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10 Cellular Automata (CA) have been considered one of the most
1 pronounced parallel computational tools in the recent éraeo

12 ture and bio-inspired computing. Taking advantage of tloeial

13 connectivity, the simplicity of their design and their imeet par-

14 allelism, CA can be effectively applied to many image prsees

15 ing tasks. In this paper, a CA approach for efficient salepger

16 noise filtering in grayscale images is presented. Using a 2D
17 Moore neighborhood, the classified “noisy” cells are caedc

18 by averaging the non-noisy neighboring cells. While keeping
19 the computational burden really low, the proposed apprsach

20 ceeds in removing high-noise levels from various images and
2 yields promising qualitative and quantitative resultsmpared

2 to state-of-the-art techniques.

23 Key words:Image Denoising; Salt-n-pepper noise; Cellular Automata

1 INTRODUCTION

2 There are two most common types of noise in image processliagissian
;s noise and impulsive noise. Images are often corrupted bylsiye noise,
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which is caused by channel transmission errors, faulty nmgroeations in
hardware or by malfunctioning pixels in camera sensors. [88]t and pep-
per noise represents a special case of impulsive noise ewhercorrupted
image pixels can only take either the maximum or minimum eslin the dy-
namic range. For this reason, salt and pepper noise noragggars either as
black or white dots in an image. There are numerous techsitiz attempt
to efficiently restore an image corrupted by salt and peppesen Hitherto,
median filtering has been the most common nonlinear filtegehnique for
removing this noise type. However, this is mainly effecfivelow noise den-
sities. Moreover, the median filter applies the median dmerao each pixel,
regardless if it is noisy or not, which smears image detailglf as edges
and thin lines) [39]. Thus, many improvements of the basidiarefiltering
approach have been proposed. The Adaptive Median filter (AisIkised
to classify corrupted and uncorrupted pixels performindl wehigh noise
densities. Although AMF showed promising results in remgvinoise, the
window size in higher densities has to be large enough to vertiee noise,
resulting to increased computation complexity and oftemrbd restored im-
ages [21]. Chaet al. [5] proposed a two-phase solution. Firstly, an adaptive
median filter is used to identify noisy pixels and secondhage restoration
is performed only to the previously selected noisy pixeisgia specialized
regularization method. This has shown to be very effectorehigh noise
densities, nonetheless, the large window size increasegrdtessing time.
Therefore, Srinivasan and Ebenezer [49] recommended a rdfooh which
corrects only corrupted pixels using the median value ardéighboring pixel
value. The window size here remains equaBte 3, thus reducing consid-
erably the processing time. However, the edges of the egiorage tend to
appear less smooth and more pixelated. Another group ofreaalfilters has
been proposed, including progressive switching mediaer fPSMF) [56],
dynamic adaptive median filter (DAMF) [40] and fuzzy based@tle mean
filter (FBAMF) [41], which are adaptive, directional vera®of the original
median filter. A decision-based detail-preserving veoizi method (DPVM)
for the removal of random-valued impulse noise was propd&aduring an
adaptive window type and size and a noise pixel annotatigarithm that
guides the restoration algorithm to improve pixels acauyhyi [59].

There is also another group of image denoising algorithnschvare
based on 2-D Cellular Automata (CA), that attempt to restiigéal images
corrupted by impulsive noise with the help of fuzzy logicahe[46]. CA,
although considered computational models of physicalesystof discrete
space and time [13], have been successfully applied in impegzessing and
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computer vision [44]. Lafe [27] has also proposed CA methedsere in-
formation building blocks, called basis functions (or lgsean be generated
from the evolving states of the CA, namely Cellular Autom@tansforms
(CAT) with direct application to image and video compressidVore re-
cently, it has also been shown by several researchers [4,7258, 57, 23]
that CA can be used to perform some standard image procetsshkg to
a high performance level, as well as in up-to-date compugo fields,
such as stereo vision [36, 35], image retrieval [26], mddioage process-
ing [16, 19, 9], image encryption [11, 7, 25, 54, 10, 6], imatgessification
[15], image coding [4], etc. For example, Rosin [42, 43] megd training
binary CA for noise filtering, thinning, and convex hull estétion. Another
inherent advantage of CA is their parallelization capapiihat contributes
to their performance increase. Furthermore, the CA appréaconsistent
with the modern notion of unified space-time. In computeeisce, space
corresponds to memory and time to the processing unit. Inngmory (CA
cell state) and the processing unit (CA local rule) are iasgiply related to a
CA cell [48]. In terms of circuit design and layout, due to #ese of mask
generation, silicon-area utilization, and the maximmatf clock speed, CA
are perhaps one of the most suitable computational stesfor hardware
realization [31].

