1 yi · ŷi∑N

i=1 ŷi + β2 · yi
(6)

where yi is the label for sample i, ŷi is the predicted value for
that sample and β is the weighting factor between precision and
recall of the regular F-Measure. In our experiments, we used
β = 1. We use the negative sign to change the monotonicity of
the function, so that it can be used as a cost function.

Table 3 shows that the Dice loss provided the best results.
For this reason, it was selected and at the same time linear com-
binations with some of the remaining loss functions were also
examined. The selected combinations are shown in the follow-
ing list:

• Dice + DFM

• Dice +MSE

• Dice + 10*InvPSNR

The weight in the Dice/InvPSNR combination was applied to
scale the loss functions to comparable levels. Adjusting weights
was attempted to other combinations as well, but did not pro-
vide any improvement against the simple addition.

The performance of all loss functions is summarised in Ta-
ble 3. The Dice loss consistently performs better than the other

DIBCO 2011

Method F-measure PSNR DRD Rank
BCE 88.17 17.80 5.38 7
MSE 88.21 17.72 5.27 6
Dice 91.13 18.94 3.57 1

InvPSNR 89.21 18.19 4.58 5
DFM 87.39 17.52 5.31 8

Dice+DFM 90.17 18.73 3.73 4
Dice+MSE 90.85 18.77 3.58 2

Dice+(10*1.0/PSNR) 90.89 18.76 3.61 3

H-DIBCO 2014

Method F-measure PSNR DRD Rank
BCE 89.17 20.68 3.42 3
MSE 87.47 20.22 3.88 7
Dice 88.71 21.33 3.46 1

InvPSNR 87.67 20.77 3.79 6
DFM 85.23 19.63 4.44 8

Dice+DFM 88.05 21.03 3.61 5
Dice+MSE 88.27 21.17 3.57 4

Dice+(10*1.0/PSNR) 88.25 21.29 3.56 2

H-DIBCO 2016

Method F-measure PSNR DRD Rank
BCE 89.16 18.57 3.90 5
MSE 88.04 18.36 4.25 8
Dice 89.61 18.72 3.69 2

InvPSNR 88.26 18.51 4.07 6
DFM 87.93 18.43 4.15 7

Dice+DFM 89.67 18.76 3.62 1
Dice+MSE 89.16 18.66 3.80 4

Dice+(10*1.0/PSNR) 89.32 18.69 3.73 3

Table 3: Ablation study on various loss functions used for the baseline U-Net
training

loss functions. Other loss functions that may occasionally ap-
pear to provide better scores, tend to behave much worse in the
remaining cases. On the other hand, Dice loss, even when it is
not ranked to the top on some metric of some evaluation dataset,
it is still among the best. Since generalisation is a desired ele-
ment for machine learning solutions, we selected Dice loss as
the loss function of our study.

3.4. Boundary conditions

Images in the training and evaluation datasets are split into
256 × 256 patches. However, the original image dimensions
are not always multiples of 256. This implies that some strat-
egy should be applied for the patches that lie around the image
boundaries. We choose not to crop the image to dimensions
multiple of 256, so as not to lose information. Instead, we ex-
pand the image appropriately and symmetrically on all sides.
This enables a range of options among which the simpler ones
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are to fill the new space with a solid colour. This option is re-
jected, since it modifies the image in an unnatural way.

We examine two options, reflecting the image with respect to
the boundary line (reflect 101) and replicating the image edge.
In both cases, the ground truth images are modified in the same
way. Results are shown in Table 4, where Reflect 101 is clearly
better. It is an anticipated outcome, since it modifies the bound-
ary information in a more realistic way, resulting in a network
that generalises better. In the opposite case, the network learns
patterns that are unlikely to appear in evaluation scenarios.

