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Abstract 

The purpose of image fusion is to create a perceptually enhanced image from a set of multi-focus or 

multi-sensors images. In the methods we are about to describe we do not a priori know the ground 

truth image: these are blind fusion methods. There are mainly two groups of fusion methods 

depending on the signal domain they are applied: spatial domain methods and transform domain 

methods. The Dispersion Minimisation Fusion (DMF) and Kurtosis Maximisation Fusion (KMF) 

based techniques we are going to discuss are spatial domain methods that is to say the fusion is simply 

performed on the image itself. In this work we propose to linearly combine the input images with 

appropriate weights estimated using specific mathematical performance criteria which evaluate in 

various ways improvement in visual perception. More specifically, in order to estimate the weights we 

propose iterative methods which use cost functions based on two statistical parameters, i.e., the 

dispersion and the kurtosis. The optimisation of the proposed cost functions enables us to obtain a 

fused image which is less distorted compared to the input ones. 

 

1. Introduction 
 

Let us have K source images  describing different realizations of the same true scene K,X,X L1 F . 

The available images have been acquired from different sensors (multi-sensor scenario) or they are of 

the same type but exhibit different types of distortion, as for example blurring (multi-focus scenario). 

Our aim is to create from these images a single image Y  which will be perceptually enhanced. The 

composite image should contain a more useful description of the scene than the one provided by any 

of the individual sources, and therefore, should be more useful for human visual or machine 

perception. The task of combining images to form a single improved image is called image fusion. 

Image fusion has been used in many fields such as aerial and satellite imaging, medical imaging, 

robot vision etc. In recent years image fusion has become an important and useful technique for image 

analysis, computer vision, concealed weapon detection, autonomous landing guidance and others. 

Image fusion can be performed either in the spatial or in the transform domain.  

As far as the transform domain fusion methods are concerned the input images are first transformed 

into a new domain, then fused and the result is converted back by an inverse transform. Popular 

transform domain fusion methods are for example the Dual-Tree Wavelet Transform (DT-WT) 
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method [7] or the Independent Component Analysis (ICA) method [4]. In these methods the fusion 

coefficients are calculated with either pixel based or region based fusion rules. 

The methods we are proposing in this work are spatial domain methods, that is to say, we work on the 

input images directly. A linear combination of the available source images is used, where the weights 

are estimated using novel optimisation formulations. 

In order to understand the mechanisms behind the proposed fusion rules a thorough mathematical 

background and some notations are required. Section 2 of this chapter will be dedicated to the 

notations, the definitions and the problem formulation. Sections 3 and 4 are dedicated to the 

description of the proposed methods, as well as modified versions of them. The first method we 

propose is the Distortion Minimization Fusion (DMF). This spatial domain fusion technique utilizes 

the cost function of one of the most studied and implemented methods, i.e., the Constant Modulus 

(CM) algorithm, and the concept of signal dispersion [8]. An iterative process updates at every step 

the weights for the pixels by minimizing a function of the dispersion of the unknown original image. 

An alternative technique is also proposed where we use the Central Limit Theorem and the 

characteristics of smoothing (blurring) operators to assume that the non-Gaussianity is an indicator of 

image quality. The statistical parameter we consider to measure non-Gaussianity is the absolute value 

of kurtosis. This method is called Kurtosis Maximization Fusion (KMF). The additional methods we 

shall introduce are improvements of the previous ones. Section 5 is a presentation of indicative results 

we obtain with the proposed methods. 