There were several recent applications of CAs on image edtgetibn.
Uguzet al. [51] proposed a thresholding technique of edge detectiseda
on fuzzy cellular automata transition rules enhanced uBiagicle Swarm
Optimization. Hasanzadedt al. [32] introduced a novel CA local rule with
an adaptive neighborhood in order to produce the edge mamade. In
contrast to common fixed neighborhood CAs, the proposedtiadaggo-
rithm employs both von Neumann and Moore neighborhoods iadaptive
formulation. Finally, CAs have been also introduced int@uisive noise
reduction in images. Selvapater and Hordijk [47] proposeédfarent mod-
ification of CA, such as a deterministic, random and mirrd@&dto tackle
the image noise filtering problem. Preliminary CA are préséas a simplis-
tic proof of concept that they could be an alternative to déad image noise
filtering techniques[24]. A more enhanced CA based appraacterms of
the noise removal, was also presented [1]. A Cellular Autanh@age De-
noising (CAID) toolkit was introduced [20] for the removdlisalt and pepper
noise in gray and color images. Sadeghal. [45] presented a hybrid method
based on CA and fuzzy logic called Fuzzy Cellular Automai@AJin two
steps. In the first step, noisy pixels are detected by CA oitkpd the local
statistical information. In the second step, noisy pixelstve altered by FCA
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using the extracted statistical information. Finally, Badt al. [46] combine
again two-dimensional CAs with the help of fuzzy logic theoiThe algo-
rithm employs a local fuzzy transition rule, which gives niership values
to the corrupted neighboring pixels and assigns a next g4dtie as a central
pixel value.

A novelty of the proposed method is that it is applying CA tomowe salt
and pepper noise by altering only the pixels that have beenmed, thus en-
hancing the performance of the applied CA-based methode\beping the
computational burden significantly low, along with the madvanced corre-
sponding image processing techniques. In detail, the gegpalgorithm is

using a fixed3 x 3 window size, to examine the 8 neighbors of the central

pixel/CA cell, including the central pixel, in a Moore 2D CAighborhood,
which is applied to every pixel in the current image. Thus,itiethod’s main
advantages are that the CA is processing in real time andhéatlgorithm
is self-adaptive, requiring only a rough estimate of noisecpntage to be
defined. Another advantage of this algorithm is that it rezgisignificantly
lower computational time compared to other algorithms &drésults even
in very high noise densities, such as 80% or 90%, are satsfaqiving
smoother restored images than other methods. The propatbdds maxi-
mum possible complexity scales linearly with the noisellevbich provides
a speed benefit compared to many other approaches. On tdpludsd, the
inherent parallelism of CA enables the straightforwardiere implemen-
tation of the proposed really simple CA-based method witlaoy hardware
overhead. As a result, the simplicity of the proposed metlitsdminimal
complexity and its evolution through time when combinedhvite inherent
parallelism of the CA approach result in a quite efficiengfiltg procedure.
In this study, we compare with a family of adaptive mediarefgtas well as
other well known denoising techniques which the proposethatcoutper-
forms in terms of Peak Signal-to-Noise Ratio (PSNR) andcatral Similar-
ity (SSIM) [55]. A similar trend appears when the proposeprapch is com-
pared in terms of PSNR and SSIM with all the corresponding @seld tech-
nigues dealing with salt and pepper noise removal, as ete@thin modern
literatur, to the best of our knowledge, and describedearli

This paper is organized as follows. In Section 2, we intredihe basic
principles of the CA computational tool. Section 3 desailiee proposed
method and the necessary steps to implement the algorithitg i Section
4, we present the results of the proposed method and its csapamong
the other methods that already exist. This comparison isthas PSNR and
SSIM values. Experiments show that the proposed methodnpesfbetter
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than the other existing methods. Finally, Section 5 coresutie paper.

