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Cellular Automata (CA) have been considered one of the most10

pronounced parallel computational tools in the recent era of na-11

ture and bio-inspired computing. Taking advantage of theirlocal12

connectivity, the simplicity of their design and their inherent par-13

allelism, CA can be effectively applied to many image process-14

ing tasks. In this paper, a CA approach for efficient salt-n-pepper15

noise filtering in grayscale images is presented. Using a 2D16

Moore neighborhood, the classified “noisy” cells are corrected17

by averaging the non-noisy neighboring cells. While keeping18

the computational burden really low, the proposed approachsuc-19

ceeds in removing high-noise levels from various images and20

yields promising qualitative and quantitative results, compared21

to state-of-the-art techniques.22
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1 INTRODUCTION

There are two most common types of noise in image processing:Gaussian24

noise and impulsive noise. Images are often corrupted by impulsive noise,25
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which is caused by channel transmission errors, faulty memory locations in26

hardware or by malfunctioning pixels in camera sensors [18]. Salt and pep-27

per noise represents a special case of impulsive noise, where the corrupted28

image pixels can only take either the maximum or minimum values in the dy-29

namic range. For this reason, salt and pepper noise normallyappears either as30

black or white dots in an image. There are numerous techniques that attempt31

to efficiently restore an image corrupted by salt and pepper noise. Hitherto,32

median filtering has been the most common nonlinear filteringtechnique for33

removing this noise type. However, this is mainly effectivefor low noise den-34

sities. Moreover, the median filter applies the median operation to each pixel,35

regardless if it is noisy or not, which smears image details (such as edges36

and thin lines) [39]. Thus, many improvements of the basic median filtering37

approach have been proposed. The Adaptive Median filter (AMF) is used38

to classify corrupted and uncorrupted pixels performing well at high noise39

densities. Although AMF showed promising results in removing noise, the40

window size in higher densities has to be large enough to remove the noise,41

resulting to increased computation complexity and often blurred restored im-42

ages [21]. Chanet al. [5] proposed a two-phase solution. Firstly, an adaptive43

median filter is used to identify noisy pixels and secondly, image restoration44

is performed only to the previously selected noisy pixels using a specialized45

regularization method. This has shown to be very effective for high noise46

densities, nonetheless, the large window size increases the processing time.47

Therefore, Srinivasan and Ebenezer [49] recommended a new method, which48

corrects only corrupted pixels using the median value or itsneighboring pixel49

value. The window size here remains equal to3 × 3, thus reducing consid-50

erably the processing time. However, the edges of the restored image tend to51

appear less smooth and more pixelated. Another group of nonlinear filters has52

been proposed, including progressive switching median filter (PSMF) [56],53

dynamic adaptive median filter (DAMF) [40] and fuzzy based adaptive mean54

filter (FBAMF) [41], which are adaptive, directional versions of the original55

median filter. A decision-based detail-preserving variational method (DPVM)56

for the removal of random-valued impulse noise was proposed, featuring an57

adaptive window type and size and a noise pixel annotation algorithm that58

guides the restoration algorithm to improve pixels accordingly [59].59

There is also another group of image denoising algorithms, which are60

based on 2-D Cellular Automata (CA), that attempt to restoredigital images61

corrupted by impulsive noise with the help of fuzzy logic theory [46]. CA,62

although considered computational models of physical systems of discrete63

space and time [13], have been successfully applied in imageprocessing and64
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computer vision [44]. Lafe [27] has also proposed CA methods, where in-65

formation building blocks, called basis functions (or bases), can be generated66

from the evolving states of the CA, namely Cellular AutomataTransforms67

(CAT) with direct application to image and video compression. More re-68

cently, it has also been shown by several researchers [2, 22,17, 58, 57, 23]69

that CA can be used to perform some standard image processingtasks to70

a high performance level, as well as in up-to-date computer vision fields,71

such as stereo vision [36, 35], image retrieval [26], medical image process-72

ing [16, 19, 9], image encryption [11, 7, 25, 54, 10, 6], imageclassification73

[15], image coding [4], etc. For example, Rosin [42, 43] proposed training74

binary CA for noise filtering, thinning, and convex hull estimation. Another75

inherent advantage of CA is their parallelization capability that contributes76

to their performance increase. Furthermore, the CA approach is consistent77

with the modern notion of unified space-time. In computer science, space78

corresponds to memory and time to the processing unit. In CA,memory (CA79

cell state) and the processing unit (CA local rule) are inseparably related to a80