DIBCO 2011

Method F-measure PSNR DRD Rank
Reflect 101 91.61 19.12 3.18 1
Replicate 91.13 18.94 3.57 2

H-DIBCO 2014

Method F-measure PSNR DRD Rank
Reflect 101 93.93 21.90 2.10 1
Replicate 88.71 21.33 3.46 2

H-DIBCO 2016

Method F-measure PSNR DRD Rank
Reflect 101 89.76 18.82 3.59 1
Replicate 89.61 18.72 3.69 2

Table 4: Ablation study on boundary conditions when adjusting the dimensions
of the training and evaluation images to multiples of the patch dimension (256)

3.5. Architectures Comparison

All previous ablation study steps were performed on the ba-
sic U-Net architecture of Fig. 1. In this final step, we had to
evaluate the architecture enhancements we have presented, de-
termine the one that performs best and verify that combining the
proposed architectural blocks does improve the performance.
In order not to underestimate the learning capacity of the net-
works, they were trained for 150 epochs with all data augmen-
tations, as presented in the following section. The results are
shown in Table 5 and the overall ranking in Table 6.

The Dilated MultiRes Visual Attention U-Net (DMVAnet)
appears to be the best of the architectures we have evaluated.
The overall ranking does show that combining all the proposed
modifications improves the performance.

As it can be seen in Table 5, moving from VAnet to MVAnet
seems to produce a worse network. In two out of the three eval-
uation datasets, DIBCO 2011 and H-DIBCO 2016, the MVAnet
is ranked lower than its parent, the VAnet. In DIBCO 2011
it is ranked 3rd while in H-DIBCO 2016 4th. An observation
such as this could support the argument that perhaps adding
the MVAnet extensions produces an under-performing network.
This made the authors apply the subsequent step of modifica-
tions, the dilated convolutions, to both the VAnet and MVAnet
and examine which performs best. The results are shown in

DIBCO 2011

Method F-measure PSNR DRD Rank
Baseline 92.24 19.7 2.88 4

Res-U-Net 91.75 19.51 3.04 5
VAnet 93.11 20.26 2.42 2

MVAnet 92.45 20.03 2.7 3
DMVAnet 94.3 20.93 2.01 1

H-DIBCO 2014

Method F-measure PSNR DRD Rank
Baseline 95.66 22.49 1.6 5

Res-U-Net 95.74 22.23 1.56 4
VAnet 95.9 22.62 1.5 3

MVAnet 95.98 22.96 1.54 2
DMVAnet 97.73 24.21 0.75 1

H-DIBCO 2016

Method F-measure PSNR DRD Rank
Baseline 90.45 18.93 3.45 5

Res-U-Net 90.61 19.1 3.36 3
VAnet 90.63 19.18 3.24 1

MVAnet 90.43 18.99 3.42 4
DMVAnet 90.62 19.08 3.34 2

Table 5: Architecture evaluation results

Method Rank
Baseline 5
Resnet 4
VAnet 2

MVAnet 3
DMVAnet 1

Table 6: Architecture evaluation overall ranking

Table 7. This extra ablation step ensures that the dilated convo-
lutions should be applied to the MVAnet and thus the MultiRes
step should not be skipped in the chain of modifications that we
proposed.

4. Complexity Comparison

Table 8 lists the complexity of the proposed DMVAnet
method in terms of training parameters compared against the
complexities of the SOTA methods that are listed in the exper-
iments. It is clear that the proposed DMVAnet is the small-
est network in this list, after SauvolaNet and SAE, which are
the most lightweight binarization networks. The remaining
SOTA methods feature 1.3 to 32 times more network param-
eters, which does not necessarily translate to equivalent perfor-
mance, as it will be shown during the experiments in the forth-
coming section.
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DIBCO 2011

Method F-measure PSNR DRD Rank
DVAnet 93.89 20.40 2.17 2

DMVANet 94.3 20.93 2.01 1

H-DIBCO 2014

Method F-measure PSNR DRD Rank
DVAnet 96.23 23.04 1.05 2

DMVANet 97.73 24.21 0.75 1

H-DIBCO 2016

Method F-measure PSNR DRD Rank
DVAnet 90.89 19.22 3.02 1

DMVANet 90.62 19.08 3.34 2

Table 7: Dilated convolutions comparisons between DVAnet and DMVAnet.

