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Abstract Audio source separation is the task of isolating sound sources that
are active simultaneously in a room captured by a set of microphones. Con-
volutive audio source separation of equal number of sources and microphones
has a number of shortcomings including the complexity of frequency-domain
ICA, the permutation ambiguity and the problem’s scalabity with increasing
number of sensors. In this paper, the authors propose a multiple-microphone
audio source separation algorithm based on a previous work of Mitianoudis
and Davies [1]. Complex FastICA is substituted by Robust ICA increasing ro-
bustness and performance. Permutation ambiguity is solved using two method-
ologies. The first is using the Likelihood Ration Jump solution, which is now
modified to decrease computational complexity in the case of multiple micro-
phones. The application of the MuSIC algorithm, as a preprocessing step to
the previous solution, forms a second methodology with promising results.
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1 Introduction

The problem of Blind Audio Source Separation (BASS) implies the extrac-
tion of independent audio sources from an audio mixture that has been ob-
served by a number of microphones, without any prior knowledge regarding
the involved sources or the mixing system. In recent years, many methods
have been proposed for resolving this problem with relative success. BASS be-
comes more complicated, when we are dealing with real-room audio recordings.
In reverberant rooms, each source is recorded multiple times by each micro-
phone under different time delays and amplifications, due to sound waves’
reflections on the room surfaces. The mixing system can thus be modelled
using a room impulse response of finite length (FIR filter). In the general
case of M microphones that capture a mixture of N sources, a common rep-
resentation of the aforementioned mixing is x(t) = A ∗ s(t), where ∗ de-
notes linear convolution, s(t) = [s1(t), s2(t), ..., sN (t)]T are the source signals,
x(t) = [x1(t), x2(t), ..., xM (t)]T are the observation signals, t is the time index
and A is a matrix, whose elements aij are FIR filters, describing the room
impulse responses between the j-th source and the i-th microphone.

A classic decomposition method for performing BASS is Independent Com-
ponent Analysis (ICA) [2]. ICA extracts Independent Components (ICs) from
a linear, instantaneous mixture, assuming independence between the origi-
nal sources [3, 4]. In real rooms, where we deal with convolutive mixtures,
ICA can also be applied by moving the separation to the frequency domain,
where the convolution between the sources and the room transfer function is
reduced to multiplication [5] for a number of discrete frequency bins L i.e.
x(f, t) = Afs(f, t), where f = 1, . . . , L. In other words, we transform a con-
volutional problem to a number of instantaneous problems, that can be solved
using ICA.

By solving the separation problem in the frequency domain, ICA intro-
duces 2 ambiguities: scale and permutation. The first results into random scal-
ing of the extracted ICs, which can cause spectral deformations and reduce
separation quality. The latter results into arbitrary source permutations along
the discrete frequency bins, which consequently inhibits separation. The scale
ambiguity can be resolved easily, as a post-processing step, by mapping the
estimated sources back to the microphones’ domain and recover the signals as
they have been originally observed by the microphones [1, 6].

The permutation ambiguity, on the other hand, is a difficult problem, and
various techniques have been proposed without featuring robust performance
in all cases. A weak coupling of neighboring frequency bins was proposed by
Smaragdis [5]. Parra and Spence [7] imposed a constraint on the unmixing
filter length to be smooth, as they are modeled as FIR filters. Again mixed
success has been reported for this method. In [8], Ikeda and Murata pro-
posed a time-dependent source envelope in order to align the permutations
of the sources after separation. Mitianoudis and Davies [1] also introduced
a time-dependent source envelope, assuming Laplacian source priors, that is
firstly introduced into the learning ICA algorithm to couple frequency bins
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during adaptation and secondly as a post-processing step using a Likelihood
Ratio Jump to align permutations after the separation-learning procedure. A
first attempt to use beamforming theory and direction of arrival information
to align the permutations was introduced by Sawada et al. [9]. Mitianoudis
and Davies [10, 11] also examined the use of beamforming for permutation
alignment with relative success. In [12], Mazur and Mertins align permuta-
tions by using generalised Gaussian Distribution in order to find differences
between neighbouring frequency bins. Sawada et al. [13] exploit the correla-
tion coefficients of amplitude envelopes, which if maximised show the correct
source alignment. Saito et al. [14] utilise, for the same purpose, the correla-
tion between interfrequency power ratios. A different approach was followed
by Sarmiento et al. [15], who find the spectral similarities between the sepa-
rated components in the frequency domain, by employing a contrast function.
A region-growing approach, to minimise the spreading of possible misalign-
ments, in order to improve permutation alignment, was introduced by Wang
et al. [16]. Finally, Zhang and Chan [17] proposed the minimal filter distor-
tion (MFD) principle to overcome the separating filter indeterminacy in the
separated sources. This is implemented by a least linear reconstruction er-
ror constraint of the separation system, which minimises the separating filter
distortion.