CA cell [48]. In terms of circuit design and layout, due to theease of mask81

generation, silicon-area utilization, and the maximization of clock speed, CA82

are perhaps one of the most suitable computational structures for hardware83

realization [31].84

There were several recent applications of CAs on image edge detection.85

Uguzet al. [51] proposed a thresholding technique of edge detection based86

on fuzzy cellular automata transition rules enhanced usingParticle Swarm87

Optimization. Hasanzadehet al. [32] introduced a novel CA local rule with88

an adaptive neighborhood in order to produce the edge map of image. In89

contrast to common fixed neighborhood CAs, the proposed adaptive algo-90

rithm employs both von Neumann and Moore neighborhoods in anadaptive91

formulation. Finally, CAs have been also introduced into impulsive noise92

reduction in images. Selvapater and Hordijk [47] proposed adifferent mod-93

ification of CA, such as a deterministic, random and mirroredCA to tackle94

the image noise filtering problem. Preliminary CA are presented as a simplis-95

tic proof of concept that they could be an alternative to standard image noise96

filtering techniques[24]. A more enhanced CA based approach, in terms of97

the noise removal, was also presented [1]. A Cellular Automata Image De-98

noising (CAID) toolkit was introduced [20] for the removal of salt and pepper99

noise in gray and color images. Sadeghiet al. [45] presented a hybrid method100

based on CA and fuzzy logic called Fuzzy Cellular Automata (FCA) in two101

steps. In the first step, noisy pixels are detected by CA, exploiting the local102

statistical information. In the second step, noisy pixels will be altered by FCA103
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using the extracted statistical information. Finally, Sahin et al. [46] combine104

again two-dimensional CAs with the help of fuzzy logic theory. The algo-105

rithm employs a local fuzzy transition rule, which gives membership values106

to the corrupted neighboring pixels and assigns a next statevalue as a central107

pixel value.108

A novelty of the proposed method is that it is applying CA to remove salt109

and pepper noise by altering only the pixels that have been corrupted, thus en-110

hancing the performance of the applied CA-based method, while keeping the111

computational burden significantly low, along with the mostadvanced corre-112

sponding image processing techniques. In detail, the proposed algorithm is113

using a fixed3 × 3 window size, to examine the 8 neighbors of the central114

pixel/CA cell, including the central pixel, in a Moore 2D CA neighborhood,115

which is applied to every pixel in the current image. Thus, the method’s main116

advantages are that the CA is processing in real time and thatthe algorithm117

is self-adaptive, requiring only a rough estimate of noise percentage to be118

defined. Another advantage of this algorithm is that it requires significantly119

lower computational time compared to other algorithms and the results even120

in very high noise densities, such as 80% or 90%, are satisfactory, giving121

smoother restored images than other methods. The proposed method’s maxi-122

mum possible complexity scales linearly with the noise level, which provides123

a speed benefit compared to many other approaches. On top of all these, the124

inherent parallelism of CA enables the straightforward hardware implemen-125

tation of the proposed really simple CA-based method without any hardware126

overhead. As a result, the simplicity of the proposed method, its minimal127

complexity and its evolution through time when combined with the inherent128

parallelism of the CA approach result in a quite efficient filtering procedure.129