2 CELLULAR AUTOMATA PRINCIPLES

Cellular Automata (CA) are a very elegant computing moddijctv dates
back to John von Neumann [53]. CA decompose problems intolca die
cells and a local rule, which defines the new state of a cetledding on its
neighbors’ states. All cells can operate in parallel, sieaeh cell can inde-
pendently update its own state. Hence, CA can capture tleatalsfeatures
of systems, where global behavior arises from the colleatifect of sim-
ple components, which interact locally. In addition, thed®lois massively
parallel and ideal for hardware implementation. In gener&A requires [8]:

1. aregular lattice of cells covering a portion of-@imensional space;

2. aselC(r,t) = {C(7, 1), C2(7,t),...,Cn(7,t)} of variables attached
to each site” of the lattice giving the local state of each cell at the time
t=0,1,2,...;

3. aruleR = {Ry, R, ..., Ry}, which specifies the time evolution of
the state€(7, ¢) in the following way:C; (7, t+1) = R;(C(7, t), C(F+
81,t), C(F+03,1), ..., C(F+ 8y, 1)), wherer + &, designate the cells
belonging to a given neighbourhood of c&ll

In the above definition, the rulg is identical for all sites and is applied si-
multaneously to each of them, leading to synchronous dyegrttiis impor-
tant to notice that the rule is homogeneous, i.e. it does epend explicitly
on the cell positior”. However, spatial (or even temporal) inhomogeneities
can be introduced by having som#&7) systematically at 1, in some given
locations of the lattice, to mark particular cells for whizhlifferent rule ap-
plies. Furthermore, in the above definition, the new staténas ¢ + 1 is
only a function of the previous state at time It is sometimes necessary
to have a longer memory and introduce a dependence on tles stiatime
t—1,t—2,...,t— k. Such a situation is already included in the definition,
if one keeps a copy of previous states in the current state.

The neighbourhood of a ceflis the spatial region in which a cell needs
to search in its vicinity. In principle, there is no restigct on the size of the
neighbourhood, except that it is the same for all cells. Hamen practice,
it is often made up of adjacent cells only. For 2-D CA, two iigurhoods
are commonly considered: The von Neumann neighbourhooithwdon-
sists of a central cell and its four geographical neighboorsh, west, south
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and east. The Moore neighbourhood is a super set contaiegand near-
est neighbours, i.e. northeast, northwest, southeastaritivgest, giving a
total of nine cells. In practice, when simulating a given GAer it is im-
possible to deal with an infinite lattice. The system must bigefiand have
boundaries. Clearly, a site belonging to the lattice boandaes not have the
same neighbourhood as other internal sites. In order toal#fimbehaviour
of these sites, the neighbourhood is extending for the aitelse boundary
leading to various types of boundary conditions, such aiegier(or cyclic),
fixed, adiabatic or reflection.

3 PROPOSED DENOISING METHOD

In this paper, a novel method based on CA is applied to remoyeilsive
noise from gray-scale images. The proposed method wagédsfsom the
Segmentation Matching Factor [3], where each pixel is i@galeby the me-
dian of its neighborhood values. Nevertheless, the apprpeesented here is
somehow different. We consider a 2-D image which is divided a matrix
of identical square CA cells, with side lengihand is represented by a CA.
For matters of simplicity, we consider each CA cell an imagelp so the
number of spatial dimensions of the CA array:is= 2, while the widths of
the two sides of the CA array are taken to be equal,i:e.= wy. We also
assume zero boundary conditions for the CA. In the cagg gf; , the under
study pixel at positiortig, jo ), the state of the corresponding CA cell is made
to take256 discrete values as follows:

Cio,jo) €10, ..., 255} 1)

This is due to the assumption that the intensity of each jEx&lpresented
by 8-bit gray-scale accuracy. Furthermore, the Moadi§ feighborhood §/)
for the range- of a CA cellCy;, j,) can be defined by the following equation:

N (ig, jo)™ = {(i,§) : [i —io| <7, |j — jo| < 7} 63

In our case, range equals to 1, resulting in a fixed neighborhood size
of 3 x 3, which is used for the whole image. As mentioned before, two
thresholds are considered for the CA state values, 7€ng.e = 0 and
maxsae = 255. In general, the local 2D rule for the proposed CA is given
as follows:
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Ct(i,j), if minstate < Ct(i,j) < MaZTstate
CtH(i,j) = C’newt(m) , if Cfi’]-) = MiNstate 3
or C’EM) = MAaTstate

In (3), the new value”***; , of CA cell C*(; ;) is calculated as a local
2D sub-rule described by (4) as found below:

vt H t N vt ; t " 7] =
In(‘an,,.gl.,g,.(clvj). if ¥ C(H,,_,Jr,_) €N, c(1+r./+1) # MiNgtateOr 0(1+,_ jtr) # Maxsiare, wherer =1
Y R . vt : t N t — i it — . o —
Cneu,(’_,) = mean j.,g,.((,(_,/)). if VC(li,_.,h_) €N, HC(jiwi,_) = MiNstate and C(,thji” = Masiate, wherer =1
- i t t = mi Ot — max
MATstate, Y Cligyjary Clitrjar = Minstate o8 Cliy, i1y = MATstate

As aresult, in the proposed CA the requested detection sf/ramid noisy-
free pixels is given by the corresponding CA rules, as praslipdescribed,
by checking the value of the CA cell itself and the values efabrresponding
Moore neighborhoods. For the sake of simplicity, we clatiifgt if the value
of the under study CA cell in each neighborhood is defined byaforemen-
tioned thresholds, this implies that the corresponding €Ais defined as a
“noisy” one. This is due to the salt-n-pepper noise that erflres the CA cell,
by replacing its state by either a minimum or a maximum vatuéeé range of
the CA cell discrete states. The proposed rule replacesadisg pixels with
a mean of the neighbouring cells that are not in a_state or a mastate.
In the case that the CA cell state is not equal to any of thestiuld values,
then the CA cell is not considered a noisy one and conseqyéatstate will
be kept unchanged. Otherwise, the CA evolution subrulesldhze applied
and the CA cell state has to be estimated accordingly, sinseonsidered a
noisy/corrupted one. The whole CA evolves for a finite nundfeterations,
depending on the level of noise. As a rule of thumb, if the ll@feroise is
n%, the CA iterates for /10 + 1 iterations.

Recapitulating, the pseudocode of the proposed CA algorghows the
steps followed in the proposed method.

Pseudocode of the proposed CA Algorithm
Step 1: Read the original imag&(z, y).

Step 2:1f I(x,y)isin RGB, then convert to grayscale, or work independently
on each color channel.

Step 3: Assume a 2-D window of siz& x 3, which scans the imag&z, y).
Step 4:Let C; ; represent the central pixel of a 2D Moore’s neighborhood in
the CA.

Step 5: Create a vecto3, which has dimension8 x 1. The pixel values
inside the window, excluding the central pixel, are sorteithis matrix. These
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values are arranged in ascending order.

Step 6: Let B,,;, and B,,,, represent the minimum and maximum pixel
values.

Step 7:1f 0 < C;; < 255, C; 5 is an uncorrupted pixel and it will be kept
unchanged.

Step 8:1f C; ; is a noisy pixel (i.,eC; ; =0V C; ; = 255) then

Case l: If B,,in =0 A Bae = 255 then
C;,;=mean(B) without B,,,;,, = 0 and B,;,q; = 255
endif

Case 2: If (all elements ofB = 0 vV B = 255) then
C;; =255
endif

Case3: If B,in > 0 A Biae < 255 then
C; j=meanB
endif
Step 9: Repeat steps (6)-(8) for all the pixels of input imabe:,y) for
n/10 + 1 iterations % is the level of noise).

In the proposed method, during step (8) we are testing 3 cagdese
the central pixel is a noisy one. The key idea of our algorimong other
methods is, that we calculate the mean value of the seledtetbw by first
removing the maximum and minimum values in the dynamic rg0ge55)
if they exist in the neighborhood. This provides less abaduge transitions,
leading to smoother edge preservation for noise denskgigsng from10% —
90%.