Most of the available methods for tackling the convolutive source separation
problem are focused on the two-source two-microphone (2× 2) case. However,
low-cost commercially available hardware, such as the Microsoft Kinect inter-
face, has been developed to offer low-latency four-microphone recordings and
can be used to process 4× 4 cases. In this paper, we focus on the problem of
audio source separation for determined cases (equal number of microphones
and sources) that involves more than two sources. The presented methodology
offers a computationally efficient solution for both the separation task as well
as the permutation ambiguity. Based on the Kinect interface, we created a set
of recordings containing mixtures of multiple sources as well as the original
sources for evaluation purposes. This dataset is publicly available for further
evaluation of audio separation methods1. In this dataset, we will apply a novel
framework that is optimized for multiple sources. This is then compared with
the previous work of Mitianoudis and Davies [1] to observe its efficiency for
multiple sources. The proposed framework includes a robust complex ICA sep-
aration algorithm, called RobustICA [18], that has not been used before for
convolutive audio source separation. In addition, we present a new technique
to tackle the permutation ambiguity problem, especially for a large number
of sources, based on the Likelihood Ratio Jump solution [1]. We show that
this new technique (Reduced Likelihood Ratio Jump) can reduce the com-
putational cost of addressing the permutation problem in comparison to the
original Likehood Ratio Jump and can produce the same, if not better sepa-
ration quality. Finally, the use of a beamforming algorithm, such as MuSIC,
as a pre-processing step for the new Reduced Likelihood Ratio Jump method,

1 Dataset available at http://utopia.duth.gr/nmitiano/download.html
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for the lower frequencies, is investigated here. It appears that beamforming
can expedite the convergence of the new approach, provided that the source
separation problem falls within the requirements of a beamforming approach.
Recently, Markovich-Golan et al [19] used the linearly constrained minimum
variance (LCMV) beamformer for extracting individual sources in a mixture
along with the Triple N ICA for convolutive mixtures (TRINICON) framework
to estimate the room transfer functions between sources and microphones. A
very interesting approach, where more microphones capture less sources.

The paper is organised as follows. In the next section, we present the basics
of instantaneous source separation, where the RobustICA method is discussed
in more detail. Section 3 discusses convolutive source separation. In this sec-
tion, the permutation problem is discussed, along with the previous and novel
solutions we present here. Section 4 contains extensive evaluation of the pro-
posed solutions. Finally, Section 5 concludes the paper.

2 Instantaneous Complex Source Separation

In the instantaneous case, we consider the following mixing process: x(t) =
A · s(t). In order to separate the sources, we have to estimate an unmixing
matrix W , such that u(t) = W · x(t) ≈ s(t).

A common methodology to solve these kind of problems is Independent
Component Analysis (ICA). This method estimates unmixing filters wij that
are arranged in a matrix format W , assuming statistical independence be-
tween the source signals s1(t), s2(t), ..., sN (t). The whole unmixing structure
of ICA algorithms resembles the structure of a single-layer feed-forward neural
network, whose weights wij are updated by a backpropagation update rule.
This update rule is derived by optimizing a cost function that emphasizes the
statistical independence of the separated outputs. The rule is iterated over the
whole training dataset in batch mode until the weights converge. Thus, ICA
can also be considered a machine learning technique that can evolve over time
to update the separation weights, i.e. an evolving system.

2.1 The FastICA algorithm

In the determined case, where the number of sources is equal to the number of
observations (N = M), the most popular method of estimating the unmixing
matrix W = [w1,w2, ...,wN ]T is the FastICA algorithm. There are many
implementations of the FastICA algorithm, that are based on an optimization
of a contrast function emphasizing nonGaussianity using a fixed-point iteration
algorithm. One common fixed point algorithm is the following [20],

∆W = D[diag(−αi) + E{φ(u)uH}]W (1)

where φ(u) = u/|u| is an activation function for superGaussian sources, αi an
adaptive parameter, H is the Hermitian operator (complex conjugate trans-
pose) and E{·} denotes the expectation operator. This iterative update of the
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unmixing matrix ∆W is calculated using a Maximum Likelihood Estimator
assuming Laplacian priors for the independent sources. The method also de-
mands that the data of every frequency bin are prewhitenned. Whitening is the
procedure of decorrelating the data via Principal Component Analysis (PCA)
and normalising the decorrelated data to unit variance [21]. Even though, this
method has been initially derived for real-valued data mixtures, it has been
adapted and has shown to work well with complex data in [1].

2.2 The RobustICA algorithm

In this section, we examine a source separation algorithm, named RobustICA
[18]. RobustICA optimizes the following generalized form of kurtosis.

K(w) =
E{|u|4} − 2E2{|u|2} − |E{u2}|2

E2{|u|2}
(2)

where w denotes an unmixing vector and u a separated source. The above
definition of kurtosis can be applied to both real and complex data. In ad-
dition, prewhitening is not necessary for RobustICA. RobustICA uses exact
line search optimization of the absolute kurtosis contrast function, instead of
fixed-point optimization, used by FastICA [22].