In this study, we compare with a family of adaptive median filters as well as130

other well known denoising techniques which the proposed method outper-131

forms in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-132

ity (SSIM) [55]. A similar trend appears when the proposed approach is com-133

pared in terms of PSNR and SSIM with all the corresponding CA based tech-134

niques dealing with salt and pepper noise removal, as encountered in modern135

literatur, to the best of our knowledge, and described earlier.136

This paper is organized as follows. In Section 2, we introduce the basic137

principles of the CA computational tool. Section 3 describes the proposed138

method and the necessary steps to implement the algorithm, while in Section139

4, we present the results of the proposed method and its comparison among140

the other methods that already exist. This comparison is based on PSNR and141

SSIM values. Experiments show that the proposed method performs better142
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than the other existing methods. Finally, Section 5 concludes the paper.143

2 CELLULAR AUTOMATA PRINCIPLES

Cellular Automata (CA) are a very elegant computing model, which dates144

back to John von Neumann [53]. CA decompose problems into a field of145

cells and a local rule, which defines the new state of a cell, depending on its146

neighbors’ states. All cells can operate in parallel, sinceeach cell can inde-147

pendently update its own state. Hence, CA can capture the essential features148

of systems, where global behavior arises from the collective effect of sim-149

ple components, which interact locally. In addition, the model is massively150

parallel and ideal for hardware implementation. In general, a CA requires [8]:151

1. a regular lattice of cells covering a portion of ad-dimensional space;152

2. a setC(~r, t) = {C1(~r, t), C2(~r, t), . . . , Cm(~r, t)} of variables attached153

to each site~r of the lattice giving the local state of each cell at the time154

t = 0, 1, 2, . . . ;155

3. a ruleR = {R1, R2, . . . , Rm}, which specifies the time evolution of156

the statesC(~r, t) in the following way:Cj(~r, t+1) = Rj(C(~r, t),C(~r+157

~δ1, t),C(~r+ ~δ2, t), . . . ,C(~r+ ~δq, t)), where~r+ ~δk designate the cells158

belonging to a given neighbourhood of cell~r.159

In the above definition, the ruleR is identical for all sites and is applied si-160

multaneously to each of them, leading to synchronous dynamics. It is impor-161

tant to notice that the rule is homogeneous, i.e. it does not depend explicitly162

on the cell position~r. However, spatial (or even temporal) inhomogeneities163

can be introduced by having someC(~r) systematically at 1, in some given164

locations of the lattice, to mark particular cells for whicha different rule ap-165

plies. Furthermore, in the above definition, the new state attime t + 1 is166

only a function of the previous state at timet. It is sometimes necessary167

to have a longer memory and introduce a dependence on the states at time168

t− 1, t− 2, . . . , t− k. Such a situation is already included in the definition,169

if one keeps a copy of previous states in the current state.170

The neighbourhood of a cell~r is the spatial region in which a cell needs171

to search in its vicinity. In principle, there is no restriction on the size of the172

neighbourhood, except that it is the same for all cells. However, in practice,173

it is often made up of adjacent cells only. For 2-D CA, two neighbourhoods174

are commonly considered: The von Neumann neighbourhood, which con-175

sists of a central cell and its four geographical neighboursnorth, west, south176
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and east. The Moore neighbourhood is a super set containing second near-177

est neighbours, i.e. northeast, northwest, southeast and southwest, giving a178

total of nine cells. In practice, when simulating a given CA rule, it is im-179

possible to deal with an infinite lattice. The system must be finite and have180

boundaries. Clearly, a site belonging to the lattice boundary does not have the181

same neighbourhood as other internal sites. In order to define the behaviour182

of these sites, the neighbourhood is extending for the sitesat the boundary183

leading to various types of boundary conditions, such as periodic (or cyclic),184

fixed, adiabatic or reflection.185

3 PROPOSED DENOISING METHOD

In this paper, a novel method based on CA is applied to remove impulsive186

noise from gray-scale images. The proposed method was inspired from the187

Segmentation Matching Factor [3], where each pixel is replaced by the me-188

dian of its neighborhood values. Nevertheless, the approach presented here is189

somehow different. We consider a 2-D image which is divided into a matrix190

of identical square CA cells, with side lengtha and is represented by a CA.191

For matters of simplicity, we consider each CA cell an image pixel; so the192

number of spatial dimensions of the CA array isn = 2, while the widths of193

the two sides of the CA array are taken to be equal, i.e.w1 = w2. We also194

assume zero boundary conditions for the CA. In the case ofC(i0,j0), the under195

study pixel at position(i0, j0), the state of the corresponding CA cell is made196

to take256 discrete values as follows:197

Ct
(i0,j0) ∈ {0, . . . , 255} (1)