The computational complexity of a single pass foNax N 2D CA is
O(N?). Now, that we require/10 + 1 iterations of the above procedure, the
total complexity will be in the order o®((n/10 + 1) N?). This expression
serves as an upper bound to the algorithm’s complexityesadter the first
iteration, the number of cells that are updated is decrgagith the number
of iterations. Consequently, the actual algorithm’s canipy will always be
less tharO((n/10 + 1)N?), since not all image pixels will be updated after
the first iteration.

4 EXPERIMENTAL RESULTS

In this section, the performance of our algorithm is testedifferent grayscale
images. The experimental images are common natural imagekin image
processing, such as Lena and Bridge imagegp@tx 256 and512 x 512
pixel resolution, with varying percentage of salt and pepase. It is valid



TABLE 1

Restoration results in terms of PSNR (dB) (left) and SSIM (right) for ciiffee rates
of impulsive noise density for th256 x 256 Lena image.

Noise Ratio| AMF [21] BDND [37] | MBUTMF [14] | DWMF [12] | MDWMF [30] | Lietal.[28] | Proposed Method
10% 35.2]0.9797| 39.1] 0.991 | 40.2| 0.9921 | 33.3] 0.9701| 37.0| 0.9836 | 39.5| 0.9914| 41.2| 0.9929
20% 33.2[ 0.9674| 34.7| 0.9772] 36.3| 0.9823 | 30 | 0.9546] 33.4| 0.9641| 36.3| 0.982 | 37.9| 0.9838
30% 30.7 | 0.9426| 29.5| 0.9269] 33.7 | 0.9670 | 28.3| 0.9307] 31.3| 0.9377 | 33.9| 0.9689| 34.7 | 0.9748
40% 285 0.9083] 25.9] 0.8525] 31.5| 0.9480 | 26.7 | 0.8704] 29.6 | 0.9102| 32.1| 0.9524] 33.0| 0.9619
50% 26.6 | 0.8667| 22.4| 0.7256| 29.6 | 0.9169 | 24.9| 0.8096| 28.1| 0.8752| 30.1| 0.9269| 31.3| 0.9484
60% 245 0.8048| 20.1| 0.6075| 26.9| 0.8434 | 23.4| 0.7524| 26.6 | 0.8306 | 27.8 | 0.8814| 29.8| 0.927
70% 22.7]0.7271| 18.7 | 0.4939| 23.7| 0.6904 | 20.7 | 0.6127| 25.1 | 0.7569 | 26.7 | 0.8464| 28.1| 0.9007
80% 20.3| 0.6099| 17.9] 0.4468| 19.8| 0.4423 | 18.2] 0.3054| 23.5| 0.6296 | 25.1| 0.7889] 26.2| 0.8612
90% 17.0 | 0.4457] 15.3] 0.3853| 15.7| 0.2063 | 12.9] 0.0679| 21.0| 0.4744 | 23.3| 0.6985| 23.7| 0.7904

TABLE 2
Restoration results in terms of PSNR (dB) for different rates of impaisoise density
for the512 x 512 Lena image.

Noise | SMF | PSMF | AMF | IDBA | MDWMF | Fuzzy | EDBA | MDBUTMF Chan Sahin FBAMF | FBDA | REBF | DAMF | Pattnaik | Proposed|

Ratio | [3] | [56] | [21] | [34] [30] [50] | [49] [14] etal.[5] | etal.[46] | [41] [33] | [52] | [40] | etal.[38] | Method

10% | 36.12| 37.01 | 38.76| 39.59 41.45 38.38 | 38.43 44.32 42.6 40.7 44.02 | 39.88 | 39.93 | 44.47 41.87 47.6795

20% | 33.42| 33.45| 35.01| 36.92 38.22 37.47 | 37.36 40.3 39.3 37.1 40.51 | 37.83 | 38.49 | 403 38 43.9804

30% | 31.36| 30.86 | 32.26 | 34.61 35.97 36.02 | 35.92 37.99 37.0 34.9 38.24 36.1 | 36.97 | 37.99 35.75 41.3465

40% | 29.88| 27.56 | 30.09| 32.74 34.1 3454 | 34.12 35.95 343 33.2 36.44 | 34.36 | 35.51 | 35.95 33.83 39.0329