Method Parameters
DMVAnet 6.5M
MRAtt [17] 8.5M

CMU-Net [18] 13M
DeepOtsu [12] 17M

HTR [20] 19M
DSN [14] 24M

CT-Net [19] 45M
cGANs [15] 57M

CCDWT-GAN [21] [22] 179M
DD-GAN [16] 210M

PDNet [47] -

Table 8: Comparison based on network size in terms of number of trainable
parameters.

5. Performance Comparison

In this section, we evaluate the proposed DMVAnet model
against state-of-the-art binarization approaches. In order to
compare against reported results in modern literature, we repli-
cate two experiments, as described in two state-of-the-art ap-
proaches [11], [19]. The architecture of the DMVAnet model
remains the same in each experiment, however, each time the
training and evaluation sets are changed in order to match those
described in each experiment. Specific details are provided
in the respective experiment section. The architectures that
were used in our comparison contained both traditional im-
age processing based methods and deep learning based meth-
ods. More specifically, the following methods were examined:
Otsu [1], Sauvola [2], Su et al [5], Howe [4], Lelore et al. [6],
Nafchi et al. [7], Mitianoudis et al. [8], Jia et al. [9], GiB
[10], SauvolaNet [11], HTR [20], CMU-Net [18], CT-Net [19],
cGANs [15], DeepOtsu [12], DSN [14], MRAtt [17], SAE [13],
DD-GAN [16], PDNet [47], CT-Net-3 [19], CTada -Net-3 [19]
In addition to the above, we also compare against CCDWT-

GAN [21, 22], since it is a very recent method and has been
evaluated under the same conditions (training and evaluation
datasets).

In all experiments, the training images were split in 256×256
patches. Since the original image dimensions are not multi-
ples of 256, the border interpolation method used was the “re-
flect 101”, which preserves the last column or row and reflects
an appropriate number of the preceding or succeeding rows or
columns.

The following augmentations were added to the training sam-
ples in a cascaded manner:

• Scale augmentation: by 1.7 on each dimension, on all
training samples.

• Contrast augmentation: contrast was reduced with the
transformation 0.3 × I + 90, where I is the pixel intensity
(on each RGB channels), on all training samples.

• Noise augmentation: Gaussian and Salt & Pepper noise
was added to the training samples. The Gaussian noise
variance was 0.02 and the Salt & Pepper noise probability
was 0.05. Each of these two types of noise was added with
a probability of 0.5 on all training samples.

• Geometrical augmentation: training samples were rotated
and flipped. Rotation was done in multiples of 90 degrees
and flipped was done along both axes. The rotation angle
and the flip direction were randomly chosen. Both rotation
and flip were added with probability of 0.7 each.

Training of the proposed DMVAnet was performed for 150
epochs using the Adam optimizer and a learning rate of η =
0.0001 (the default Adam learning rate of η = 0.001 did con-
verge faster but produced slightly inferior results). Training and
evaluation was done on an Ubuntu 20.04 PC with 64GB RAM,
an Intel i9 2.5 GHz 16-Core CPU and an NVIDIA GeForce
RTX 3090 GPU. The architecture was developed in Python
v3.8.10 and Tensorflow v2.10.0. The developed code is avail-
able via the following url1.

5.1. Comparisons & results

In both following experiments, for each evaluation dataset,
predictions were made by directly applying our model to each
evaluation dataset. Result metrics were collected and combined
to produce the results in Tables 9, 10, 11, 12.

In addition to the metrics, predicted images were produced
and can be seen in Fig. 10, 11, 12, 13. Images are quite homo-
geneous in background, since this is the usual form in text bi-
narization datasets, but contain certain common noise elements,
such as stains, poor lighting conditions, textures and ink bleed-
ing.