This is due to the assumption that the intensity of each pixelis represented198

by 8-bit gray-scale accuracy. Furthermore, the Moore (M ) neighborhood (N )199

for the ranger of a CA cellC(i0,j0) can be defined by the following equation:200

N (i0, j0)
M

= {(i, j) : |i− i0| ≤ r, |j − j0| ≤ r} (2)

In our case, ranger equals to 1, resulting in a fixed neighborhood size201

of 3 × 3, which is used for the whole image. As mentioned before, two202

thresholds are considered for the CA state values, i.e.minstate = 0 and203

maxstate = 255. In general, the local 2D rule for the proposed CA is given204

as follows:205
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C
t+1

(i,j) =











Ct
(i,j), if minstate < Ct

(i,j) < maxstate

Cnewt
(i,j) , if Ct

(i,j) = minstate

or Ct
(i,j) = maxstate

(3)

In (3), the new valueCt+1
(i,j) of CA cell Ct

(i,j) is calculated as a local206

2D sub-rule described by (4) as found below:207

Cnewt
(i,j) =











mean−r≤i,j≤r(C
t
i,j), if ∀ Ct

(i±r,j±r) ∈ N, Ct
(i±r,j±r) 6= minstateor C

t
(i±r,j±r) 6= maxstate, where r = 1

mean−r≤i,j≤r(C
t
(i,j)), if ∀ Ct

(i±r,j±r) ∈ N, ∃Ct
(i±r,j±r) = minstate and Ct

(i±r,j±r) = maxstate, where r = 1

maxstate, if ∀ Ct
(i±r,j±r), C

t
(i±r,j±r) = minstate or C

t
(i±r,j±r) = maxstate

(4)
As a result, in the proposed CA the requested detection of noisy and noisy-208

free pixels is given by the corresponding CA rules, as previously described,209

by checking the value of the CA cell itself and the values of the corresponding210

Moore neighborhoods. For the sake of simplicity, we clarifythat if the value211

of the under study CA cell in each neighborhood is defined by the aforemen-212

tioned thresholds, this implies that the corresponding CA cell is defined as a213

“noisy” one. This is due to the salt-n-pepper noise that influences the CA cell,214

by replacing its state by either a minimum or a maximum value in the range of215

the CA cell discrete states. The proposed rule replaces the noisy pixels with216

a mean of the neighbouring cells that are not in a minstate or a maxstate.217

In the case that the CA cell state is not equal to any of the threshold values,218

then the CA cell is not considered a noisy one and consequently, its state will219

be kept unchanged. Otherwise, the CA evolution subrules should be applied220

and the CA cell state has to be estimated accordingly, since it is considered a221

noisy/corrupted one. The whole CA evolves for a finite numberof iterations,222

depending on the level of noise. As a rule of thumb, if the level of noise is223

n%, the CA iterates forn/10 + 1 iterations.224

Recapitulating, the pseudocode of the proposed CA algorithm shows the225

steps followed in the proposed method.226

Pseudocode of the proposed CA Algorithm227

Step 1: Read the original imageI(x, y).228

Step 2: If I(x, y) is in RGB, then convert to grayscale, or work independently229

on each color channel.230

Step 3: Assume a 2-D window of size3× 3, which scans the imageI(x, y).231

Step 4: LetCi,j represent the central pixel of a 2D Moore’s neighborhood in232

the CA.233

Step 5: Create a vectorB, which has dimensions8 × 1. The pixel values234

inside the window, excluding the central pixel, are sorted in this matrix. These235
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values are arranged in ascending order.236