 

2. Mathematical Preliminaries 
 

Assume K  two dimensional source digital images  of equal size  describing the 

same true scene 

K,X,X K1 NM ×

F . The images are registered to each other. By scanning the rows sequentially we 

transfer each image  to a vector kX kx  (lexicographic ordering) with elements  where 

. The aim of image fusion is to reconstruct a fused image  which demonstrates an 

improved image quality over any individual image . For the fused image we also use its 

lexicographically ordered version 

)(nxk

],1[ MNn∈ Y

kX

y  with elements . )(ny

To examine a spatially adaptive image fusion scheme we are interested in assigning to the  pixel 

 a distinct weight  that measures the contribution of the pixel  to the fused pixel 

. It is convenient to gather all the weights and intensity values at the  pixel location together 

and denote them by single vectors as follows 

thn

)(nxk )(nwk )(nxk

)(ny thn

                                                           [ ] T
K nwnwnw  )(,),()( 1 K=                                                    (1) 

and 
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                                                            [ ] T
K nxnxnx  )(,),()( 1 K=                                                        (2) 

where . ],1[ MNn∈

Consequently the  pixel  in the fused image is obtained as in equation (3) below by linearly 

combining the pixels  at the same location  from the available source images. 

thn )(ny

)(nxk n

                                                       )()()()()(
1

nxnwnxnwny TK

k
kk == ∑

=
                                                 (3)  

Furthermore, we call T
Kxxx  

1 ][ K=  the NMK ×  matrix containing all the source images. The 

same notation is used for the weights, that is to say, T
Kwww  

1 ][ K= . 

The weights have to be positive and also . The aim of the proposed algorithms is to 

determine the matrix 

∑
=

=
K

i
i nw

1
1)(

w . 

 

3. Dispersion Minimization Fusion (DMF) Based Methods 
 

Recently we introduced a preliminary version of the Dispersion Minimization based Fusion scheme 

(DMF) [3]. The concept of dispersion was originally studied in its one dimensional form and used for 

blind equalization of communication signals over dispersive channels [8]. In [3] we investigated the 

use of two dimensional dispersion to the problem of image fusion [2]. 

The dispersion constant of a real-valued image F  with its zero-mean version denoted by F~  is 

defined as follows 

                                                                   
}~{
}~{

2

4

FE
FEDF =                                                              (4) 

where  denotes the expectation operator performed along the dimension .  }{⋅E n

In this work we are seeking for fusion weights that minimize the following cost function 

                                                           }))(~{( 22
FCM DnyEJ −=                                                        (5) 

where  is the dispersion value of the original image FD F  defined as in equation (4) above and )(~ ny  

denotes the  pixel of the zero-mean version of the lexicographically ordered fused image thn y . Cost 

functions similar to that in (5) have been used in communications [8] and the term Constant Modulus 

(CM) is widely used to refer to them. This term justifies the use of CM as subscript in the notation of 

the cost function . CMJ

It is straightforward from its definition that the cost function in (5) penalizes the deviations of )(~2 ny  

from the dispersion constant . Since a closed form solution for the minimization of (5) does not 

exist, iterative approaches, as for example the widely used Gradient Descent (GD) method, are 

FD
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generally used to solve it. The algorithm that performs a stochastic Gradient Descent minimization of 

a CM type of cost function is referred to in the existing literature as the Constant Modulus Algorithm 

or CMA [8]. CMA attempts to minimize the CM cost function by starting with arbitrary values for the 

unknown parameters and following the trajectory of the steepest descent. 

In this work, the particularity of the proposed cost function is that we do not know the value of . 

Therefore, equation (5) involves the estimation of both the fusion weights 

FD

[ ] )(,),(1 nwnw KK and the 

dispersion  of the original true scene. Thus, the minimization of (5) is performed using an 

alternating stochastic Gradient Descent algorithm. 

FD

One can notice that in the previous definition we need to deal with zero-mean images. That is why in 

the rest of the chapter we will use the notation )(~ nx  instead of )(nx . However, we will use the non-

zero mean version of the source images for the final step, that is to say the reconstruction of the image 

with the final weights. 

From equation (3) we deduct that )(~)()(~ nxnwny T=  and hence, we can rewrite the proposed cost 

function as follows. 

