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A B S T R A C T
The ever-increasing requirements for electricity, the emergence of microgrids and the escalating
penetration of distributed generators has reinvigorated the interest in dynamic equivalencing of
distribution networks, due to its significance in power system analysis. Scope of this paper is to
propose an efficient method for event detection and filtering of dynamic responses based on the
wavelet transform (WT), in order to improve the quality of signals used for the derivation of dynamic
equivalent models. The accuracy of the proposed method is tested using artificially created noisy
responses, by applying Gaussian, Laplace, and Student’s-t noise distributions. Comparisons with other
filtering techniques are also performed and the impact of all methods on the derivation of accurate
equivalent model parameters is quantified and analyzed. The performance of the proposed method
is also evaluated by using RMS responses obtained from a large-scale distribution network model
as well as by analysing laboratory measurements; results verify the efficiency and applicability of
the WT-based processing procedure, by achieving a parameter estimation error well below 1%. It is
noteworthy that the average computational burden throughout the process remains under 0.39 s.

1. Introduction
The importance of accurate modelling of distribution

networks (DNs) has been demonstrated in numerous studies
in the literature, such as transient stability, small disturbance
and load flow analyses [1]. Typically, to perform stability
studies, power system operators represent DNs and main
power system loads using reduced order equivalents [2, 3].
Traditionally, this was imposed by the limited performance
of computational systems that prohibited the use of de-
tailed models for the representation of all power system
components. Nowadays, despite the progress in computing
systems, the need for data confidentiality still imposes the
use of reduced-order models [4]. Additionally, the advent
of distributed renewable energy resources (DRESs) and the
transformation of DNs to active components, i.e., to active
distribution networks (ADNs), poses several challenges and
obstacles for the development and maintenance of detailed
models [4, 5]. Therefore, during the last years several re-
search efforts have been devoted to the development of
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reduced-order equivalents for the modeling and analysis of
new types of loads and ADNs [4, 5, 6, 7].

The main challenge in ADN dynamic equivalencing lies
in determining an appropriate equivalent model structure
and accurately identifying the parameters that represent the
characteristics of various types of loads and DRESs con-
nected to it [8]. Generally, regardless of the chosen model
structure, the main approaches to develop equivalents are
categorized into component- and measurement- based [2].
The former is a bottom-up approach, that requires detailed
knowledge and data of network components, which are diffi-
cult, if not impossible, to be determined [6]. In this sense, de-
spite its distinct advantages, the component-based approach
cannot be easily implemented to develop equivalent models
for extended ADNs that host several types of DRESs and
modern loads. On the other hand, the measurement-based
approach is a top-down methodology that relies on field
measurements recorded at indicative substations, e.g., point
of interconnection of ADNs, during system disturbances. In
this approach, model parameters are identified by applying
optimization and/or system identification techniques [9].
The main advantage of this method lies in the fact that the dy-
namic behavior of the examined system is directly reflected
in the modelling process [10]. Nowadays, the application of
the measurement-based approach is essentially favored due
to the advent of smart grid technologies and the maturing
of data capturing systems, e.g., phasor measurement units
(PMU) [11], [12].

Nevertheless, the efficacy of the measurement-based ap-
proach highly depends on the quality of the measured signals
[9], [13], [14]. Therefore, to enhance the performance of the
derived models, a series of tasks must be performed prior
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to the parameter estimation procedure. These tasks mainly
include: i) event detection, i.e., detection of the exact time the
examined event occurred, and ii) data processing to improve
the quality of the measured responses by reconstructing the
signal in case of missing data and filtering measurement
noise, outliers and ambient noise [13]. Missing data may oc-
cur as a result of temporary communication or measurement
equipment failure. They are usually detectable and can be
recovered via interpolation techniques [13], [15]. Outliers
are observations/recordings that deviate significantly from
normal measurements [16]. Outliers and measurement noise
are induced by recording systems, communication channels,
instruments, etc. [17]. Ambient noise is inherent in the data
and is the result of small perturbations caused by the random
varying behavior of loads and generation [12]. This ambient
noise is usually referred as ambient data and is assumed to
be relatively statistically stationary [18].