Step 6: Let Bmin andBmax represent the minimum and maximum pixel237

values.238

Step 7: If 0 < Ci,j < 255, Ci,j is an uncorrupted pixel and it will be kept239

unchanged.240

Step 8: If Ci,j is a noisy pixel (i.e.Ci,j = 0 ∨ Ci,j = 255) then241

Case 1: If Bmin = 0 ∧ Bmax = 255 then242

Ci,j=mean(B) withoutBmin = 0 andBmax = 255243

endif244

Case 2: If (all elements ofB = 0 ∨ B = 255) then245

Ci,j = 255246

endif247

Case 3: If Bmin > 0 ∧ Bmax < 255 then248

Ci,j=meanB249

endif250

Step 9: Repeat steps (6)-(8) for all the pixels of input imageI(x, y) for251

n/10 + 1 iterations (n% is the level of noise).252

In the proposed method, during step (8) we are testing 3 cases, where253

the central pixel is a noisy one. The key idea of our algorithmamong other254

methods is, that we calculate the mean value of the selected window by first255

removing the maximum and minimum values in the dynamic range(0,255)256

if they exist in the neighborhood. This provides less abruptedge transitions,257

leading to smoother edge preservation for noise densities varying from10%−258

90%.259

The computational complexity of a single pass for aN × N 2D CA is260

O(N2). Now, that we requiren/10+1 iterations of the above procedure, the261

total complexity will be in the order ofO((n/10 + 1)N2). This expression262

serves as an upper bound to the algorithm’s complexity, since after the first263

iteration, the number of cells that are updated is decreasing with the number264

of iterations. Consequently, the actual algorithm’s complexity will always be265

less thanO((n/10 + 1)N2), since not all image pixels will be updated after266

the first iteration.267

4 EXPERIMENTAL RESULTS

In this section, the performance of our algorithm is tested on different grayscale268

images. The experimental images are common natural images used in image269

processing, such as Lena and Bridge images, at256 × 256 and512 × 512270

pixel resolution, with varying percentage of salt and pepper noise. It is valid271
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TABLE 1
Restoration results in terms of PSNR (dB) (left) and SSIM (right) for different rates
of impulsive noise density for the256× 256 Lena image.

Noise Ratio AMF [21] BDND [37] MBUTMF [14] DWMF [12] MDWMF [30] Li et al. [28] Proposed Method
10% 35.2 0.9797 39.1 0.991 40.2 0.9921 33.3 0.9701 37.0 0.9836 39.5 0.9914 41.2 0.9929
20% 33.2 0.9674 34.7 0.9772 36.3 0.9823 30 0.9546 33.4 0.9641 36.3 0.982 37.9 0.9838
30% 30.7 0.9426 29.5 0.9269 33.7 0.9670 28.3 0.9307 31.3 0.9377 33.9 0.9689 34.7 0.9748
40% 28.5 0.9083 25.9 0.8525 31.5 0.9480 26.7 0.8704 29.6 0.9102 32.1 0.9524 33.0 0.9619
50% 26.6 0.8667 22.4 0.7256 29.6 0.9169 24.9 0.8096 28.1 0.8752 30.1 0.9269 31.3 0.9484
60% 24.5 0.8048 20.1 0.6075 26.9 0.8434 23.4 0.7524 26.6 0.8306 27.8 0.8814 29.8 0.927
70% 22.7 0.7271 18.7 0.4939 23.7 0.6904 20.7 0.6127 25.1 0.7569 26.7 0.8464 28.1 0.9007
80% 20.3 0.6099 17.9 0.4468 19.8 0.4423 18.2 0.3054 23.5 0.6296 25.1 0.7889 26.2 0.8612
90% 17.0 0.4457 15.3 0.3853 15.7 0.2063 12.9 0.0679 21.0 0.4744 23.3 0.6985 23.7 0.7904

TABLE 2
Restoration results in terms of PSNR (dB) for different rates of impulsive noise density
for the512× 512 Lena image.