50% | 28.54| 26.35 | 28.49| 30.91 32.69 33.09 | 32.21 34.42 31.8 318 35.0 33.08 | 33.97 | 34.42 32.1 37.1154

60% | 26.76| 24.55 | 26.61| 29.38 31.21 31.73| 30.43 33.04 30.8 30.5 33.34 | 31.75 | 32.43 | 33.04 30.62 35.1941

70% | 24.47| 23.04 | 24.25| 27.99 29.72 30.22 | 28.62 31.13 29.7 29.2 31.38 | 30.07 | 30.75 | 31.13 28.86 33.1756

80% | 19.52| 20.23 | 23.23| 25.89 27.94 28.4 | 26.23 28.71 27.5 27.2 29.51 | 28.53 | 28.92 | 28.71 26.93 31.0194

90% 8.8 159 | 20.71| 22.8 255 24.04 | 23.94 26.43 25.4 25.7 26.91 26.68 | 25.21 | 26.43 24.61 27.9889




TABLE 3
Comparisons of restoration results in SSIM for different rates of inipailsoise den-
sity for Lena image with resolutiofl2 x 512.

Noise | SMF | AMF | EDBA | IDBA | BDND | FBDA | Proposed
Ratio [3] [21] [49] [34] [37] [33] Method
SSIM values
10% | 0.9931| 0.9974| 0.9951| 0.9978| 0.9989| 0.9979| 0.9994
20% | 0.9812| 0.9939| 0.9914| 0.9963| 0.9981 | 0.9971| 0.9986
30% | 0.9718| 0.9886| 0.9879| 0.9941| 0.9962 | 0.9963| 0.9973
40% | 0.9614| 0.9825| 0.9825| 0.9901| 0.9933 | 0.9948| 0.9954
50% | 0.9381| 0.9738| 0.9755| 0.9843| 0.9893| 0.9899| 0.9928
60% | 0.9155| 0.9636| 0.9655| 0.9749| 0.9831 | 0.9842| 0.9885
70% | 0.8646| 0.9471| 0.9483| 0.9638| 0.9766 | 0.9974 0.98
80% | 0.7939| 0.9209| 0.9154| 0.9491| 0.9697 | 0.9593| 0.9642
90% | 0.6388| 0.8637| 0.8132| 0.9152| 0.9546 | 0.9325| 0.9165

TABLE 4
Restoration results in terms of PSNR (dB) (left) and SSIM (right) for céife: rates
of impulsive noise density for thz56 x 256 Baboon image.

Noise Ratio

AMF [21]

BDND [37]

MBUTMF [14]

DWMF [12]

MDWMF [30]

Li et al.[28]

Proposed Method

10%

29.6

0.9269| 33.9| 0.9725| 34.3

0.9747 | 25.8 | 0.8216

32.1| 0.9594 | 34.4

0.9754| 34.43

0.9757

20%

28.8

0.9118| 30.2 | 0.9372| 30.9

0.9447 | 25.1| 0.7866

28.9| 0.9150| 31.1

0.9472| 31.20

0.9458

30%

26.9

0.8581| 26.7 | 0.8709| 28.8

0.9076 | 24.2 | 0.7416

26.9| 0.8614 | 29.1

0.9117| 29.28

0.9131

40%

25.4

0.7989| 23.5| 0.7714| 27.2

0.8659 | 23.1| 0.6293

25.3| 0.8014| 27.6

0.8718| 27.76

0.8773

50%

24.4

0.7326| 21.2 | 0.6532| 25.9

0.8191 | 22.2 | 0.4933

24.2| 0.7433 | 26.3

0.828 | 26.50

0.8321

60%

23.1

0.6407| 19.3 | 0.5118| 24.2

0.7324 | 21.0| 0.4485

22.9| 0.6697| 24.5

0.7459| 25.24

0.7747

70%

22.0

0.5535| 18.3 | 0.4143| 22.1

0.6120 | 17.7 | 0.3607

21.8| 0.5793 | 23.6

0.6478| 23.97

0.7056

80%

20.8

0.4467| 17.5| 0.3347| 19.4

0.4368 | 13.2| 0.2056

20.2 | 0.4393| 225

0.5603| 22.68

0.6174

90%

19.1

0.3271| 15.2| 0.2396| 16.2

0.2108

8.5 | 0.05106

19.2| 0.3128 | 21.3

0.4068| 21.32

0.4822
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90% Noise AMF BDND  MDBUTMF  DWMF  MDWMEF Zuoyong Li et al. proposed Method