µopt = arg max
µ

(K(w + µg)) (3)

The search direction can be given by the gradient of kurtosis g = ∇wK(w).
Exact line search is often a computationally expensive optimization technique
that requires additional numerical analysis algorithms. In the case of kurtosis,
the optimal step size µopt is calculated algebraically with a minimum compu-
tational cost. It is shown in [18] that µopt can be calculated from the roots of a
low-degree polynomial that maximizes the absolute value of the contrast func-
tion along the search direction. RobustICA has a number of advantages [18]
compared to the original FastICA:

– RobustICA does not make any assumption regarding the sources’ statistical
profile, and can deal with real and complex sources alike.

– Prewhitening is not mandatory before RobustICA. Multiple ICs in that
case can be extracted with the method of linear regression in contrast to
symmetric orthogonalization that is used by FastICA.

– The method can target sub-Gaussian or super-Gaussian sources in a spe-
cific order. This feature is useful in the audio separation case, where we
know in advance that data in the frequency domain can be mostly modelled
as super-Gaussian [1].

– The method is robust to the presence of saddle points and spurious local
extrema of the contrast function [18].

– RobustICA can achieve great separation performance with relatively small
additional computational cost, compared to other ICA implementations.
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This feature is demonstrated in [18] and will be verified by the experimental
results in this paper.

Despite the fact that prewhitening is not mandatory for RobustICA, it will
be used as a preprocessing step in our proposed framework. This is due to the
observation that it leads to a more computationally efficient implementation
in the case of multiple sources. Since the prewhitened components lay on an
orthogonal structure, every ICA iteration that attracts one IC towards an
original source, forces the rest of the ICs to converge faster to other sources.
This can be achieved with the use of symmetric orthogonalization, as in (4).

W+ ←W (WHW )−0.5 (4)

On the contrary, in linear regression, after the extraction of an IC, we
have to separate a reduced mixture from a random position, which can be
rather slow. As a result, we use prewhitening to improve the convergence
speed of our method, in expense of the separation performance limitations
that prewhitening can introduce.

3 Frequency-domain source separation

Frequency-domain source separation methods apply the Short-Time Fourier
Transform (STFT) to the mixture recordings x(t). Consequently, the convo-
lutive mixture is transformed to L instantaneous mixture via the STFT, i.e.
x(t) = A∗s(t)⇒X(f, t) = AfS(f, t), where f denotes the discrete frequency
bin, t the discrete time index of the STFT. The separation problem can be
solved independently using any complex ICA algorithm, such as RobustICA.
That is to say, we aim at estimating a complex unmixing matrix W f = A−1f
at each frequency bin f that will separate the sources, again at each frequency
bin f , i.e. u(f, t) = W fX(f, t). ICA’s inherent scale and permutation ambi-
guities impose severe problems in this framework and must be resolved. Scale
ambiguity is tackled using a mapping to the microphone domain [1]. There
exist many methods to tackle the permutation ambiguity of frequency-domain
BASS methods, as mentioned in the introduction.

3.1 Likelihood Ratio Jump

Mitianoudis and Davies introduced the Likelihood Ratio Jump method in [1]
for the alignment of frequency bins to the correct source. This method can be
used either after each iteration of the ICA algorithm, or even better as a post-
processing mechanism. The method works iteratively and in each iteration it
forms a likelihood ratio jump to decide, which permutation is the most probable
for each frequency bin. It uses a set of rescaling parameters γij that model the
probability of the ith source moving to the jth position. For each frequency bin,
it calculates the probabilities for all possible permutations. For example, in a
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mixing of 3 sources a possible permutation of the extracted ICs: IC3→ IC1,
IC1→ IC2, IC2→ IC3, forms the probability:

L = − log(γ31γ12γ23) (5)

The correct permutation is the one that produces the maximum proba-
bility, as in (5). For the case of three sources, there are 3! = 6 possible per-
mutations for the extracted ICs, which have to be assessed probabilistically,
to conclude which permutation is the most likely to be correct. The param-
eters γij are produced through a maximum likelihood estimator and can be
calculated as follows:

γij =
1

T

∑
t

|ui(f, t)|
βj(t)

(6)

where ui(f, t) is the value of i-th IC for the discrete frequency bin f and
time index t and βj(t) is a non-stationary time-varying scale parameter (time
envelope) that is calculated for the source j. Finally, T is the number of distinct
time frames of the STFT.

The parameter βj(t) incorporates information related to the signal’s spec-
tral envelope over time, thus it can be interpreted as a volume measurement
along time. Literally, it measures the overall signal amplitude along the fre-
quency axis, emphasizing the fact that one source is “louder” than others at
a certain time slot. This “temporal energy burst” can force the alignment of
the permutations along the frequency axis. A possible estimation for the βj
parameter can be the following:

βj(t) =
1

L

∑
f

|uj(f, t)| (7)

where L is the number of frequency bins. Since the audio signal representa-
tion is sparse in the frequency domain [1], we assume a Laplacian source prior
and thus the “energy” measurement in the estimation of βj(t) follows the
L1-norm, instead of the commonly used L2-norm. The Likelihood Ratio Jump
(LRJ) method has demonstrated very stable performance in solving the per-
mutation ambiguity for a large number of cases [1]. However, this was mainly
demonstrated for 2× 2 cases.