Noise SMF PSMF AMF IDBA MDWMF Fuzzy EDBA MDBUTMF Chan Sahin FBAMF FBDA REBF DAMF Pattnaik Proposed
Ratio [3] [56] [21] [34] [30] [50] [49] [14] et al. [5] et al. [46] [41] [33] [52] [40] et al. [38] Method
10% 36.12 37.01 38.76 39.59 41.45 38.38 38.43 44.32 42.6 40.7 44.02 39.88 39.93 44.47 41.87 47.6795
20% 33.42 33.45 35.01 36.92 38.22 37.47 37.36 40.3 39.3 37.1 40.51 37.83 38.49 40.3 38 43.9804
30% 31.36 30.86 32.26 34.61 35.97 36.02 35.92 37.99 37.0 34.9 38.24 36.1 36.97 37.99 35.75 41.3465
40% 29.88 27.56 30.09 32.74 34.1 34.54 34.12 35.95 34.3 33.2 36.44 34.36 35.51 35.95 33.83 39.0329
50% 28.54 26.35 28.49 30.91 32.69 33.09 32.21 34.42 31.8 31.8 35.0 33.08 33.97 34.42 32.1 37.1154
60% 26.76 24.55 26.61 29.38 31.21 31.73 30.43 33.04 30.8 30.5 33.34 31.75 32.43 33.04 30.62 35.1941
70% 24.47 23.04 24.25 27.99 29.72 30.22 28.62 31.13 29.7 29.2 31.38 30.07 30.75 31.13 28.86 33.1756
80% 19.52 20.23 23.23 25.89 27.94 28.4 26.23 28.71 27.5 27.2 29.51 28.53 28.92 28.71 26.93 31.0194
90% 8.8 15.9 20.71 22.8 25.5 24.04 23.94 26.43 25.4 25.7 26.91 26.68 25.21 26.43 24.61 27.9889
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TABLE 3
Comparisons of restoration results in SSIM for different rates of impulsive noise den-
sity for Lena image with resolution512× 512.

Noise SMF AMF EDBA IDBA BDND FBDA Proposed
Ratio [3] [21] [49] [34] [37] [33] Method

SSIM values
10% 0.9931 0.9974 0.9951 0.9978 0.9989 0.9979 0.9994
20% 0.9812 0.9939 0.9914 0.9963 0.9981 0.9971 0.9986
30% 0.9718 0.9886 0.9879 0.9941 0.9962 0.9963 0.9973
40% 0.9614 0.9825 0.9825 0.9901 0.9933 0.9948 0.9954
50% 0.9381 0.9738 0.9755 0.9843 0.9893 0.9899 0.9928
60% 0.9155 0.9636 0.9655 0.9749 0.9831 0.9842 0.9885
70% 0.8646 0.9471 0.9483 0.9638 0.9766 0.9974 0.98
80% 0.7939 0.9209 0.9154 0.9491 0.9697 0.9593 0.9642
90% 0.6388 0.8637 0.8132 0.9152 0.9546 0.9325 0.9165

TABLE 4
Restoration results in terms of PSNR (dB) (left) and SSIM (right) for different rates
of impulsive noise density for the256× 256 Baboon image.