FIGURE 1
Restored images using different filters, namely AMF [21], BDND [MMPBUTMF
[14], DWMF [12], MDWMF [30], Zuoyong Liet al. [28], and the proposed method
for 90% of salt and pepper noise for differe2ii x 256 pixel images like Lena,
Baboon and Barbara.

to compare denoising performance on the same image atatiffesolutions,
since denoising is much more difficult at lower resolution& experimented
with noise levels ranging from 10% to 90% with an increase @¥1 To
evaluate the restoration performance of the traditionalgendenoising tech-
nigues and the proposed CA, we used the Peak Signal to Noiee(RENR)
[18] and the Structural Similarity Index Metric (SSIM) [53?SNR and SSIM
metrics were calculated for the proposed method. To bendhma results
with the state-of-the-art, we used the PSNR and SSIM vaksrted in the
literature for a variety of methods, namely, AMF [21], SMK,[BDND [37],
MBUTMF [14], Chanet al. [5], Sahinet al. [46], DWMF [12], MDWMF
[30], Zuoyong Liet al. [28], PSMF [56], IDBA [34], Thirilogasundaret
al. [50], EDBA [49], FBAMF [41], FBDA [33], REBF [52], DAMF [40],
Pattnaik Ashutoslet al. [38] for the same filtering window, i.e3 x 3. To
compare with the performance of the aforementioned metheesised the
PSNR and SSIM values reported in the literature.

In our experiments, the algorithms were implemented in MafR2014a
on a laptop PC with Core i3 CPU at 2.2 GHz, 8 GB RAM, and Windovég7
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289

290

291

292

293

294

295

296

FBDAMF Sahin et al Chanet al. Proposed Method

FIGURE 2
Restored images using different filters, namely SMF [3], AMF [21]VIF§56],
IDBA [34], REBF [52], MDBUTMF [14], DAMF [40], EDBA [49], FBDA [33],
FBDAMF [41], Sahinet al. [46], Chanet al. [5] and the proposed method f60%
of salt and pepper noise for thé2 x 512 Lena image.

bit operating system. A MATLAB implementation of the propdsalgorithm
can be found here Tables 1-5 present a comparison of three widely used
images with resolution 0256 x 256 (Lena, Baboon, Barbara), so that our
measurements can be easily compared to older experimexu.iffage was
corrupted by salf: pepper noise with varying noise density frao¥s to 90%

with incremental stepf0%. The results of the proposed algorithm are the av-
erage of 100 independent runs of the method for each caség I Beveral
denoising examples of the threég6 x 256 images (Lena, Baboon, Barbara)

* http://utopia.duth.gr/nmitiano/MATLAB/Denoisingode.rar
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297

298

299
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301
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304

305

FIGURE 3
Restored images using different filters f1% of salt and pepper noise for the
512 x 512 Lena image.

are shown to facilitate objective evaluation. It can be gkahthe proposed
algorithm yields the highest PSNR and SSIM values among ttiner dested
denoising methods. Larger values of PSNR indicate bettalitywf the re-
stored image as well as larger SSIM value means that theiggststructural
similarity between the restored image and the original ¢tneimportant that
the proposed method outperforms previous offerings in tawsolution im-
ages, such a&56 x 256, since it is well known that smaller images contain
less spatial information, i.e. less detail around each @xadnpixel and the
denoising task is much more difficult compared to higher ltggms thus

13



TABLE 5
Restoration results in terms of PSNR (dB) (left) and SSIM (right) for ciffe rates
of impulsive noise density for th256 x 256 Barbara image.