1https://github.com/detsikas/DMVAnet
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Method DIBCO 2011 H-DIBCO 2014 H-DIBCO 2016 Overall rank
Otsu [1] 9 10 9 9
Howe [4] 8 5 10 8

MRAtt [17] 6 9 2 6
DeepOtsu [12] 5 7 3 5

SAE [13] 7 8 6 7
DSN [14] 4 3 7 4

DD-GAN [16] - 4 8 -
cGANs [15] 3 6 1 3
Sauvola [2] 10 11 11 10

Sauvola MS[48] 11 12 12 11
SauvolaNet [11] 1 1 5 1

DMVAnet 2 2 4 2

Table 9: Overall ranking for Experiment 1 (Dashes show that the method is not ranked because metrics are missing).

DIBCO 2011

Method FM Fps PSNR DRD
Otsu [1] 82.1 84.80 15.7 9.0
Howe [4] 91.7 92.00 19.3 3.4

MRAtt [17] 93.16 95.23 19.78 2.2
DeepOtsu [12] 93.4 95.80 19.9 1.9

SAE [13] 92.77 95.68 19.55 2.52
DSN [14] 93.3 96.40 20.1 2.0

DD-GAN [16] - - - -
cGANs [15] 93.81 95.26 20.3 1.82
Sauvola [2] 82.1 87.70 15.6 8.5

Sauvola MS[48] 79.7 81.78 14.91 11.67
SauvolaNet [11] 94.32 96.40 20.55 1.97

DMVAnet 94.3 96.32 20.93 2

Rank 2 3 1 4

H-DIBCO 2014

Method FM Fps PSNR DRD
Otsu [1] 91.7 95.70 18.7 2.7
Howe [4] 96.5 97.40 22.2 1.1

MRAtt [17] 94.9 95.98 21.09 1.85
DeepOtsu [12] 95.9 97.20 22.1 0.9

SAE [13] 95.81 96.78 21.26 1.0
DSN [14] 96.7 97.60 23.2 0.7

DD-GAN [16] 96.27 97.66 22.60 1.27
cGANs [15] 96.41 97.55 22.12 1.07
Sauvola [2] 84.7 87.80 17.8 2.6

Sauvola MS[48] 85.83 86.83 17.81 4.88
SauvolaNet [11] 97.83 98.74 24.13 0.65

DMVAnet 97.74 98.52 24.21 0.75

Rank 2 2 1 3

H-DIBCO 2016

Method FM Fps PSNR DRD
Otsu [1] 86.6 89.90 17.8 5.6
Howe [4] 87.5 82.30 18.1 5.4

MRAtt [17] 91.68 94.71 19.59 2.93
DeepOtsu [12] 91.4 94.30 19.6 2.9

SAE [13] 90.72 92.62 18.79 3.28
DSN* [14] 90.1 83.60 19.0 3.5

DD-GAN [16] 89.98 85.23 18.83 3.61
cGANs [15] 91.66 94.58 19.64 2.82
Sauvola [2] 84.6 88.40 17.1 6.3

Sauvola MS[48] 79.84 81.61 14.76 11.50
SauvolaNet [11] 90.25 95.26 18.97 3.51

DMVAnet 90.63 95.35 19.08 3.34

Rank 5 1 4 5

Table 10: Comparison on DIBCO 2011, H-DIBCO 2014, H-DIBCO 2016 datasets following the guidelines of Experiment 1 (source [11]).



12

Fig. 10: Prediction details of the DMVAnet against the competitor methods of experiment 1.