                                              }]))(~)({[())(( 22
F

T
FCM DnxnwE,DnwJ −=                                           (6)  

In order to minimize the cost function in (6), we are going to use a Gradient Descent method with two 

learning rates µ  and η . We need then to calculate the gradient of )),(( FCM DnwJ  relative to both 

)(nw  and . Throughout the chapter we will often interchange the notations FD )),(( FCM DnwJ  and 

 for simplicity. CMJ

 

• Calculation of 
)(nw

JCM

∂
∂  

We know that 22422 )}(~{2)}(~{}))(~{( FFFCM DnyEDnyEDnyEJ +−=−=  and )(~)()(~ nxnwny T= . 

The expectations calculated along the dimension  are approximated by the sample mean n

∑
=

=
MN

n

mm ny
MN

nyE
1

)(~1)}(~{ .  As a result, the derivative of these expectations with respect to the 

specific weight )(nw  will simply be reduced to the derivative of the sample means’ term for 

the corresponding . Consequently, the requested derivative can be given by n

                                                      )(~)(~))(~(4
)(

2 nxnyDny
nw

J
F

CM −=
∂
∂                                                   (7)  

 

• Calculation of 
F

CM

D
J
∂
∂  
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From the expression of  we have CMJ F
F

CM DnyE
D
J 2)}(~{2 2 +−=
∂
∂  or alternatively, 

                                                         ))}(~{(2 2 nyED
D
J

F
F

CM −=
∂
∂                                                          (8) 

 

3.1 The Dispersion Minimization Fusion method (DMF) 

 

The proposed algorithm is summarized in the steps below. 

Initialization 

• Set all the weights )(nw  at the value 1−K . The first estimate of the fused image will then be 

simply the mean of the K  source images. 

• Set the original value of  as the mean of the dispersion parameters of the FD K  source images. 

Iteration 

• Update the values of )(nw  

)(
)()(

nw
Jµnwnw CM

∂
∂

−⇐+  

• Normalise the values of )(nw  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⇐+

)(
)(abs)(

nw
nwnw  

• Update the value of  FD

F

CM
FF D

JηDD
∂
∂

−⇐+  

• Check that  is positive and if not take its absolute value. FD

( )FF DD abs⇐+  

The parameters µ  and η  have a very important role in the convergence of the proposed method. By 

selecting inappropriate values for these learning rates, the cost function may converge to a local 

minimum instead of the global minimum. In order to tackle this problem an exhaustive search for 

optimal combinations of values for µ  and η  is realized, prior to updating the values for w  and . 

By the term optimal we refer to the values that minimize the cost function or yield a value at 

convergence sufficiently close to the minimum. After a large number of experimental simulations we 

have concluded that appropriate values for 

FD

µ  lie approximately around  and for 610− η  around . 

Prior selection of learning rate values enables us to get better results as far as both convergence to the 

global minimum and speed of convergence are concerned.  We shall refer to this modified version of 

9.0
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the method as the Robust DMF method [3]. Once the matrix w  has converged, the fused image can 

be reconstructed using the non-zero mean source images. 
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Fig 1: An indicative comparison between DMF and Robust DMF. 

 

3.2 The Dispersion Minimization Fusion method With Neighbourhood (DMF_WN) 

 

In the previous section the update for )(nw  was essentially estimated using a stochastic update, due to 

the lack of multiple realisations of the fused image. By assuming that the image signal is locally 

ergodic we allow the pixels within the LL ×  neighbourhood around the pixel of interest  to be 

treated as multiple realisations of that pixel in the fused image. In addition, we can assume that the 

weight 

n

)(nw  in this neighbourhood remains constant for each pixel located within the neighbourhood. 