The parameter βj(t) is evolving over each iteration of the algorithm from a
time envelope of the mixed signal to the time envelope of the source j. It is self-
adapting using a sparse Bayesian model to aim for sparse sources, as mentioned
earlier, which gives its adaptation to the unknown and unpredictable structures
of the input audio sources, that can not be predicted or specified from the start.
In essence, it is a Bayesian evolving system that adapts to the model of the
input audio sources. In [23], Herbig et al proposed an adaptive scheme for a
speech recognition system so as to adapt to new speakers. This is similar to
the parameter βj(t), which essentially adapts to each source signal, in order
to sort out the permutation ambiguity.
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3.2 Reduced Likelihood Ratio Jump (RLRJ)

One major disadvantage of this method is its computational cost that increases
rapidly with the number of sources, as for each iteration of the algorithm
we need to make N ! comparisons. For example, we can consider a case of
5 sources, where the FFT has 4096 frequency bins, and the post-processing
permutation sorting method needs to spend 15 iterations for the system to
converge to the correct permutation for most of the bins. In total, we will
need 5! × 2, 048 × 15 = 120 × 2, 048 × 15 = 3, 686, 400 calculations of the
expression in (5) and as a result the whole task is computationally inefficient,
if not prohibitive.

In this section, we propose a new “suboptimal” method, named Reduced
Likelihood Ratio Jump (RLRJ). This technique selects to perform a few ma-
jor comparisons, in contrast to the full set of N ! comparisons in the original
method, thus the term “suboptimal”. Nonetheless, we witnessed that it can
produce the same, if not better separation quality with a considerable reduc-
tion of the computational cost.

RLRJ is based on the iterative nature of the original method. The original
LRJ needs, in most of the examined examples, some dozen iterations for every
frequency bin to converge to the correct permutation. This is mainly due to
the parameter βj(t). As previously mentioned, this parameter incorporates
information about the time envelope of the signal. As more permutations are
sorted in each iteration, the time envelope of each signal becomes more distinct
and as a result, the parameter βj(t) has a stronger impact in the calculation,
that helps resolving the permutation for frequency bins, where this task is
more difficult.

During extensive experimentation, we witnessed that there are many fre-
quency bins that feature the correct source permutation from the first or sec-
ond iteration of the method. For the remaining frequency bins, the algorithm
after some iterations needs to swap only one IC pair to restore the correct per-
mutation, since the rest have already been sorted to the correct sources. This
situation is common for cases with many sources, as the correct permutation
is clear for most of the ICs after a small number of iterations, and only one
or two pairs may need an improved calculation of the parameter βj(t) to be
permuted correctly.

Based on the above observation, we propose to reduce the number of ex-
amined permutations in every iteration of the algorithm. As the method works
iteratively, we propose to calculate the most probable permutation from a set
of permutations that includes the swap of only one pair of ICs at a time. In
the case of N sources, we can calculate only the most probable from the N −1
swaps between the ICs at every iteration. As the method evolves over time,
only one swap will be needed to ensure the correct permutation of the sources.
Even if more than one pairs of ICs are permuted incorrectly, as the method
progresses, the correct permutation will be restored, one pair at a time. By
examining only one pair of permutations at a time, we reduce the complexity
of the method from N ! to 1

2N(N − 1) + 1, which for 5 sources means a reduc-
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Fig. 1 All possible comparisons the LRJ needs to make for 4 sources, if we allow maximum
1, 2, 3, 4 transitions.

tion from 120 to 11 comparisons per iteration per frequency bin. There is no
theoretical bound to the number of N sensors/sources that will make permu-
tation sorting impossible. There are only practical limitations, including the
number of available microphones and the available DSP’s processing power, if
we need to perform separation in real-time.

Most importantly, as we will show in the experimental section, this sub-
optimal method does not undermine the quality of the separation but may
also enhance it instead. An example of all possible transitions for 4 sources
is depicted in Fig. 1. There, we can see the number of comparisons that are
needed to be made, if we allow maximum 4, 3, 2 and finally 1 transition.

In Fig. 2, we can see that the Reduced Likelihood Ratio Jump converges for
more frequency bins, compared to the original method for the same number
of iterations. In an example of a total of 2001 frequency bins the Reduced
LRJ has concluded the permutation sorting of all the frequency bins from
the 8th iteration, in contrast to the original method that always needs to
sort about 600 more frequency bins. For some bins, the original LRJ changes
permutation in every iteration. This phenomenon is due to the very small
differences between the likelihood values that force the original method to
toggle between 2 permutations for specific frequency bins unnecessarily.
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Fig. 2 Comparison between Reduced LRJ and original LRJ. More frequency bins remained
unchanged using the Reduced LRJ for the same number of iterations.

3.3 RLRJ initialisation using Beamforming (MuSIC-RLRJ)

The efficiency and accuracy of the previous permutation sorting framework,
depends highly on the βj(t) parameter. We observed that as the estimation
of βj(t) improved over several iterations, the RLRJ was able to determine the
correct permutation for the frequency bins. Early inaccurate estimates of βj(t)
made the task of aligning permutations harder. Based on this observation, we
will attempt to enhance our framework by starting the RLRJ with a more ac-
curate estimate of βj(t) compared to the one induced by the source separating
algorithm. To accomplish that we will perform a source permutation sorting
along frequency by incorporating information related to the geometry of the
auditory scene [24]. This step, apart from solving the permutation problem for
a number of frequency bins, will enable us to start the RLRJ with a better
estimate of βj(t), making the proposed framework more robust.