Noise Ratio| AMF [21] BDND [37] | MBUTMF [14] | DWMF [12] | MDWMF [30] | Lietal.[28] | Proposed Method
10% 30.5| 0.9599| 31.3| 0.9699| 31.7 | 0.9730 | 23.4| 0.8051| 30.6 | 0.9619| 32.2 | 0.9739| 39.3| 0.9883
20% 28.4| 0.9378| 27.7 | 0.9328| 28.3 | 0.9405 | 22.9| 0.7421| 27.1 | 0.9163| 29.1 | 0.9455| 35.5 0.975
30% 26.7 | 0.9037| 25.4| 0.8791| 26.4| 0.9040 | 22.4| 0.7186| 25.3 | 0.8671 | 27.4| 0.9139| 33.4| 0.9588
40% 25.1| 0.8566| 22.8 | 0.7954| 25.0 | 0.8637 | 21.8| 0.6346| 23.8 | 0.8121 | 25.9| 0.8789| 32.0 | 0.9406
50% 23.6 | 0.8002| 20.4 | 0.6705| 23.7 | 0.8079 | 21.2| 0.6111| 22.3 | 0.7409 | 24.8 | 0.8345| 30.4 0.918
60% 22.0| 0.7205| 18.5| 0.5581| 22.3| 0.7215 | 19.9| 0.5666 | 21.2 | 0.6765| 23.9 | 0.7895| 28.7 | 0.8851
70% 20.4| 0.6193| 17.5| 0.4711| 20.3 | 0.5822 | 16.9 | 0.4593| 19.8 | 0.5652 | 22.9 | 0.7339| 27.1 | 0.8465
80% 18.4| 0.4732| 16.8| 0.3988| 17.7 | 0.3825 | 12.3| 0.2443| 18.6 | 0.4419 | 21.8| 0.6544| 25.5| 0.7879
90% 15.1| 0.2488| 14.4| 0.3202| 14.6 | 0.1922 | 8.4 | 0.0695| 17.2 | 0.3160 | 20.4 | 0.5503| 23.1 | 0.6913
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325

326

327

resulting to blurred restored images.

Some of the other algorithms, such as SMF, PSMF, BDND, stiften
the blur effect in the restored image, producing unsatisfgcvisual results.
Nevertheless, some other algorithms, such as FBDA, @hah or DAMF,
increase the quality of the restored image at a satisfyivej.le

Moreover, Table 3 shows denoising examples of Lena at régploil2 x
512 for different noise ratios. Fig. 2 and Fig. 3 show denoisirgreples
of Lena at resolution12 x 512 for 70% and90% noise ratios presenting in
a qualitatively point of view, the application of numerouffatent filters to
the same image and their results. Again, the proposed mettasds giving
PSNR 27.98 dB at 90% noise with the second method (FBAMFhgi26.91
dB. At 70%, the proposed method scores the highest score. b8 8B with
the second method (FBAMF) giving 31.38 dB. In general, e¥eha pro-
posed methods can be classified to low complexity and highptdity, like
[5], with the later ones extremely more demanding in conijputal sources
[29], the proposed low complexity method successfully etfgrms all the
methods described in literature, as already cited abovEigin4, it can also
be observed that in high noise densities, such0&s, the proposed method
produces very satisfactory restoration results, conisigehe fact that much
information is missing.

5 CONCLUSIONS

In this paper, a novel algorithm was proposed to eliminagestit and pepper
noise from images using CA. The proposed algorithm wasdesjainst dif-
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90% noise Restored Image

90% noise

Original image 90% noise Restored Image

FIGURE 4
Restored images using the proposed filtering metho@#® of salt and pepper
noise for lighthouse, fingerprint and pentagdr2 x 512 pixel images.

15



328

329

330

331

332

333

334

335

336
337
338

339
340
341

342

343
344
345

346
347
348

349
350
351

352
353
354

355
356

357
358

359
360
361

362
363
364

365
366

367
368

ferent images and it yields excellent PSNR and SSIM valuesimparison
with existing methods. This method shows significant improent, as it can
remove the impulsive noise, varying frord% — 90%, while keeping the blur
of the image and the edges largely unaffected. To improvéilteang per-
formance many different rules at different locations campplied. Further-
more, due to the inherent parallelism of the proposed methodn be easily
implemented in any hardware parallel media, includingd=ietogrammable
Gate Array (FPGA) and/or Graphics Processing Unit (GPU).
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