Despite the recognized need for further research in mea-
surement processing, as underlined in [7] and [19], and its
proven significance in improving the accuracy of developed
equivalent models, only a limited number of papers deal
with data processing techniques [13]. In this context, in
order to facilitate the development of measurement-based
equivalent models, a methodology is formulated in this paper
for the automatic processing of dynamic responses. The
proposed methodology is based on the wavelet transform
(WT), which constitutes an efficient mathematical tool for
the analysis of measured data with nonstationary charac-
teristics. The proposed methodology aims on the online
detection of dynamic disturbances that are suitable for the
development of equivalent models and on the filtering of
the measured data. A preliminary version of the developed
methodology is presented in [20], aiming on the derivation
of first-order dynamic load models. In this paper, the work
of [20] is extended by: i) testing the proposed method for
the analysis of more complex power system dynamic phe-
nomena, e.g., oscillatory responses, ii) developing dynamic
equivalent models for conventional DNs that host induction
motors (IM) as well as for ADNs with high penetration levels
of DRESs, iii) verifying the applicability of the proposed
methodology using measurements acquired from a labora-
tory scale ADN. The performance of the proposed method
is validated by means of: i) synthetic signals, distorted by
different noise distributions, ii) dynamic responses obtained
from RMS simulations conducted using the PowerFactory
- DIgSILENT software [21], and iii) laboratory measure-
ments. The proposed method is also compared with other
filtering techniques, namely low-pass filtering (LPF), mov-
ing average (MA), and Savitzky-Golay (SG), in terms of
the quality of the filtered responses and the accuracy of the
identified parameters.

The rest of the paper is organized as follows: In Sec-
tion 2 the theoretical background of the WT is presented.
The proposed methodology is formulated in Section 3, and
in Section 4 different noise distributions are discussed. In
Section 5 the validation of the proposed method by means
of synthetic signals is performed. In Section 6, the proposed

method is used to derive equivalent models for conventional
DNs and ADNs. Evaluation using laboratory measurements
is conducted in Section 7. Finally, Section 8 summarizes the
main findings and concludes the paper.

2. Wavelet Analysis
The WT is a sophisticated frequency analysis technique

widely used for feature detection, noise removal and other
signal processing applications [11, 22, 23]. Wavelets are a
class of functions that decompose signals into time-varying
frequency components and present accurate time–frequency
localization and efficient adaptivity to local signal features.
There are several WT basis function families Ψ[𝑛], known
as mother (prototype) wavelets, with one of the most known
being the Daubechies (db𝑥). Note that 𝑥 stands for the order
of the Daubechies wavelet [24]. To construct an orthogonal
basis, dyadic translations and dilations of the discrete WT
(DWT) are applied to the mother wavelet function by means
of (1) [25]:

Ψ(𝑠, 𝑙)[𝑛] = 2−𝑠∕2 ⋅Ψ[2−𝑠𝑛 − 𝑙] (1)
where the scale index 𝑠 indicates the wavelet width and the
location index 𝑙 gives its translation. Effectively, the DWT
is a band-pass filter with a scaling factor of powers of two
in the time domain; thus, it halves the bandwidth at every
subsequent level of the DWT.

More explicitly, a discrete signal 𝑓 [𝑘], 𝑘 = 0,… , 𝐾−1,
is decomposed in terms of a high-pass filter (HPF) ℎ[𝑘] and
a low-pass filter (LPF) 𝑔[𝑘] into high-frequency and low-
frequency components, i.e., the detail 𝑐𝐷[𝑘] and approxi-
mation 𝑐𝐴[𝑘] coefficients, respectively [25], [26], defined as
[27]:

𝑐𝐷[𝑘] =
∞
∑

𝑛=−∞
𝑓 [𝑛] ⋅ ℎ[2𝑘 − 𝑛] (2)

f[k]

cA1

cA2

cD1cD2cD3cA3

HPF

HPFLPF

LPF

LPF HPF

Figure 1: Example of three-level WT decomposition.
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𝑐𝐴[𝑘] =
∞
∑

𝑛=−∞
𝑓 [𝑛] ⋅ 𝑔[2𝑘 − 𝑛] (3)

Filter 𝑔[𝑘] is a quadrature mirror filter of ℎ[𝑘] in terms of:
𝑔[𝑘] = (−1)𝑘 ⋅ ℎ[𝐾 − 𝑘] (4)

The decomposition procedure starts by passing 𝑓 [𝑘]
through the HPF and LPF filters (level #1) and the obtained
set of 𝑐𝐴[𝑘] and 𝑐𝐷[𝑘] coefficients is down-sampled by a
factor of two as in (2), (3). Approximation coefficients can
be further analysed at a next decomposition level, thus new
approximation and detail coefficients are derived. Therefore,
successive DWTs are performed until the desired resolution
posed by the user is accomplished, as shown in the example
of Fig. 1.

3. Proposed Methodology
The proposed measurement-based approach for the de-

velopment of dynamic equivalent models is presented step-
by-step in Fig. 2. Prior to parameter estimation, the method
involves two pre-processing steps, namely event detection
and signal de-noising. The overall procedure is automatic,
facilitating the processing of the measured data and eventu-
ally the derivation of equivalent model parameters.
3.1. Event detection

Measured data of real power 𝑃 , reactive power 𝑄 and
voltage 𝑉 are continuously recorded from measurement

Data logging

Event detection

Filtering

Parameter estimation

Model performance 

assessment

Step 1:

Data logging and 

event detection

Step 2:

Data processing

Step 3:

Parameter estimation 

and model performance 

assessment

Equivalent model 

structure selection

Figure 2: Flowchart of the proposed methodology.