In order to incorporate the information, regarding the source positioning
in the auditory scene, we will use Beamforming. Beamforming can manipulate
the overall gain of a sensor array of known geometry, in order to focus on a
desired source, that comes from a specific direction, while suppressing other
sources from different directions. In the general case, beamforming assumes
the existence of more sensors than observed source signals, placed on different
angles related to the centre of the sensor array.

Beamforming can be used to estimate the angles θi at which the source
signals arrive at the origin of the array’s coordinates system. These angles
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are called Directions of Arrival (DOA) for the sources in the far-field approx-
imation. In the frequency-domain source separation scenario, we work inde-
pendently for each frequency bin. Thus, we can model each frequency bin’s
content as narrow-band, i.e. si(t) = αej2πft with a carrier frequency f , repre-
senting the frequency of each frequency bin. For the case of only one source,
different sensors with distances dj from the array centre, capture the source
signal si with a time lag Tj , since the speed of sound is finite. The delays Tj
are functions of the signals DOA θi. Most sensor arrays feature equal distance
between the sensors. This implies that the delay of the j-th sensor will be given
by Tj = (j − 1)T , where T is the signal delay between the first two sensors,
assuming that the first sensor is the centre of the array. Based on this analysis,
we can produce the following model,

x ≈


1

αe−j2πfT

...
αe−j2πf(M−1)T

 s1(t) = α(θ1)s1(t) (8)

where T = d sin θi/c, d is the distance between each sensor pair and c =
430m/s is the velocity of the air. A plot of α(θ) is called directivity pattern of
the array.

If we generalize for N sources we have the system x = As, where A =
[α(θ1)α(θ2)...α(θN )]. As we can see, the model of a linear sensor array is sim-
ilar to the ICA framework model. The main difference is that this model
incorporates more geometrical information (i.e. Directions of Arrival, position
of sensors), whereas in source separation the mixing model is more general,
employing sources statistical information only.

Beamforming’s main objective is to estimate A and separate the audio
sources. Despite its many applications in telecommunications, it is not ex-
actly a very efficient tool for performing audio source separation. This is be-
cause beamforming assumes more sensors than sources, which does not agree
with our requirements. Even though, this seems prohibitive, there is already a
work-around in our separation framework. Using an ICA algorithm (FastICA,
RobustICA), we can separate all input sources at each frequency bin f . To
solve the scale ambiguity, we map each source back to the microphone domain,
i.e. we have N signals for each source, one observation at each microphone.
This implies that we have more sensors than sources after separation and scale
ambiguity correction, thus, we can apply any beamforming approach [6].

The other problem is that the audio sources that propagate in the room
are quite wide-band. Since, we are solving beamforming independently at each
frequency bin, there is a vast number of frequencies that need to be addressed.
As shown by Mitianoudis in [6], for a given sensor distance d, there is a fre-
quency bound f ≤ c/2d above which multiple nulls around the DOA appear
in the calculated directivity patterns. This is known as spatial aliasing. As a
result, the estimation of the real DOA becomes unclear for frequencies above
this bound. Finally, the room’s impulse response introduces small displace-
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ment of these DOA along frequency, due to the existence of multipath in the
room.

Despite these disadvantages, we can achieve an accurate computation for
the DOAs in the auditory scene, for cases where the sensor spacing d leaves
enough frequency range intact, while enabling sensors to capture the sources
in a distinct manner and the room reverberation is not severe. In our case,
we will use the four-microphone array that exists in Microsoft Kinect, where
the sensor spacing is not equal. We will use the MuSIC algorithm to get an
estimate of the DOA that exist in the scene and then we will align permutations
of each frequency bin, according to the estimated DOA for all frequencies below
f ≤ c/2d. This preprocessing step will improve the calculation of βj(t) and
increase the performance of the RLRJ.

3.3.1 The MuSIC Algorithm

One of the methods that can be used for a very accurate estimation of DOA is
the Multiple Signal Classification (MuSIC) algorithm [24,25]. MuSIC is a sub-
space method based on decomposition of the observations covariance matrix.
To formulate the MuSIC algorithm, we will incorporate a noise component
ε(t) to our original model.

x(t) = As(t) + ε(t) (9)

The covariance matrix of x can be calculated as follows:

Cx = E{xxH} = AE{ssH}A+ E{εεH} (10)

Cx = ACsA
H + σε

2I (11)

where Cx is the covariance matrix of x, Cs is the covariance matrix of s
and Cε = σε

2I the covariance matrix of noise that is considered additive and
isotropic. It can be shown that Cx has M eigenvalues, N of which correspond
to the sources and M −N to noise.