Noise Ratio AMF [21] BDND [37] MBUTMF [14] DWMF [12] MDWMF [30] Li et al. [28] Proposed Method
10% 29.6 0.9269 33.9 0.9725 34.3 0.9747 25.8 0.8216 32.1 0.9594 34.4 0.9754 34.43 0.9757
20% 28.8 0.9118 30.2 0.9372 30.9 0.9447 25.1 0.7866 28.9 0.9150 31.1 0.9472 31.20 0.9458
30% 26.9 0.8581 26.7 0.8709 28.8 0.9076 24.2 0.7416 26.9 0.8614 29.1 0.9117 29.28 0.9131
40% 25.4 0.7989 23.5 0.7714 27.2 0.8659 23.1 0.6293 25.3 0.8014 27.6 0.8718 27.76 0.8773
50% 24.4 0.7326 21.2 0.6532 25.9 0.8191 22.2 0.4933 24.2 0.7433 26.3 0.828 26.50 0.8321
60% 23.1 0.6407 19.3 0.5118 24.2 0.7324 21.0 0.4485 22.9 0.6697 24.5 0.7459 25.24 0.7747
70% 22.0 0.5535 18.3 0.4143 22.1 0.6120 17.7 0.3607 21.8 0.5793 23.6 0.6478 23.97 0.7056
80% 20.8 0.4467 17.5 0.3347 19.4 0.4368 13.2 0.2056 20.2 0.4393 22.5 0.5603 22.68 0.6174
90% 19.1 0.3271 15.2 0.2396 16.2 0.2108 8.5 0.05106 19.2 0.3128 21.3 0.4068 21.32 0.4822
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FIGURE 1
Restored images using different filters, namely AMF [21], BDND [37],MDBUTMF
[14], DWMF [12], MDWMF [30], Zuoyong Liet al. [28], and the proposed method

for 90% of salt and pepper noise for different256× 256 pixel images like Lena,
Baboon and Barbara.

to compare denoising performance on the same image at different resolutions,272

since denoising is much more difficult at lower resolutions.We experimented273

with noise levels ranging from 10% to 90% with an increase of 10%. To274

evaluate the restoration performance of the traditional image denoising tech-275

niques and the proposed CA, we used the Peak Signal to Noise Ratio (PSNR)276

[18] and the Structural Similarity Index Metric (SSIM) [55]. PSNR and SSIM277

metrics were calculated for the proposed method. To benchmark our results278

with the state-of-the-art, we used the PSNR and SSIM values reported in the279

literature for a variety of methods, namely, AMF [21], SMF [3], BDND [37],280

MBUTMF [14], Chanet al. [5], Sahinet al. [46], DWMF [12], MDWMF281

[30], Zuoyong Li et al. [28], PSMF [56], IDBA [34], Thirilogasundariet282

al. [50], EDBA [49], FBAMF [41], FBDA [33], REBF [52], DAMF [40],283

Pattnaik Ashutoshet al. [38] for the same filtering window, i.e.3 × 3. To284

compare with the performance of the aforementioned methods, we used the285

PSNR and SSIM values reported in the literature.286

In our experiments, the algorithms were implemented in Matlab R2014a287

on a laptop PC with Core i3 CPU at 2.2 GHz, 8 GB RAM, and Windows 7-64288
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FIGURE 2
Restored images using different filters, namely SMF [3], AMF [21], PSMF [56],
IDBA [34], REBF [52], MDBUTMF [14], DAMF [40], EDBA [49], FBDA [33],

FBDAMF [41], Sahinet al. [46], Chanet al. [5] and the proposed method for70%
of salt and pepper noise for the512× 512 Lena image.

bit operating system. A MATLAB implementation of the proposed algorithm289

can be found here⋆ . Tables 1-5 present a comparison of three widely used290

images with resolution of256 × 256 (Lena, Baboon, Barbara), so that our291

measurements can be easily compared to older experiments. Each image was292

corrupted by salt& pepper noise with varying noise density from10% to 90%293

with incremental step10%. The results of the proposed algorithm are the av-294

erage of 100 independent runs of the method for each case. In Fig 1, several295

denoising examples of the three256 × 256 images (Lena, Baboon, Barbara)296

⋆ http://utopia.duth.gr/nmitiano/MATLAB/Denoisingcode.rar

12



FIGURE 3
Restored images using different filters for90% of salt and pepper noise for the

512× 512 Lena image.

are shown to facilitate objective evaluation. It can be seenthat the proposed297

algorithm yields the highest PSNR and SSIM values among the other tested298

denoising methods. Larger values of PSNR indicate better quality of the re-299

stored image as well as larger SSIM value means that there is bigger structural300

similarity between the restored image and the original one.It is important that301

the proposed method outperforms previous offerings in lower resolution im-302

ages, such as256 × 256, since it is well known that smaller images contain303

less spatial information, i.e. less detail around each examined pixel and the304

denoising task is much more difficult compared to higher resolutions thus305
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TABLE 5
Restoration results in terms of PSNR (dB) (left) and SSIM (right) for different rates
of impulsive noise density for the256× 256 Barbara image.