devices and processed within sliding windows 𝑤𝑣,𝑘, with
duration of 0.1 s, i.e., 𝐾 ′ data points; 𝑘 here denotes the time
index of the last recorded sample included in the window.
Note that, the selection of sliding windows of 𝑤𝑣,𝑘 = 0.1 s
was guided by recommendations from the literature [13], as
well as through extensive trial and error. The recording sys-
tem may refer to conventional power quality (PQ) loggers or
new class of measurement devices, such as micro-PMUs and
PMUs. For the development of dynamic equivalent models,
typically data related to obvious voltage disturbances are
used [9]. The identification of the onset of the volage event,
denoted for rest of the paper as 𝑡0, is of crucial importance for
the accurate estimation of the equivalent model parameters
[13]. Therefore, in the framework of the proposed method-
ology, the voltage event onset is automatically identified via
the following two-level procedure:

• The relative difference 𝑅𝐷 of the signal energy, 𝐸𝑘+1and 𝐸𝑘, is calculated between two consecutive voltage
sliding windows, 𝑤𝑣,(𝑘+1) and 𝑤𝑣,𝑘, respectively as:

𝑅𝐷 =
|

|

|

|

|

𝐸𝑘+1 − 𝐸𝑘
𝐸𝑘+1

|

|

|

|

|

⋅ 100 (5)

where 𝐸𝑘 =
𝐾′
∑

𝑘′=1

𝑤2
𝑣,𝑘[𝑘

′]

𝐾′ . If 𝑅𝐷 is higher than a
specific threshold, the disturbance detector is armed.

• If the disturbance detector is armed, the stationary
DWT (SWT) is applied within 𝑤𝑣,(𝑘+1) and the calcu-
lated 𝑐𝐷 are used to identify 𝑡0. SWT is a translation-
invariance modification of the DWT, that does not
decimate coefficients at every decomposition level.
The wavelet-based method has been selected as one
of the most widely used techniques for the automatic
detection of abrupt changes in signals [11]. Note that,
db1 mother wavelet (or Haar wavelet) is used due to
its resemblance to the step up/down disturbance in
the signals (see Fig. 3) [28]; a single-level structure
is used to perform the signal SWT decomposition.
Eventually, the event onset is set to 𝑡0 by comparing
the absolute value of 𝑐𝐷, with a threshold. Com-
monly, fixed thresholds are used. Nevertheless, adap-
tive thresholding 𝛿 can ensure reliable and robust de-
tection of events by taking into account the examined
system conditions [29]. This way, the estimated 𝑐𝐷
are compared to [16]:

𝛿 = 𝛿1 ⋅ mean(𝑐𝐷) + 𝛿2 ⋅ std(𝑐𝐷) (6)
where 𝛿1 and 𝛿2 are positive constants [30], deter-
mined via trial and error. In (6), the mean value (mean)
represents the central tendency of the data set, and
the standard deviation (std) its variability. Coefficients
𝑐𝐷 are calculated by analyzing the signal prior to
the disturbance (ambient data). This way, 𝛿 can be
adaptively determined for each system case.
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Figure 3: db1 (Haar) mother wavelet.

3.2. Filtering
Once the dynamic response has been captured, wavelet

de-noising [31] is applied to remove noise and outliers to
improve the Signal-to-Noise Ratio (SNR) of the measured
signals and facilitate the parameter estimation procedure.
Specifically, the DWT of the recorded signals is calculated
and the resulting 𝑐𝐷[𝑘] are compared to a specified threshold
and processed, i.e, being completely or partially suppressed
of some aspect of the signal. Next, the inverse DWT is
applied to recover the original signal.

There are many methods to determine the filtering
threshold. Among them, the universal threshold 𝑇𝑈𝑁𝐼𝑉 ,
described by (7), is the most widely used because of its
simplicity and efficiency [32],

𝑇𝑈𝑁𝐼𝑉 = 𝜎 ⋅
√

2 log𝐾 (7)
where 𝜎 is the signal standard deviation and𝐾 is the window
length.

A different way to set the threshold is based on Stein’s
unbiased risk estimator (SURE), described by (8) [33], [34],

𝑇𝑆𝑈𝑅𝐸 = 𝜎 ⋅
√

𝜔𝑏 (8)
where 𝜔𝑏 is the 𝑏-th coefficient wavelet square with the
minimum risk [33], [35].

By combining the two approaches, this entails the Heuris-
tic variant of Stein’s unbiased risk estimate (HEURSURE).
If SNR is low, the 𝑇𝑈𝑁𝐼𝑉 threshold is used; if SNR is high,
the 𝑇𝑆𝑈𝑅𝐸 threshold is applied [35]. In this study HEUR-
SURE is used and the DWT coefficients are recalculated by
means of soft thresholding [33]:

𝑐
′

𝑘 = sgn(𝑐𝑘) ⋅ (𝑐𝑘 − 𝑇 ) , if |𝑐𝑘|⩾ 𝑇

𝑐
′

𝑘 = 0 , if |𝑐𝑘|< 𝑇
(9)

where 𝑇 can be either 𝑇𝑆𝑈𝑅𝐸 or 𝑇𝑈𝑁𝐼𝑉 , depending on the
SNR. In this procedure, the level structure of the DWT is
determined as 𝑀 = log2 K [36].