As shown in [26], the space spanned by the columns of matrix A is equal
to the space spanned by the eigenvectors Es = [e1, e2, ..., eN ].

span{A} = span{[e1, e2, ..., eN ]} = span{Es} (12)

where Es = [e1, e2, ..., eN ] are the eigenvectors corresponding to the de-
sired sources and En = [eN+1, eN+2, ..., eM ] the eigenvectors corresponding
to noise.

In practice, we can plot the following function

M(θ) =
1

(αHEnEn
Hα)2

∀θ ∈ [−90o, 90o] (13)

The N peaks of function M(θ) will denote the DOA of the N sources.
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3.3.2 Permutation sorting with Beamforming (MuSIC-RLRJ)

In the previous subsection, we saw how we can acquire an estimation for the
source DOA observed by multiple microphones using the MuSIC algorithm.
In order to use this technique in our framework, we first have to overcome the
requirement of more observations than sources. This can be achieved using the
method that resolves the scale ambiguity. By mapping the estimated sources
back to the microphones domain, we recover the signals as they have original
been observed by the microphones. As a result, for each extracted source, we
can have as many observations as the microphones of the Kinect sensor. Thus,
we can apply the MuSIC method to derive a M(θ) function for every estimated
source. The peak of M(θ) is the DOA of this source, related to the microphone
array.

As mentioned earlier, the beamforming method is only going to resolve the
permutations for the frequency bins with lower frequencies. As shown in [6],
we can emphasize the position of the DOA for the whole signal by averaging
the M(θ) plots for all frequency bins below 2KHz. The idea is that, although
the permutations are not sorted, the average of all M(θ) plots will present
picks around the real DOA of the original sources. As a result, the peaks of
the following function will represent the real DOA.

P (θ) =
∑

f∈[0−2KHz]

N∑
i=1

Mi(f, θ) (14)

By plotting the function P (θ), we can estimate the direction of arrival for
the observed sources. We have to mention that this approach can not always
produce useful results. MuSIC does not perform well when the sources are
highly correlated, and the auditory scene has to be clear. The corresponding
sources must have some angular distance between them, so that the DOA can
be distinct in the plot. Also in rooms with high reverb, the P (θ) plot presents
multiple picks that correspond to reflections of the sound waves in the surfaces
of the room. To be able to estimate the DOA from P (θ) function, the following
restrictions have to be fulfilled.

– The minimum angular distance between sources that can be observed has
to be about 15 degrees.

– There must be at least as many peaks as the number of sources in P (θ).
In a different case, some sources may have been integrated under the same
DOA and the method can not be used.

To solve the permutation ambiguity for the lower frequency bins, P (θ) is
divided into distinct regions. Each region corresponds to each source. At each
frequency bin, we then permute the sources, so that each source features a
DOA inside the corresponding source DOA region.

In Fig. 3, we can see an example of an aggregated P (θ) plot for a real room
recording of a 2 source-microphones case. As we can see, the diagram presents
2 clear peaks that denote the DOAs of the observed sources. Because the
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Fig. 3 DOA estimation using P (θ) for a 2 source - 2 microphones real room recording.

recording took place in a real reverberant room, we can observe also smaller
peaks coming from different angles, which is due to the strong multi-path. As
described earlier, we split the angles of arrival in 2 regions, and the permutation
ambiguity is sorted accordingly for every frequency bin. The separated outputs
are then presented to RLRJ for further processing.

4 Experiments

4.1 Evaluation process

To evaluate the performance of our proposed framework, we created an evalua-
tion dataset of 13 audio recordings. This evaluation dataset contains 6 mixtures
of 2 sources, 5 mixtures of 3 sources and 2 mixtures of 4 sources, featuring
both speech and music. The recordings were made using the Microsoft Kinect
interface. The sources-microphones were placed in different positions in a real
reverberant room. Fig. 4 depicts the different source-microphone positions that
were recorded. It also includes solo recordings of the corresponding sources un-
der the same recording conditions (position and loudness) in order to be used
as ground truth for the evaluation of the separation quality, achieved by the
separation framework. This dataset is publicly available for download2.

We used the RobustICA MATLAB implementation, as provided freely by
the authors3, and we made the necessary modifications so that it can work in
a convolutive source separation framework using the LRJ, RLRJ and MuSIC-
RLRJ permutation sorting methods. For the experiments presented in this

2 Dataset available from http://utopia.duth.gr/nmitiano/download.html
3 http://www.i3s.unice.fr/~zarzoso/robustica.html

http://utopia.duth.gr/nmitiano/download.html
http://www.i3s.unice.fr/~zarzoso/robustica.html
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Fig. 4 The different sources-microphones positions that are included in the Source Sepa-
ration Dataset.

section, we assume a room impulse response of max 90.7 ms length (4096 sam-
ples at 44.1 KHz), which we reckon is a valid model for the recording positions
in the reverberant room. To measure the separation quality, we used the met-
rics Signal-to-Distortion Ratio (SDR), the Signal-to-Interference Ratio (SIR)
and the Signal-to-Artifact Ratio from the BSS EVAL Toolbox v.3 [27]. These
metrics are measured in dB, which implies that higher values denote better
performance and there is no upper bound. They are designed specifically for
Performance Measurement in Blind Audio Source Separation. SDR compares
the separated with the corresponding original source and calculates the ratio
of the source signal energy versus the energy of interfence from other sources,
separation artifacts and possible noise. SIR calculates the ratio of the source
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Fig. 5 Separation Quality in terms of SIR for the LRJ and the RLRJ methods.

signal energy versus the energy of interference from other sources. Finally, SAR
calculates the ratio of the source signal, interference and noise energy versus
the artifacts energy. These metrics are implemented as a publicly-available
MATLAB Toolbox and were designed to allow a time-invariant filter distor-
tion of 512 samples length. We manually changed this value to 2000 samples, to
cater for the incorrect synchronization between the original and the estimated
sources that are extracted from the mixture [27].