Consequently, the gradient term can now be calculated via 

⇒−=
∂
∂ )}(~)(~))(~(4{

)(
2 nxnyDnyE

nw
J

FL
CM  

                                                
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

∂
∂

)}(~)(~))(~(4{

)}(~)(~))(~(4{

)( 2

1
2

nxnyDnyE

nxnyDnyE

nw
J

KFL

FL
CM M                                           (9) 

where the expectations  are calculated via sample averaging using the  pixels located within an }{⋅LE
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LL ×  ( L  odd) neighbourhood placed symmetrically around pixel . The optimal size of the 

neighbourhood depends on the particular image and on the type and severity of distortion. We call this 

method Dispersion Minimization Fusion method With Neighbourhood (DMF_WN). Regarding 

the question whether the DMF_WN technique can be combined with the robust version described in 

Section 3.1, the tests have proved that although it increases the performance it leads to a very long 

computation time. 

n

 

4. The Kurtosis Maximization Fusion (KMF) Based Methods 
 

A possible limitation of the previous fusion scheme based on dispersion minimization is that it 

requires a priori some statistical information, namely, the dispersion value of the ground truth image 

which is unavailable in practical cases. Although we have formulated a framework of alternating 

minimization which gives reasonable estimates of the true dispersion value, the instability and bias of 

the fusion performance could still dominate due to the lack of required information. Therefore, we 

propose an alternative fusion scheme which is purely based on the available sensor images, and thus, 

does not require knowledge of the original ground truth image. We refer to this method as Kurtosis 

Maximization based Fusion scheme (KMF). 

The motivation of using kurtosis maximization stems from two facts: 

•  The Central Limit Theorem states that the probability density function of the sum of several 

independent random variables tends towards a Gaussian distribution [12]. 

• Due to the physical limitations of the sensors and imperfect observational conditions, the acquired 

sensor images represent a degraded version of the original scene by smoothing operators [2] and 

additive noise [18], which is assumed to be independent to the image scene. 

A smoothing operator often acts as a low-pass filter which results in a flatter (more Gaussian) 

distribution of the filtered image, as the high frequency information is suppressed, degraded or 

missing [18]. In addition, the combination of an image scene and additive noise, which is independent 

of the image, further increases the Gaussianity of sensor images due to the Central Limit Theorem. 

Combining these two facts together, we can see that it is likely that the probability distribution of an 

image is less Gaussian than that of a distorted version of it or of linear combinations of distorted 

versions of it [14]. We can assume that the fused image is expected to be as close to the original scene 

as possible, and furthermore, both the fused image and the original image feature a non-Gaussianity 

property. Such a principle implies that if we find a fused image Y  that follows the minimum 

Gaussian behaviour (or alternatively, maximum non-Gaussianity), then that image will be closer to 

the original scene F  compared to the acquired sensor images. To some extent, non-Gaussianity 

reflects the quality of the fused image. We can therefore identify the optimal fused image by 

maximizing its non-Gaussianity via updating the fusion weights. To quantify the non-Gaussianity of 
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the image, measurements, such as high order central moments are frequently used. Here we choose 

the absolute value of kurtosis, a normalized fourth order central moment, to serve for non-Gaussianity 

maximization. 

Consider an image F . We define the kurtosis  of its zero-mean version FK F~  as 

                             33
}~{}~{

}~{
}~{

}~{3}~{
}~{
}~{cum

2
~22

4

22

224

22
4 −=−=

−
==

F

F
F

D
FEFE

FE
FE

FEFE
FE

FK
σ

                     (10) 

where }~{cum4 F  and  denote the fourth order cumulant and the standard deviation of 2
~Fσ F~ , 

respectively. From a statistical perspective, kurtosis measures the peakedness of a distribution [9]. 