Finally, the parameter estimation is improved by focus-
ing on the dynamic response dynamics; this necessitates to

exclude non useful post-disturbance response data. There-
fore, the optimal length of the analysis window is determined
by applying the sliding window technique of [13].
3.3. Parameter Estimation and Modelling

Evaluation
The recorded 𝑃 , 𝑄 and 𝑉 signals are used to identify

the real and reactive power model parameters, 𝜃𝑃 and 𝜃𝑄,
respectively, by applying an identification method to fit
the input-output data. In particular, the model parameters
are estimated via the nonlinear least square optimization
technique [2], aiming to minimize (10),

𝐽 =
𝐾
∑

𝑘=1
(𝑦[𝑘] − �̂�[𝑘])2 (10)

where 𝑦[𝑘] is the response of the original signal (either
𝑃 or 𝑄) at the 𝑘-th sample and �̂�[𝑘] is the corresponding
estimated response.

To evaluate the accuracy of the developed models the
coefficient of determination index, 𝑅2, is used:

𝑅2 =

(

1 − 𝑆𝑆𝐸
𝑆𝑆𝑇

)

⋅ 100. (11)

where

𝑆𝑆𝐸 =
𝐾
∑

𝑘=1
(𝑦[𝑘] − �̂�[𝑘])2 (12)

𝑆𝑆𝑇 =
𝐾
∑

𝑘=1
(𝑦[𝑘] − �̄�)2 (13)

Here,𝑆𝑆𝐸 is the sum of the squares of the vertical distances
of the samples from the original data. 𝑆𝑆𝑇 is the sum of
the squares of the vertical distances of the samples from
a horizontal line drawn at �̄�, i.e., the mean value of the
response 𝑦[𝑘].

𝑅2 is a measure of the goodness of fit. The more accurate
the model prediction, the closer 𝑅2 is to 100. Therefore, in
the best case, where the modeled values exactly match the
observed ones (𝑆𝑆𝐸 = 0), 𝑅2 = 100. A baseline model,
which always predicts �̄� (𝑆𝑆𝐸 = 𝑆𝑆𝑇 ) has𝑅2 = 0. Models
that fit the data even worse than this baseline will present
𝑆𝑆𝐸 > 𝑆𝑆𝑇 and in turn 𝑅2 < 0.

4. Noise Distributions
Real-world signals are most probably distorted due to

measurement and ambient noise [26]. Gaussian (normal dis-
tribution) measurement error is typically assumed in power
system testing [17]. However, results might be inaccurate if
the Gaussian assumption is violated. Recent studies [17] on
field measurements (amplitude and phase angle of voltage
and current) have shown that for the realistic simulation
of the measurement error non-Gaussian distributions with
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Figure 4: PDF of Gaussian, Laplace and Student’s t distribu-
tion.

long tail should be considered. This type of distribution can
be represented more accurately in terms of the Laplace or
Student’s-t distributions.

In Fig. 4 indicative probability density functions (PDF)
of Gaussian, Laplace (also known as double exponential)
and Student’s-t distributions are compared to visualize their
differences. The PDFs have been generated in the range [-
3,3]. All distributions are bell-shaped symmetrical about
their means and have been illustrated, assuming mean, 𝜇 =
0, and standard deviation, 𝜎 = 1.7323. It can be seen that,
the peak of the Laplace distribution is sharper than Gaussian
and has a moderate tail, going to zero like the exponential
function. Additionally, the Student’s-t distribution includes
an additional parameter, i.e., the degrees of freedom 𝑣 that
controls the kurtosis of the PDF. Distributions with a small
𝑣 (more degrees of freedom) are taller and have thinner tails,
presenting increased likelihood of outliers. In Fig. 4, 𝑣 = 4;
thus, the Student’s-t distribution presents higher kurtosis
than the Gaussian and consequently outliers are more likely
to occur.

5. Evaluation Using Synthetic Signals
To evaluate the feasibility of the proposed framework

in terms of accuracy of the simulated responses and model
estimates, synthetic signals are used.
5.1. Synthetic Signal Generation

Two dynamic equivalents of different complexity are
used to simulate real/reactive power dynamics subsequent
to step voltage disturbances, i.e., the exponential recov-
ery model (ERM) and the second-order recovery model
(SORM). The ERM is extensively used to represent first-
order dynamic responses [2] and is described by (14). The
SORM is a second-order representation of the ERM capable
to analyze more oscillatory responses, and it is described by
(15).