Metrics SDR and SAR measure the distortion and artifacts that are cre-
ated by the separation method. Both examined frameworks (the proposed
framework and Mitianoudis-Davies) produce similar values as they employ
similar contrast functions with different optimization methods. To avoid the
repetition of similar experimental results, we will therefore present SIR mea-
surements only, and the separation quality in terms of interference elimination
between the extracted sources.
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Table 1 Efficiency Comparison between the Frequency Domain RobustICA and FastICA
implementations in terms of Signal-Interference-Ratio (SIR) (dB). Here, we compare the
performance of 3 and 15 iterations of RobustICA and FastICA. RobustICA reaches a better
separation result faster than FastICA.

Recording Source 3 iterations 15 iterations

RobustICA FastICA RobustICA FastICA

1 -0.464 -0.09 -0.09 0.88

7 2 1.698 0.99 0.60 1.51

3 -7.30 -7.98 -8.84 -7.99

1 -6.36 -4.25 -6.79 -3.37

8 2 5.53 0.23 3.46 1.07

3 1.12 -2.00 0.67 -0.38

1 5.40 3.20 6.44 4.20

9 2 0.18 -1.17 -0.63 -2.38

3 -10.11 -8.98 -10.31 -9.78

1 -2.40 -2.16 -3.34 -0.10

10 2 2.26 1.75 2.82 3.53

3 -6.78 -6.22 -6.24 -10.09

1 3.81 -2.47 4.12 1.12

11 2 -5.78 -6.05 -6.61 -8.02

3 4.01 0.99 4.37 3.05

1 -6.80 -1.33 -6.79 -4.02

12 2 -3.78 -6.82 -4.57 -3.72

3 1.18 -0.05 1.73 4.27

4 -0.63 -2.17 -0.95 -1.50

1 2.44 1.19 0.50 0.64

13 2 -1.68 0.30 -0.25 -0.77

3 -6.99 -7.68 -6.72 -7.87

4 -7.83 -3.38 -5.17 -5.02

Table 2 Comparison between the Likelihood Ratio Jump (LRJ) and the Reduced Likeli-
hood Ratio Jump (Reduced LRJ) for 8 available iterations in terms of Signal-Interference-
Ratio (SIR) (dB). The term rec refers to the recording id in the dataset.

Method Source rec 7 rec 8 rec 9 rec 10 rec 11

1 -0.24 -6.46 6.18 -1.55 3.18

LRJ 2 1.58 5.42 0.29 1.13 -7.64

3 -6.98 1.03 -10.71 -6.49 2.41

1 2.72 -2.82 6.44 -0.85 3.82

Reduced LRJ 2 1.67 3.82 1.91 1.46 -5.78

3 -7.87 -2.57 -10.30 -5.59 4.01
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Table 3 Running time comparison between the two frameworks (in seconds). Frame-
work 1 refers to the new proposed framework (RobustICA + Reduced Likelihood Ration
Jump). Framework 2 refers to the previous framework (FastICA+ Likelihood Ratio Jump).
Separation Time refers to the running time of the source separation algorithm (Robus-
tICA/FastICA). Permutation Time refers to the running time of the permutation ambiguity
sorting time.

Recording Framework 1 Framework 2

Separation Permutation Total Separation Permutation Total

Time Time Time Time Time Time

7 (3 sources) 5.58 5.89 13.04 14.38 7.16 23.18

8 (3 sources) 4.89 5.21 11.43 11.30 6.00 18.61

9 (3 sources) 4.45 2.71 7.70 5.27 2.56 8.39

10 (3 sources) 4.63 2.96 8.20 5.92 2.92 9.48

11 (3 sources) 5.00 5.24 11.60 11.61 6.16 19.17

12 (4 sources) 6.73 8.93 17.36 22.25 17.86 41.82

13 (4 sources) 6.99 10.26 19.27 22.68 20.58 45.29

4.2 Performance Evaluation

4.2.1 Source Separation Algorithm Comparison

In this section, we present several experiments to demonstrate the efficiency
of the 2 examined frameworks using FastICA, RobustICA, the LRJ and the
RLRJ. Firstly, in Table 1 we compare the separation quality of the two ICA
implementations in terms of SIR. To tackle the permutation ambiguity, we
use, in this experiment, 5 iterations of the original LRJ of Mitianoudis and
Davies [1] for the two frameworks. We can see that:

– As the 2 methods perform optimization of different criteria, they do not
perform the same for the examined cases. RobustICA performs better for
cases (8,9,11), FastICA for (10,12) and for the rest of the recordings, we
observe similar separation qualities. In general, we can say that for the
examined cases, RobustICA with prewhitening can reach and outperform
slightly the original method of FastICA in separation quality.