DIBCO 2011 HW2 GT SauvolaNet [11] cGANs [15] DeepOtsu [12] MRAtt [17] DMVAnet

DIBCO 2011 HW4 GT SauvolaNet [11] cGANs [15] DeepOtsu [12] MRAtt [17] DMVAnet

DIBCO 2011 HW8 GT SauvolaNet [11] cGANs [15] DeepOtsu [12] MRAtt [17] DMVAnet

DIBCO 2011 PR7 GT SauvolaNet [11] cGANs [15] DeepOtsu [12] MRAtt [17] DMVAnet

Fig. 11: Sample Binarization results from the methods in Experiment 1 [11]. GT denotes the ground truth binarization and DMVAnet the proposed method.
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Method 2009 2011 2014 2016 2017 2018 Overall rank
Otsu [1] 11 14 12 10 9 9 7

Sauvola [2] 10 13 13 13 8 8 8
Su et al [5] 7 12 11 12 - - -
Howe [4] 4 10 6 9 6 6 5

Lelore et al. [6] 5 8 9 11 - - -
Nafchi et al. [7] - - - - - - -

Mitianoudis et al. [8] 9 11 - - - - -
Jia et al. [9] 6 9 10 6 7 7 6

GiB [10] - - - - - - -
DeepOtsu [12] - 6 8 3 - - -

DSN [14] - 7 3 7 - - -
PDNet [47] - - - - - - -
cGANs [15] 2 5 7 1 5 4 3

CT-Net-3 [19] 8 1 1 8 1 3 4
CTada -Net-3 [19] 3 3 4 5 2 1 2

CCDWT-GAN [21, 22] - 4 5 2 4 2 -
DMVAnet 1 2 2 4 3 5 1

Table 11: Overall ranking for Experiment 2 (Dashes show that the method is not ranked because metrics are missing).

Fig. 12: Prediction details of the DMVAnet against some of the competitor methods of experiment 2. The red annotations come from the authors of [19] and show
missing text pixels.
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DIBCO 2009

Method FM Fps PSNR DRD
Otsu [1] 78.6 80.53 15.31 22.57

Sauvola [2] 85.37 89.08 16.37 7.08
Su et al [5] 93.02 94.61 19.41 2.64
Howe [4] 94.04 95.06 20.43 2.10

Lelore et al. [6] 93.93 95.10 20.21 2.17
Nafchi et al. [7] 93.36 - 19.55 -

Mitianoudis et al. [8] 90.27 92.69 18.08 3.71
Jia et al. [9] 93.05 94.60 19.29 2.40

GiB [10] 92.5 - 19.26 2.41
DeepOtsu [12] - - - -

DSN [14] - - - -
PDNet [47] 91.5 - 19.25 3.06
cGANs [15] 94.1 95.26 20.30 1.82

CT-Net-3 [19] 92.08 94.31 19.77 3.58
CTada -Net-3 [19] 94.18 95.80 20.50 2.56

CCDWT-GAN [21, 22] - - - -
DMVAnet 95.7 96.84 21.42 1.35

Rank 1 1 1 1

DIBCO 2011

Method FM Fps PSNR DRD
Otsu [1] 82.10 85.96 15.72 8.95

Sauvola [2] 82.14 87.70 15.65 8.50
Su et al [5] 87.83 90.24 17.71 4.66
Howe [4] 90.79 92.28 19.01 4.46

Lelore et al. [6] 92.48 94.11 19.37 2.97
Nafchi et al. [7] 92.57 - 19.29 2.28

Mitianoudis et al. [8] 89.13 93.79 17.90 3.47
Jia et al. [9] 91.92 95.09 18.98 2.64

GiB [10] 90.33 - 18.29 2.99
DeepOtsu [12] 93.4 95.8 19.9 1.9

DSN [14] 93.3 96.4 20.1 2.0
PDNet [47] 91.87 - 19.07 2.57
cGANs [15] 93.81 95.70 20.26 1.81

CT-Net-3 [19] 95.27 97.24 21.50 1.37
CTada -Net-3 [19] 94.17 96.92 20.76 1.69

CCDWT-GAN [21, 22] 94.08 97.08 20.51 1.75
DMVAnet 94.68 96.71 21 1.62

Rank 2 4 2 2
H-DIBCO 2014

Method FM Fps PSNR DRD
Otsu [1] 91.62 95.69 18.72 2.65

Sauvola [2] 84.70 87.88 17.81 4.77
Su et al [5] 94.38 95.94 20.31 1.95
Howe [4] 96.49 97.38 22.24 1.08