𝑦𝑒(𝑡) = 𝑦𝑠(𝑡) − (𝑦𝑠(𝑡) − 𝑦𝑡(𝑡)) ⋅ 𝑒
−
𝑡−𝑡0
𝑇𝑦

𝑦𝑠(𝑡) = 𝑦0 ⋅
(

𝑉 (𝑡)
𝑉0

)𝑁𝑠
𝑦𝑡(𝑡) = 𝑦0 ⋅

(

𝑉 (𝑡)
𝑉0

)𝑁𝑡
(14)

Table 1
Real (𝜃𝑃 ) and reactive (𝜃𝑄) power grid parameters

Grid type Sets of model parameters

RCMs 𝜽𝑷 = 𝜽𝑬𝑹𝑴 = [0.1070, 1.0411, 0.2047]
𝜽𝑸 = 𝜽𝑬𝑹𝑴 = [1.4826, 1.9916, 0.1557]

Small IMs 𝜽𝑷 = 𝜽𝑺𝑶𝑹𝑴 = [2100, 55, 2.5, 150]
𝜽𝑸 = 𝜽𝑬𝑹𝑴 = [0.3174, 4.9050, 0.0590]

𝑦𝑒(𝑡) =
(

𝑦0 +
𝑏0
𝑎0

(𝑉 (𝑡) − 𝑉0)
)

+
(

𝑒−
𝑎1
2 (𝑡−𝑡0)

)

⋅

⋅
[

2𝑎0𝑏1 − 𝑎1𝑏0

2𝑎0

√

𝑎0 −
𝑎21
4

sin
(

√

𝑎0 −
𝑎21
4
(𝑡 − 𝑡0)

)

−

−
𝑏0
𝑎0

cos
(

√

𝑎0 −
𝑎21
4
(𝑡 − 𝑡0)

)]

(𝑉 (𝑡) − 𝑉0)

(15)

In (14) and (15), 𝑦𝑒(𝑡) is the simulated real/reactive
power and 𝑉 (𝑡) is the grid voltage. In addition, 𝑦0 and 𝑉0are the power and voltage amplitude prior to the disturbance;
𝑡0 is the time of disturbance. For real or reactive power
modelling using the ERM, the 𝜽𝑬𝑹𝑴 = [𝑁𝑠, 𝑁𝑡, 𝑇𝑦] set
of parameters must be identified [13]. For real or reactive
power modelling using the SORM, the 𝜽𝑺𝑶𝑹𝑴 = [𝑎0, 𝑎1,
𝑏0, 𝑏1] parameter set must be identified [13].

The sets of model parameters used to generate the real
and reactive power synthetic signals are presented in Table 1.
These correspond to two distinct types of DNs: those dom-
inated by residential-commercial motors (RCMs) and by
small IMs [13]. Note that the synthetic signals are generated
by applying step-down voltage disturbances at 𝑡0 = 0.5 s,
that are equal to either - 1.25% or - 2.50%; a sampling rate
of 1000 samples per second (sps) is assumed.
5.2. Distorted Dynamic Responses

In Fig. 5, real and reactive power responses of DNs
dominated by RCM are presented for the two voltage step-
down disturbances. The pure synthetic signals, i.e., voltage
amplitude and real and reactive power are distorted by
additive noise in terms of Gaussian, Laplace and Student’s t
distribution to replicate realistic conditions. Originally, these
distributions concern the quantities monitored directly by
the measurement devices, i.e., amplitude and phase angle
of measured voltage and current. In turn, it is assumed that
also the resulting calculated quantities, i.e., real and reactive
power are distorted following a similar distribution. The
SNR is 20 dB [37]. The corresponding responses for DNs
dominated by small IMs are plotted in Fig. 6.

For both models, it can be seen that the voltage step
causes a power response that can be described by two phases.
In the first phase (transient part), a step in real and reactive
power follows immediately the abrupt voltage change; thus,
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Figure 5: RCM real power response distorted by (a) Gaussian,
(b) Laplace and (c) Student’s-t noise distribution. RCM
reactive power distorted by (d) Gaussian, (e) Laplace and (f)
Student’s-t noise distribution.

the equivalent DN model during this phase behaves as an
impedance and represents the invariable IM slip during the
voltage step [38]. The undershoot for the RCM real and
reactive power response is for the -1.25%/-2.5% voltage
disturbances 1.6%/2.6% and 2.5%/4.9%, respectively. The
corresponding values for the small IM case are 2.0%/4.2%
and 5.8%/10.9%. It can be realized that the reactive power
response is more sensitive to the level of disturbance for
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Figure 6: Small IM real power response distorted by (a)
Gaussian, (b) Laplace and (c) Student’s-t noise distribution.
Small IM reactive power distorted by (d) Gaussian, (e) Laplace
and (f) Student’s-t noise distribution.