More specifically, a Gaussian distribution has kurtosis equal to zero ( 0=FK ). Moreover, it exhibits 

moderate tails and it is called mesokurtic. A distribution with small tails has negative kurtosis 

( 0 ) and is called sub-Gaussian or platykurtic and one with long tails has positive kurtosis 

( ) and is called super-Gaussian or leptokurtic. The absolute value of kurtosis is usually used as 

a measurement of non-Gaussianity as it tends to be zero for a Gaussian distribution and non-zero for 

any other non-Gaussian distribution. In order to demonstrate the correlation among distortion, non-

Gaussianity and the absolute value of kurtosis, we assume the original image Cameraman and a 

distorted version of it by Gaussian blur. The histograms and the absolute kurtosis of the two images 

are illustrated in Fig. 2 below, in which we observe that when distortion occurs, the corresponding 

<FK

0>FK

FK  value decreases as the image data becomes more Gaussian. In other words, it is safe to state that 

the actual non-distorted representation of the observed scene, and therefore the fused image that is 

produced using the available sources have larger values of FK , or alternatively follow a more non-

Gaussian behaviour and are less distorted. Inspired by the fact that the absolute value of FK  (non-

Gaussianity) can be a sound criterion to reflect the quality of a fused image, we derive a novel fusion 

scheme, which solves for optimal fusion weights by maximizing a non quadratic cost function , 

describing the absolute value of the kurtosis of the fused image Y . 

KJ
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Fig 2: Histograms and kurtosis of two pictures 

 

Based on the above analysis, it seems logical to choose for the cost function the absolute value of the 

kurtosis 

                                                           3
)}(~{
)}(~{

22

4

−==
nyE
nyEKJ FK                                                    (11) 

where )(~ ny  denotes the  pixel of the zero-mean version of the lexicographically ordered fused 

image 

thn

y  as already mentioned. Using equation (3) we can rewrite the cost function as follows. 

                                                     3
}))(~)({(

}))(~)({())(( 22

4

−=
nxnwE

nxnwEnwJ T

T

K                                             (12) 

We therefore need to maximize a cost function depending on one unknown parameter, namely, the 
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vector )(nw . To solve this problem we will again use a Gradient Descent method with one learning 

rate λ . We need then to calculate the gradient of ))(( nwJK  relative to )(nw . Throughout the chapter 

we will often interchange the notations ))(( nwJ K  and  for simplicity. KJ

 

• Calculation of 
)(nw

J K

∂
∂  

)}(~{
)}(~{cum

)}(~{

)}(~{3)}(~{
22

4
22

224

nyE
ny

nyE

nyEnyE
J K =

−
=  

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

=
∂
∂ )}(~{cum

)(
)}(~{)}(~{

)(
)}(~{cum

)}(~{
1

)( 4

22
224
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nyEnyE
nw
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nyEnw

JK  

where )}(~)(~{)}(~{4
)(

)}(~{)}(~{2
)(

)}(~{ 2
2

2
22

nxnyEnyE
nw

nyEnyE
nw

nyE
=

∂
∂

=
∂

∂
 

 and ⇒⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

=
∂

∂
)(

)}(~{3
)(

)}(~{)})(~{cumsgn(
)(

)}(~{cum 224

4
4

nw
nyE

nw
nyEny
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[ ])}(~)(~{)}(~{3)}(~)(~{)})(~{cumsgn(4 23
4 nxnyEnyEnxnyEny −=  

and hence, 

}]~{cum})(~)(~{)}(~{)}(~)(~{)}(~{3)}(~)(~{)}(~{[
)}(~{

)})(~{cumsgn(4

)(

4
223322

24
4 ynxnyEnyEnxnyEnyEnxnyEnyE

nyE
ny

nw
JK

−−

=
∂
∂

)}](~)(~{)}(~{)}(~)(~{)}(~{[
)}(~{

)})(~{cumsgn(4 432
23
4 nxnyEnyEnxnyEnyE

nyE
ny

−=  

As in the dispersion case, the expectation }{⋅E  is referring to multiple realisations of the fused image. 

If we assume that there is only a single realisation, i.e., the image )(~ ny ,  then the expectation can be 

dropped for a stochastic update of the gradient. Equally, we can assume that an  neighbourhood 

around pixel  contains pixels that can serve as multiple realisations of 

LL×

n )(~ ny  if local ergodicity 

exists. In this case, the expectations can be estimated by sample averaging using the pixels in this 

neighbourhood, assuming a single weight vector )(nw  for all these pixels. 