Lelore et al. [6] 96.14 96.73 21.88 1.25
Jia et al. [9] 94.98 97.18 20.56 1.50

Mitianoudis et al. [8] 87.57 - 18.43 -
GiB [10] 94.00 - 19.93 1.79

DeepOtsu [12] 95.9 97.2 22.1 0.9
DSN [14] 96.66 97.59 23.23 0.79

PDNet [47] 89.99 - 20.52 7.42
cGANs [15] 96.41 97.55 22.12 1.07

CT-Net-3 [19] 97.70 98.74 23.92 0.65
CTada -Net-3 [19] 96.91 97.93 22.62 0.88

CCDWT-GAN [21, 22] 96.65 98.19 22.27 0.96
DMVAnet 97.55 98.58 23.62 0.71

Rank 2 2 2 2

H-DIBCO 2016

Method FM Fps PSNR DRD
Otsu [1] 86.59 89.92 17.79 5.58

Sauvola [2] 84.64 88.39 17.09 6.27
Su et al [5] 84.75 88.94 17.64 5.64
Howe [4] 87.47 92.28 18.05 5.35

Lelore et al. [6] 87.21 88.48 17.36 5.27
Jia et al. [9] 90.48 93.27 19.30 3.97

Mitianoudis et al. [8] 86.89 - 17.60 -
GiB [10] 91.15 - 19.18 3.20

DeepOtsu [12] 91.4 94.3 19.6 2.9
DSN [14] 90.10 93.57 19.01 3.58

PDNet [47] 90.18 - 18.99 3.61
cGANs [15] 91.66 94.58 19.64 2.82

CT-Net-3 [19] 89.62 91.60 18.63 4.70
CTada -Net-3 [19] 91.07 94.34 19.22 3.29

CCDWT-GAN [21, 22] 91.46 96.32 19.66 2.94
DMVAnet 90.83 95.23 19.23 3.2

Rank 6 2 5 4
DIBCO 2017

Method FM Fps PSNR DRD
Otsu [1] 77.73 77.89 13.85 15.54

Sauvola [2] 77.11 84.10 14.25 8.85
Su et al [5] - - - -
Howe [4] 90.10 90.95 18.52 5.12

Lelore et al. [6] - - - -
Jia et al. [9] 85.59 86.38 16.39 7.99

Mitianoudis et al. [8] - - - -
GiB [10] - - - -

DeepOtsu [12] - - - -
DSN [14] - - - -

PDNet [47] - - - -
cGANs [15] 90.73 92.58 17.83 3.58

CT-Net-3 [19] 92.72 94.31 19.17 2.79
CTada -Net-3 [19] 92.65 94.73 19.17 2.65

CCDWT-GAN [21, 22] 90.95 93.79 18.57 2.94
DMVAnet 92.2 95.14 18.73 2.6

Rank 3 1 3 1

H-DIBCO 2018

Method FM Fps PSNR DRD
Otsu [1] 51.45 53.05 9.74 59.07

Sauvola [2] 67.81 74.08 13.78 17.69
Su et al [5] - - - -
Howe [4] 80.84 82.85 16.67 11.96

Lelore et al. [6] - - - -
Jia et al. [9] 76.52 79.90 17.00 8.11

Mitianoudis et al. [8] - - - -
GiB [10] - - - -

DeepOtsu [12] - - - -
DSN [14] - - - -

PDNet [47] - - - -
cGANs [15] 87.73 90.60 18.37 4.58

CT-Net-3 [19] 88.90 91.45 18.84 5.58
CTada -Net-3 [19] 92.23 94.97 20.13 2.70

CCDWT-GAN [21, 22] 91.66 95.53 20.02 2.81
DMVAnet 85.9 89.45 18.16 6.99

Rank 5 5 5 5

Table 12: Comparison on DIBCO 2009, DIBCO 2011, H-DIBCO 2014, H-DIBCO 2016, DIBCO 2017 and H-DIBCO 2018 datasets following the guidelines of
Experiment 2. Dashes indicate missing metrics. (source [19])
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DIBCO 2009 H02 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