both models. Moreover, the impact of parameter 𝑁𝑡 on
power dynamics can be easily understood by comparing
the overshoots of reactive power for the RCM and small
IM case. Indeed, the higher the value of 𝑁𝑡, the bigger
the overshoot. In the second phase (recovery part) a new
steady-state is gradually established. The dynamics of the
DN tend to restore the grid power to a certain extent. With
respect to (14), the reactive power (for both models) and
the RCM real power recover almost in exponential form;
on the other hand for the small IM real power the recovery
is more oscillatory (see (15)), presenting a peak at around
0.6 s. Note that, the undershoot and the new steady-state
are related non-linearly to the voltage response [38]. In fact,
the real power for both models recovers almost to the same
value prior to the disturbance. However, this is not the case
for the reactive power, where the new steady-state values
differ significantly compared to the pre-disturbance ones,
as the voltage disturbance level increases. The observed
differences dependent on 𝑁𝑠 values. The difference is more
pronounced for the RCM model as 𝑁𝑠 = 1.4826, and thus
considerably higher compared to the IM case. In fact, for the
RCM case the difference in the steady-state prior to and after
to the disturbance is equal to 1.84%.

Considering the influence of noise distribution, responses
distorted by Gaussian noise present generally a smooth
shape. On the other hand, as expected, under the Laplace
distribution and more importantly under the Student’s-t,
outliers, i.e., excessive spikes, at different time instants are
observed.
5.3. Event Detection Procedure Assessment

The performance of the proposed event detection method
is evaluated considering the Student’s-t noise distribution to
simulate measurement error in a realistic way and include
also outliers. The noisy voltage response and the corre-
sponding SWT 𝑐𝐷 are presented in Fig. 7 for the two step-
down disturbances, assuming SNR=20 dB. In the figure, the
red asterisk points the onset of the disturbance, detected by
the proposed method. In addition, the value of the adaptive
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Figure 7: Calculated a) 𝐸𝑘, c) 𝑐𝐷 for 1.25% disturbance, and
b) 𝐸𝑘, d) 𝑐𝐷, for 2.5% disturbance.
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Figure 8: 𝑐𝐷 for 1.25% disturbance, a) 30 dB, b) 20 dB and
c) 10 dB, and for 2.5 %, d) 30 dB, e) 20 dB and f) 10 dB.

threshold that sets the start of the event is plotted with a
dashed line. After exhaustive trial and error trials 𝑅𝐷 is set
to 2.5% and the parameters of the adaptive thresholding are
𝛿1 = 0.4 and 𝛿2 = 2. It is evident that the value of the thresh-
old 𝛿 differs per case as depends on the system conditions.
Results verify that the voltage event is successfully identified
in all cases.

To investigate the performance of the proposed event-
detection technique under different noise environments, the
voltage response is distorted with adjusted variance noise
to replicate SNR levels of 10 dB, 20 dB and 30 dB [39].
In Fig. 8 the calculated 𝑐𝐷 is plotted with respect to the
adaptive threshold and the detected time of disturbance.
The excessive spikes in the signal and consequently in the
𝑐𝐷 may result into false event triggering. This is more
pronounced with decreasing SNR. However, this is avoided,
as the selected 𝑅𝐷 threshold is not exceeded; thus, 𝑅𝐷
thresholding is used as a complementary technique to filter
out signal outliers.
5.4. Filtering

The efficiency of the proposed DWT-based denoising
method is evaluated and compared with the LPF, the MA
and SG [13], [40]. Optimum filter design parameters have
been selected after exhaustive trial and error. In particular,
for DWT-based denoising db1 and db2 mother wavelets
have been used for the voltage and real/reactive power re-
sponses, respectively [28]; a 10th order LPF is used with
cutoff frequency equal to 21 Hz, a MA filter with frame
length 10 samples and a 10th order SG filter with frame
length equal to 25 samples [13]. The performance of the
filtering techniques is evaluated in terms of 𝑅2, assuming
that in (11) the estimated response, �̂�[𝑛], has been calculated
as follows: i) apply filtering to the distorted response, ii)
estimate the model parameters via (10) and iii) simulate the
real and reactive model responses via (14) or (15) by using
the identified model parameters. Real and reactive power
signals are generated and distorted in terms of the three noise
distributions for SNR levels 10 dB, 20 dB and 30 dB. For
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Figure 9: Responses of the a) real and b) reactive power,
distorted by Student’s t noise for SNR = 20 dB, filtered with
WT.

each case 100 Monte Carlo (MC) simulations are conducted;
a random instance by applying DWT-based denoising con-
sidering Student’s-t noise distribution and SNR = 20 dB is
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Figure 10: 𝑅2 of LPF for a) real power, b) reactive power,
of MA for c) real power, d) reactive power, of SG for e) real
power, f) reactive power, and of WT for g) real power and h)
reactive power.
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depicted in Fig. 9 for the RCM model. The optimal length of
the analysis window is approximately 1s.