 

4.1 The Kurtosis Minimization Fusion method (KMF) 

 

The proposed algorithm is summarized in the steps below. 

Initialization 

• Set all the weights at the value 1−K . The first iteration of the fused image will then be simply the 

mean of the K  source images. 
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Iteration 

• Update the values of )(nw  

)(
)()(

nw
Jλnwnw K

∂
∂

−⇐+  

• Normalise the values of )(nw  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⇐+

)(
)(abs)(

nw
nwnw  

Once the matrix w  has converged, the fused image can be reconstructed using the non-zero mean 

source images. 

 

4.2 The Robust Kurtosis Minimization Fusion method (Robust KMF) 

 

As with the DMF method we can also use here an optimized learning rate λ . An exhaustive search 

for optimal values for λ  is realized, prior to updating the values of w . We shall refer to this modified 

version of the method as the Robust KMF method. 
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Fig 3: An indicative comparison between KMF and Robust KMF. 
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5. Experimental Results  
 

ethods we will compare them to the following 

• 

ethod in conjunction with the so called max-

• hich has been 

• es 

the q r to be calculated [11]. 

ent method [10]. 

tion time is often very long. Therefore, for each set of images we will apply the following 

In order to evaluate the performance of the proposed m

well known methods on a selection of sets of images. 

Dual-Tree Wavelet Transform (DT_WT). This is a widely used transform domain method based 

on wavelet transforms. We use for evaluation this m

abs fusion rule. One can find further analysis in [7]. 

Error Estimation Fusion (EEF). This is a spatial domain iterative method w

developed very recently and uses the so called robust error estimation theory [5]. 

In order to provide numerical results we will use the following image fusion performance metrics. 

0Q  stands for the so called Universal Image Quality Index. This is a measurement that evaluat

uality of an image in general and requires the ground truth in orde

• G  stands for mean gradient image quality assessmM

• stands for the Petrovic image fusion metric [12]. S  

• Q , WQ , eQ  stand for the three variations of the Piella image fusion metric [6]. 

When we have the choice of robust and non robust version of a method we will always choose the 

robust version since it always exhibits improved performance. In these cases as well as in the EEF 

method 15 iterations approximately are often enough. In the DMF_WN we realize 10 iterations since 

the computa

techniques. 

• Robust KMF 

• Robust DMF 

• DMF_WN, small neighbourhood  33×

• DMF_WN, large neighbourhood  or  99× 1515×  

• DT_WT, max-abs fusion rule 

hat follows is a description of the experiments. 

5.1 ase one : Multi-focus images, small amount of distortion 

Example 1: Clocks 

 

• EEF 

W

 

C
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As shown in the Table below the results obtained using the proposed techniques are not very 

encouraging compared to the DT_WT method in the context of the image fusion metrics used. The 

edges of the big clock still remain quite blurred. However, the DMF_WN with a large neighbourhood 

( ) yields acceptable results. Considering that the input images are large ( ), this is the 

largest size of local neighbourhood we can take without facing serious computational burden. The 

numbers shown in bold demonstrate the best performance achieved among the various methods in 

terms of the corresponding metric. 

99× 512512×

 

 
Robust 

KMF 

Robust 

DMF 

DMF_WN 

33×  

DMF_WN 

99×  
DT_WT EEF 

Q  0.8259 0.8258 0.8298 0.8408 0.7387 0.8404 

WQ  0.8554 0.8553 0.8492 0.8835 0.9120 0.8761 

eQ  0.5839 0.5843 0.5846 0.6676 0.8092 0.6552 

S  0.58606 0.58627 0.59304 0.62443 0.67478 0.6356 

MG  2.328 2.3236 2.3039 2.2832 3.4056 2.2302 
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Robust KMF 

 

Robust DMF 

 
DMF_WN  33×

 

 
DMF_WN  99×

 
DT_WT 

 

 
EEF 

 

Fig 4: The “Clocks’ example 

 

Example 2: Rice 

 

 
 

We applied a small amount of blur on the ‘rice’ image. While the DT_WT method works very well, 

the proposed methods aren’t visually very efficient. We see that the fused image remains blurred and 
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the result is not very detailed. However, the metrics exhibit good values for the four proposed 

methods. This observation establishes the universally accepted rule that image fusion metrics do not 

always reflect the visual quality of an image. 