DIBCO 2011 HW1 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

DIBCO 2018 1 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

DIBCO 2018 4 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

DIBCO 2018 5 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

DIBCO 2018 9 GT CT-Net-3 [19] CTada-Net-3 [19] DMVAnet

Fig. 13: Sample Binarization results from the methods in Experiment 2 [19]. GT denotes the ground truth binarization and DMVAnet the proposed method.
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5.1.1. Experiment 1 [11]
First, we compare the DMVAnet model to the scenario de-

scribed in [11]. In this experiment, the training datasets are
DIBCO 2009 [39], H-DIBCO 2010 [40] and H-DIBCO 2012
[41] datasets, as well as the Bickley-diary [42] and the Synchro-
media Multispectral dataset [43]. The evaluation datasets are
the DIBCO 2011 [36], the H-DIBCO 2014 [37] and H-DIBCO
2016 [38] datasets.

We first show the overall ranking against the competitor
methods over all the evaluation datasets in Table 9. Our method
ranks second only to the SauvolaNet [11] method. To calcu-
late the ranking, we rank all methods for each metric and each
evaluation dataset. We add the metric ranks and calculate the
total rank for each evaluation dataset by sorting the sums from
lowest to highest. The individual dataset ranks are shown in the
corresponding columns of Table 9. Finally, we add the indi-
vidual dataset ranks and calculate the overall rank, which is the
last column. Methods that do not have values for all metrics and
all evaluation datasets are not considered in the ranking. In the
overall ranking, it can be observed that the proposed DMVAnet
is the second network in performance overall in Experiment 1.

Table 10 shows more analytically the performance of the
DMVAnet model in comparison with other SOTA Binariza-
tion methods. The last row in each table indicates the rela-
tive rank of the proposed method among the comparison results.
Our method ranks among the top for the DIBCO 2011 and H-
DIBCO 2014 datasets, scoring the best PSNR in both datasets
and the second best FM and Fps. The H-DIBCO 2016 dataset is
one of the most challenging to binarize because the document
images exhibit very strong bleed-through of the back page ink.
Our model performance is lower on that dataset in terms of FM,
PSNR and DRD, however, it gets the first place in terms of Fps.

Table 8 shows, with the exception of SauvolaNet and SAE
(which is outperformed by our model), that our model has sig-
nificantly fewer parameters compared to all other methods. As
described before, the simplicity of our model also lies in the fact
that, unlike its competitors, it is a one-shot prediction method,
with a single DNN without any pre- or post- processing steps.
It is clear that the proposed DMVAnet method ranks second in
performance in this Experiment.

Finally, Fig. 10 shows some image details of the binarized
images between the main competitor methods of Experiment 1.
The overall good performance of the proposed method is evi-
dent, which shows that the proposed method is attentive to de-
tails. In addition, Fig. 11 shows predictions of complete images
by most competing methods that take part in the experiment.

5.1.2. Experiment 2 [19]
In each of the experiments described in [19], a DIBCO

dataset is used as the evaluation dataset and the remaining are
treated as training datasets. In total, the DIBCO datasets used
both for training and evaluation purposes are DIBCO 2009, H-
DIBCO 2010, DIBCO 2011, H-DIBCO 2012, DIBCO 2013
[49], H-DIBCO 2014, H-DIBCO 2016, DIBCO 2017 [50] and
H-DIBCO 2018 [51].

The training sets also include the Bickley-diary dataset, the
Persian Heritage Image Binarization dataset (PHIDB) [52] and
the Synchromedia Multispectral dataset [43].