In Fig. 10 the calculated 𝑅2 is summarized for the differ-
ent filtering methods. Results are analysed per SNR level by
plotting the mean 𝑅2 of the MC corresponding simulations.
Note that, to ensure consistency in the comparisons, outlier
𝑅2 estimates have been identified with the aid of box plots
[40] and removed. In fact, this is the case for SNR = 10 dB,
where 10 cases (on average) were considered as outliers and
were eventually removed for the analysis of the LPF, MA and
SG results; for the DWT-based denoising no outliers have
been identified. It is evident that high real power 𝑅2 values
are obtained for all filtering techniques and noise cases.
Therefore, the distinct dynamic features of the response have
been preserved. Similar remarks can be also deduced con-
sidering the reactive power response when the pure signal
is distorted by Gaussian and Laplace noise. However, this is
not the case for SNR = 10 dB Students’-t noise distribution.
Indeed, significant performance degradation is observed for
the LPF, MA and SG filtering techniques. On the other hand,
the DWT-based de-noising outperforms these techniques
regarding noise and outliers removal as it preserves its high
accuracy. For the small IM scenario the resulting 𝑅2 is close
to 100% for all cases; thus, the corresponding bar graphs are
not presented. Therefore, by comparing the two DN cases,
it can be deduced that the modelling of the RCM reactive
power response is more challenging than the rest dynamic
responses, i.e., RCM real power and small IM real/reactive
power, due to its distinct dynamic characteristics. To better
elaborate on this, let us assume for example the 𝑁𝑠 param-
eters of the RCM and the small IM DN models. It can be
realized that the RCM reactive power pertains to a response
with significant difference between the steady-state values
prior to and after the disturbance; thus being more vulnerable
to the effect of noise and outliers.
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Figure 11: Parameter percentage error by using the four
filtering methods for the DN dominated by RCM for the
a) real power and b) reactive power. Student’s-t noise with
SNR = 10 dB.
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Figure 12: Parameter percentage error by using the four
filtering methods for the DN dominated by small IM for the
a) real power and b) reactive power. Student’s-t noise with
SNR = 10 dB.

Additionally, the efficiency of the examined filtering
techniques is evaluated in terms of model parameter es-
timates. The % error (𝜖) is calculated by comparing the
average value of the model parameters derived from the 100
MCs, to the original ones. Indicatively, the case of Students’-
t distribution and SNR = 10 dB is depicted in Figs. 11 and
12 for the RCM and the small IM models. It is shown that
the parameters derived by applying the proposed WT-based
methodology are almost identical to the original. On the
other hand, deviations are observed for the LPF, MA and
SG techniques. These become more marked considering the
reactive power responses.

6. Simulation Study in a Large-Scale
Distribution Network
The scalability of the WT-based method is tested in

a large-scale MV simulation model, illustrated in Fig. 13.
The test system used is a modified version of the CIGRE
benchmark European MV distribution grid [41]. The applied
modifications are summarised as follows [42]: i) only the
first feeder is used in the model, ii) switches are open, and
iii) the total system load (4590 kVA) is evenly distributed
among the DN buses.

Two network operating scenarios are being studied, i.e.,
conventional DN and ADN. In the former, network end-
users are exclusively loads, comprising of static and dynamic
components. The static loads are represented as constant
impedance loads and the dynamic loads are characterized
using Type-7 IM model parameters [43]. In the ADN sce-
nario, the examined DN is further modified by adding DRES
units uniformly across all system buses. DRES are simu-
lated using the Type 4A model [44]. The Type 4A model
is a generic representation/model of full-scale converter-
interfaced generation units, such as wind generators and
photovoltaics. For the purpose of the analysis, DRES operate
under the constant power (P-Q) mode. In total, four test cases
are studied by varying the dynamic load participation in the
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Figure 13: Examined MV simulation model.

total load mix, as well as the DRES penetration level (with
respect to the total system load power), namely:

• Case #1 (conventional DN): 40% static load, 60%
dynamic load, 0% DRES penetration.

• Case #2 (conventional DN): 0% static load, 100%
dynamic load, 0% DRES penetration.

• Case #3 (ADN): 40% static load, 60% dynamic load,
20% DRES penetration.

• Case #4 (ADN): 40% static load, 60% dynamic load,
40% DRES penetration.

Since the dynamic performance of the distribution net-
work is considerably influenced by the pre-disturbance volt-
age level at the point of interconnection (POI) with the
transmission network, the examined test cases consider three
distinct operating conditions ranging from 0.95 to 1.05 p.u.
For each test case, a total of 𝑁𝐷 = 20 step-down and step-up
disturbances ranging from -0.1 p.u. to 0.1 p.u. are induced
by tap changing on the secondary side of the 110kV/20kV
transformer. The dynamic responses of voltage, real and
reactive power are obtained at POI. The responses are gen-
erated at 1000 sps and subsequently are distorted by random
noise with Student’s-t PDF for SNR = 20 dB. The proposed
WT-based method (𝑅𝐷 = 2.5%, 𝛿1 = 0.4 and 𝛿2 =
|3|; absolute value is used for both step-up and step-down
disturbances) is applied to capture the dynamic responses
and filter out noise and outliers. Further details on the DRES
siting and sizing are provided in [42]. The above cases are
simulated in PowerFactory - DIgSILENT software [21].