 

Robust Robust 
 

KMF DMF 

DMF_WN 

33×  

DMF_WN 

1515×  
DT_WT EEF 

0Q  0.995 0.99491 0.99616 0.99562 0.99901 0  .99643

Q  0.9440 0 0.9522 0.9524 0.9520 0.9498 .9433  

WQ  0.9757 0.9754 0.9786 0.9792 0.9734 0.9792 

eQ  0.9110 0.9102 0.9246 0.9198 0.9338 0.9262 

S  0.8768 0.87583 0.88626 0.88988 0.86172 0.88272 

MG  9.294 9.3048 9.278 9.1277 10.5312 9.1099 

 

  

 
Robust KMF 

 

 
Robust DMF 

 
DMF_WN 3

 

3×  
 

DMF_WN 1515×  

 15



 
DT_WT 

 

 
EEF 

 

Fig 5: The ‘Rice’ Example 

 

5.2 Case two : Multi-focus images, severe distortion 

 

Example 1: Cameraman 

 

 
 

In this example we applied severe distortion on the ‘cameraman’ image. The proposed methods 

exhibit now a distinctively improved performance. The Robust DMF and Robust KMF methods are 

superior compared to the spatial domain EEF method in terms of the image fusion metrics used. 

Regarding the DMF_WN method with large sizes of local neighbourhood, it possibly exhibits the best 

performance, even better than the widely accepted DT_WT. It appears from a large number of 

experiments that the proposed methods are very efficient in the case of severe distortion. The DT_WT 

tends to create some discontinuities in the image while the Robust DMF and Robust KMF provide 

really good visual results. Out methods are in this example the only ones where the original areas of 

distortion are not visible. 
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Robust 

KMF 

Robust 

DMF 

DMF_WN 

33×  

DMF_WN 

1515×  
DT_WT EEF 

0Q  0.99265 0.99261 0.99334 0.99605 0.99455 0.98919 

Q  0.8948 0.8948 0.8963 0.9062 0.8729 0.9040 

WQ  0.9509 0.9506 0.9542 0.9672 0.9681 0.9491 

eQ  0.8901 0.8892 0.9031 0.9302 0.9487 0.9022 

S  0.87097 0.87019 0.8734 0.89113 0.88752 0.86997 

MG  8.8364 8.8375 9.0073 9.0431 10.1157 8.8082 

 

 

 
Robust KMF 

 

 

 
Robust DMF 

 
DMF_WN  33×

 

 
DMF_WN  1515×
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DT_WT 

 

 
EEF 

 

 

Fig 6: The ‘Cameraman’ example 

 

Example 2: Peppers 

 

 
 

Severe blur is also applied to various areas of the ‘peppers’ image. In the DT_WT method the 

distorted areas are still visible. However, in our methods it is harder to visualize where the original 

distortion was. Therefore, we can claim that in this example our methods give better results. 