We performed the DIBCO 2009, DIBCO 2011, H-DIBCO
2014, H-DIBCO 2016, DIBCO 2017 and H-DIBCO 2018 ex-
periments. Table 11 shows the overall ranking against the com-
petitor methods over all evaluation datasets. The ranking mech-
anism is the same as the one described in Experiment 1. De-
spite, the fluctuation in individual datasets, our method ranks
first against all other methods in the experiments, which implies
that in general the proposed method outperforms more complex
networks and offers a reliable lightweight architecture for the
problem of document image binarization.

Extensive results are listed in Table 12. Our method is the
top ranking method for DIBCO 2009. For DIBCO 2011 and
H-DIBCO 2014, it is outperformed only by CT-Net-3, which
is of much higher complexity (seven times more parameters,
see Table 8). With the exception of Fps, where it is first, our
method is ranked lower in the H-DIBCO 2016 dataset exper-
iment, but still, all the outperforming deep learning methods
have significantly higher complexity. As mentioned before, the
H-DIBCO 2016 is a particularly challenging dataset, due to the
strong bleed-through exhibited. The proposed DMVAnet ex-
hibits a similar performance to the one observed in Experiment
1. For DIBCO 2017, our method exhibits the best pseudo f-
measure and DRD values, while it is outperformed only by CT-
Net-3 method variations. Finally, H-DIBCO 2018 dataset ex-
periment renders our method fifth among the examined meth-
ods, all of which though have much higher complexity. Again,
H-DIBCO 2018 presents special challenges such as the strong
bleed-through, strong paper stains and page margins not seen
in other datasets. CCDWT-GAN [21, 22] lacks overall ranking,
since no results were reported for DIBCO 2009. However, even
in the theoretical case that the CCDWT-GAN method is ranked
first in DIBCO 2009, overall ranking calculations still render
our method top.

Prediction details on several images of the dataset used in
Experiment 2 are depicted in Fig. 12 against the main com-
petitors of the proposed DMVAnet. It can be observed that the
proposed network is very attentive to details. Finally, Fig. 13
shows predictions of complete document images by the main
competitor methods of Experiment 2.

6. Conclusions and future work

We have presented a single-step one-shot light-weight deep
learning network for Document Image Binarization that re-
quires no pre- or post- processing steps. The proposed DM-
VAnet combines a basic U-Net architecture with elements from
modern deep learning architectures, including visual attention
blocks, multi resolution blocks, residual connections and di-
lated convolutions that enhances its performance without in-
hibiting computational efficiency. The DMVAnet’s perfor-
mance was benchmarked with State of the Art methods on the
popular (H-)DIBCO datasets and demonstrated that it exhibits
better or comparable performance, but with much smaller com-
plexity in terms of number of training parameters.

The rationale behind the architecture elements added to
our architecture, was that each one individually is a well-
established deep learning architectural trait that addresses prob-
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lems, encountered in deep networks, and ensures specific opti-
mization gains. All have benefits and drawbacks and had to
be studied thoroughly within our model context. For instance,
adding dilated convolutions stems from the need for wider
model field-of-view. At the same time, balancing the num-
ber of dilated convolutions, prevents excessive model memory
footprint growth. Wider convolutional kernels were implicitly
introduced with the MultiRes blocks, which, at the same time,
extend the network length and increase the need and depen-
dence on residual connections. Careful combined application
and study of all the described modifications to the initial basic
U-net model, enabled the design of a highly effective, yet very
low-cost binarization deep learning model.

For future research, continuing on the path of visual atten-
tion research, we will investigate more complex deep learn-
ing attention architectures, such as transformer networks. Even
though transformer networks had been primarily introduced for
sequential data problems, such as Natural Language Processing
(NLP), they process the entire input at once and take advantage
of contextual information through their innate attention mecha-
nism. Due to these properties, the transformer network adapta-
tion on image semantic segmentation task is a very promising
and challenging task that should be investigated and extended
with other successful and well-established contemporary deep
learning architectural blocks
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