The performance of WT denoising is evaluated by
analysing the 𝑅2 cumulative distribution function (CDF) of
𝑁𝐷 = 20 discrete simulations in Fig. 14 for the four different
test cases. Note that, 𝑅2 has been calculated under the
same premises of Section 5, considering an optimal window
length (per test case) for the post-processing analysis [13].
In addition, in the same figure, the CDF plots for the LPF
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Figure 14: Comparison of the filtering methods by means of
CDFs. a) Case #1, b) Case #2, c) Case #3, and d) Case #4.

and the SG filtering techniques are provided. The MA
method has been also examined, however, the obtained
results show significantly lower 𝑅2 values, thus have not
been presented. For the LPF, MA and SG filters the same
parameters as for the synthetic signals apply. Comparisons
indicate that the proposed WT-based method presents in
all cases the highest 𝑅2 value (over 99.5%) for both the
real and reactive power signals. Comparable, although lower
𝑅2 results, are also obtained for the rest of the examined
filtering techniques, especially for the SG method. It can
be also noticed that signal filtering becomes slightly more
challenging as the dynamic load and DRES penetration
increases since generally lower 𝑅2 values are obtained; this
is more marked for the real power response.

7. Application to Measurements
The applicability of the proposed method is also tested in

analyzing measured responses. These have been recorded at
the POI of a low-voltage laboratory-scale microgrid (MG)
[45]. As shown in Fig. 15, a three-phase programmable
voltage source (PVS) supplies the test setup.
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Figure 15: Laboratory-scale MG.
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Figure 16: Comparison of filtering methods considering a) real
power responses, and b) reactive power responses.

One synchronous (SG), one asynchronous (AG) and one
inverter interfaced unit (DG1) constitute the generation of
the MG; the load demand comprises a static load bank (SLB)
and two asynchronous motors (IM1 & IM2). A set of 30
dynamic responses (𝑉 , 𝑃 ,𝑄) are recorded at 500 sps by
applying step-voltage disturbances in the range of -0.1 p.u.
to 0.1 p.u. at the MG point of interconnection. The optimal
window length has been determined to 2.3 s [13].

The performance of the four filtering techniques is com-
pared in Fig. 16 by means of boxplots. More specifically,
results for real and reactive power are presented in Fig. 16a
and 16b, respectively. For the LPF, MA and SG filters the
same parameters as in the preceding cases have been used
and for the WT-based method, 𝑅𝐷 = 6%, 𝛿1 = 0.4 and 𝛿2 =
|2|. With this test the efficiency of the WT-based method
is substantiated also with measured data, as the highest 𝑅2

(over 99.5%) is calculated. Moreover, results verify that SG
and LPF can be also reliable tools for the filtering of dynamic
responses in power systems. The average computational
burden of the entire process, excluding parameter estimation,
remains under 0.4 seconds; computations were conducted
utilizing a PC equipped with an i7-8550U processor running
at 1.8 GHz, with 8 GB of RAM.

8. Discussion and Conclusions
This paper presents an analytical study of processing

measured dynamic responses by using the DWT. Such mea-
surements can be obtained at indicative substations of DNs
during voltage disturbances. The proposed method has been
evaluated using synthetic signals, RMS simulated responses
and laboratory measurements.

In the case of pure signals, in order to replicate real world
conditions, the responses have been distorted considering
different types of noise distribution. More explicitly, the
widely adopted Gaussian noise as well as distributions with

long tail, i.e., Laplace and Student’s-t that represent more
realistically the measurement error have been applied.

The conducted analysis has shown that the proposed two-
level event detection procedure can automatically identify
the exact time of the disturbance onset even under severe
noise conditions with outliers. A failure to identify the onset
of a disturbance entails significant errors in the derivation of
the model parameters.

The LPF, MA, SG and WT-based filtering techniques
can efficiently filter out distorted signals. The WT-based
filtering generally presents more smooth responses and ac-
curate mode estimates compared to the rest techniques.
This becomes more marked in highly noisy environments
assuming the Laplace and Students’-t noise distributions.
In fact, in such extreme cases only the proposed WT-based
technique can improve significantly the quality of the signal
and lead to the derivation of accurate model parameters.

In essence, the proposed method constitutes a reliable
overall signal analysis method that can be efficiently used to
enhance the quality of the distorted signals and further be
applied to investigate the dynamic behavior of DNs.

Evaluation with field measurements of dynamic re-
sponses and ambient data obtained at the POI of DNs
would certainly contribute to the further enhancement of
the proposed methodology and the development of dynamic
equivalent models of DNs for different operating conditions.
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