 

 
Robust 

KMF 

Robust 

DMF 

DMF_WN 

33×  

DMF_WN 

1515×  
DT_WT EEF 

0Q  0.99421 0.99435 0.99446 0.99551 0.99497 0.9941 

Q  0.8964 0.8970 0.8971 0.9100 0.8549 0.9140 

WQ  0.8969 0.8981 0.8998 0.9210 0.9462 0.9292 

eQ  0.7495 0.7538 0.7651 0.8063 0.9009 0.8402 

S  0.80689 0.80947 0.81066 0.82009 0.82661 0.82606 

MG  3.7699 3.7244 3.7378 3.6913 4.5186 3.7229 
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Robust KMF 

 

 

 
Robust DMF 

 
DMF_WN  33×

 

 
DMF_WN  1515×

 
DT_WT 

 

 
EEF 

 

Fig 7: The ‘Peppers’ example 

 

5.3 Case three : Multi-sensor images 

 

Example 1: Infra Red / Dark photo 
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One can notice that in this example the Robust DMF fused image is the sharpest, even if some “salt 

and pepper” noise artefacts seem to appear. The Robust KMF is nevertheless the clearest. Depending 

on what one expects from the fusion these two methods give very good results. It is interesting to 

observe that the DMF_WN method which gave us good results previously fails here. However, in 

terms of metric the DT_WT seems to perform better. 

 

 
Robust 

KMF 

Robust 

DMF 

DMF_WN 

33×  

DMF_WN 

1515×  
DT_WT EEF 

Q  0.5537 0.3650 0.3761 0.4631 0.6809 0.5718 

WQ  0.6673 0.7055 0.7204 0.7921 0.8402 0.7680 

eQ  0.4184 0.4824 0.5375 0.6167 0.7796 0.6459 

S  0.39238 0.41474 0.44032 0.49446 0.60084 0.48381 

MG  3.6275 7.6672 7.2204 5.9965 6.7304 4.4191 

 

 

 
Robust KMF 

 

 
Robust DMF 
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DMF_WN  33×

 

 
DMF_WN  1515×

 
DT_WT 

 

 
EEF 

 

Fig 8: The ‘Coffee Shop’ example 

 

Example 2: Medical photos 
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The Robust DMF and KMF provide good visual results although the corresponding metrics are not 

again the best. One can notice that the DMF_WN with 1515×  neighbourhood provides the best 

Universal Image Quality Index but there are blocking artefacts present in the fused image which are 

visually irritating. 

 

 
Robust 

KMF 

Robust 

DMF 

DMF_WN 

33×  

DMF_WN 

1515×  
DT_WT EEF 

Q  0.6451 0.7114 0.8138 0.8085 0.7939 0.6499 

WQ  0.6417 0.7997 0.8231 0.7394 0.8301 0.7042 

eQ  0.3618 0.5632 0.6271 0.5086 0.6605 0.4818 

S  0.51682 0.63921 0.7067 0.6442 0.70103 0.55065 

MG  2.5105 4.1956 3.8514 3.5105 4.2258 2.4108 

 

 

 
Robust KMF 

 

 

 
Robust DMF 

 
DMF_WN  33×

 

 
DMF_WN  1515×
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DT_WT 

 

 
Diffusion 

 

Fig 9: The ‘Medical’ example 

 

6. Conclusions 
 

Throughout this chapter we have described new spatial domain methods for multi-focus and multi-

sensor image fusion. The mathematical background relevant to the proposed techniques is based on 

the iterative solution of two novel optimization formulations related to the statistical properties of the 

original unknown image. In the experimental results presented in this chapter, it is highlighted that the 

proposed methods provide good results in almost every situation in terms of the widely used image 

fusion performance evaluation metrics.  The only scenario where the proposed methods seem to be 

weak is the multi-focus scenario where the source images exhibit light distortion. Moreover, the 

visual assessment of the proposed methods is encouraging, although it is important to stress out the 

fact that the evaluation of image fusion results depends on the perception of the individual viewer. 

The introduction of the robust version of the proposed methods does not enhance visually the fusion 

results but enables us to obtain good results with less number of iterations. The local neighbourhood 

method yields better results although the optimal size of the neighbourhood is still a parameter under 

investigation and depends on the particular image set scenario. Among the proposed methods, for 

multi-focus image scenarios one will rather choose the DMF_WN or the Robust KMF method, while 

for multi-sensor image scenarios the Robust DMF or the Robust KMF would be more appropriate.  
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