Noise Ratio AMF [21] BDND [37] MBUTMF [14] DWMF [12] MDWMF [30] Li et al. [28] Proposed Method
10% 30.5 0.9599 31.3 0.9699 31.7 0.9730 23.4 0.8051 30.6 0.9619 32.2 0.9739 39.3 0.9883
20% 28.4 0.9378 27.7 0.9328 28.3 0.9405 22.9 0.7421 27.1 0.9163 29.1 0.9455 35.5 0.975
30% 26.7 0.9037 25.4 0.8791 26.4 0.9040 22.4 0.7186 25.3 0.8671 27.4 0.9139 33.4 0.9588
40% 25.1 0.8566 22.8 0.7954 25.0 0.8637 21.8 0.6346 23.8 0.8121 25.9 0.8789 32.0 0.9406
50% 23.6 0.8002 20.4 0.6705 23.7 0.8079 21.2 0.6111 22.3 0.7409 24.8 0.8345 30.4 0.918
60% 22.0 0.7205 18.5 0.5581 22.3 0.7215 19.9 0.5666 21.2 0.6765 23.9 0.7895 28.7 0.8851
70% 20.4 0.6193 17.5 0.4711 20.3 0.5822 16.9 0.4593 19.8 0.5652 22.9 0.7339 27.1 0.8465
80% 18.4 0.4732 16.8 0.3988 17.7 0.3825 12.3 0.2443 18.6 0.4419 21.8 0.6544 25.5 0.7879
90% 15.1 0.2488 14.4 0.3202 14.6 0.1922 8.4 0.0695 17.2 0.3160 20.4 0.5503 23.1 0.6913

resulting to blurred restored images.306

Some of the other algorithms, such as SMF, PSMF, BDND, sufferfrom307

the blur effect in the restored image, producing unsatisfactory visual results.308

Nevertheless, some other algorithms, such as FBDA, Chanet al. or DAMF,309

increase the quality of the restored image at a satisfying level.310

Moreover, Table 3 shows denoising examples of Lena at resolution 512×311

512 for different noise ratios. Fig. 2 and Fig. 3 show denoising examples312

of Lena at resolution512 × 512 for 70% and90% noise ratios presenting in313

a qualitatively point of view, the application of numerous different filters to314

the same image and their results. Again, the proposed methodexcels giving315

PSNR 27.98 dB at 90% noise with the second method (FBAMF) giving 26.91316

dB. At 70%, the proposed method scores the highest score of 33.18 dB with317

the second method (FBAMF) giving 31.38 dB. In general, even if the pro-318

posed methods can be classified to low complexity and high complexity, like319

[5], with the later ones extremely more demanding in computational sources320

[29], the proposed low complexity method successfully outperforms all the321

methods described in literature, as already cited above. InFig. 4, it can also322

be observed that in high noise densities, such as90%, the proposed method323

produces very satisfactory restoration results, considering the fact that much324

information is missing.325

5 CONCLUSIONS

In this paper, a novel algorithm was proposed to eliminate the salt and pepper326

noise from images using CA. The proposed algorithm was tested against dif-327
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FIGURE 4
Restored images using the proposed filtering method for90% of salt and pepper

noise for lighthouse, fingerprint and pentagon512× 512 pixel images.
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ferent images and it yields excellent PSNR and SSIM values incomparison328

with existing methods. This method shows significant improvement, as it can329

remove the impulsive noise, varying from10%−90%, while keeping the blur330

of the image and the edges largely unaffected. To improve thefiltering per-331

formance many different rules at different locations can beapplied. Further-332

more, due to the inherent parallelism of the proposed method, it can be easily333

implemented in any hardware parallel media, including Field-Programmable334

Gate Array (FPGA) and/or Graphics Processing Unit (GPU).335
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