– RobustICA presents very fast convergence. In all examined cases, it pro-
duces very good separation quality in only 3 iterations. This feature of
RobustICA can be a great advantage, compared to previous ICA imple-
mentations, as also mentioned in [18]. In contrast, FastICA needs more
iterations to produce stable results. We can see, in Table 1, the major
differences in separation quality from 3 to 15 iterations of FastICA, in
comparison to RobustICA that reaches very good separation quality in
only 3 iterations, which is then only slightly improved as the iterations in-
crease. Despite the fact that a RobustICA iteration is more costly than the
FastICA equivalent, its fast convergence improves the total computational
efficiency.
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4.2.2 Comparison between LRJ and RLRJ

In the next experiment, we compare the separation quality with 8 iterations
for both the new Reduced (RLJR) and the original Likelihood Ratio Jump
(LRJ) method of Mitianoudis and Davies [1]. For source separation in this
experiment, we have used the RobustICA with prewhitening, as it has shown
to be the most efficient method. In Table 2, we can compare the separation
performance of the two permutation solving methods for three-source record-
ings. The LRJ method performs better only in recording 8. For the rest of
the recordings, the Reduced Likelihood Ratio performs better despite the fact
that it is a suboptimal method.

This improved performance of RLRJ can be due to the stability that is
produced from the convergence of a greater number of frequency bins, as
shown previously in Fig. 2. The Reduced Likelihood Ratio Jump, by allowing
a smaller set of possible swaps, leads to a more stable state for a larger number
of frequency bins. In the separation example of recording 12 (4 sources), shown
in Fig. 5, we observe that the separation quality, produced by the Reduced
Likelihood Ratio Jump, is greater to the original method, for every extracted
source. Due to the accurate convergence for larger number of frequency bins,
the Reduced Likelihood Ratio Jump reaches a constant separation quality from
a smaller number of iterations. In contrast, the separation quality using the
original method seems to vary, depending on the permutation arising from the
frequency bins that do not converge in every iteration.

Finally, in Table 3, we present a comparison of the running times required
by the 2 frameworks to produce stable separation results. The computational
times of Table 3 refer to MATLAB R2013 implementations of the examined
frameworks on a Pentium i7 3.4GHz PC with 8 GB RAM. As explained pre-
viously, RobustICA requires sufficiently less iterations than FastICA and in
the results of Table 1 we use 3 iterations for framework 1 (RobustICA) and
15 iterations for framework 2 (FastICA). For the permutation ambiguity, both
the Reduced Likelihood Ratio Jump and the Likelihood Ratio Jump required
9 iterations. We used 9 iterations that seemed to be a good choice in Fig.
5 since after 9 iterations on average, all sources seems to present a relevant
stability in the calculated SIR values. We can see that the improvement in
computational time for the examined recordings is important, with similar
separation performance as shown in previous experiments. RobustICA with
much less iterations requires about 1/3 of the FastICA computational time,
while the Reduced Likelihood Ratio Jump can solve the permutation ambigu-
ity in about half the time of the original LRJ. As an example, for the Recording
13, we need 19 sec with the proposed framework and 45 sec with the original
one, which demonstrates the efficiency of the proposed approach.

4.2.3 Improvement by MuSIC-RLRJ

To evaluate the performance of the enhanced version of the framework that
includes the MuSIC preprocessing step, we present the experiments of Table 4.
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With the addition of beamforming, we can improve the extracted separation
quality in terms of SIR. When we use only 3 iterations for RLRJ, we observe
improved separation results. MuSIC works as a preprocessing step that pro-
vides RLRJ with an improved initial estimate of βj(t). If we allow RLRJ to
perform more iterations, the algorithm overcomes the influence of beamform-
ing and converges to performance similar to the original RLRJ. Furthermore,
in recording 12, we observe an improvement in the performance of the RLRJ
for the extracted sources 3 and 4.

The MuSIC preprocessing step is not very demanding in terms of compu-
tational complexity. In Table 5, we observe that the processing time increased
by 0.5 sec from 3 to 4 sources for the MuSIC-RLRJ in contrast to 3.5 sec for
RLRJ. MuSIC is actually applied only to a subset of the frequency bins that
correspond to frequencies below 2500Hz, and its complexity increases almost
proportionally to the number of sources. In contrast, RLRJ, despite being a
lot faster compared to the original LRJ, still presents an ≈ O(n2) complex-
ity. As the number of sources increase, the likelihood ratio test becomes more
demanding and the incorporation of geometrical information related to the
auditory scene appears to increase the efficiency of our framework.

On the other hand, beamforming is not a completely blind technique, such
as ICA with LRJ. It requires information, regarding the position of sensors.
In addition, it requires that the sources are angularly distant in the auditory
scene, which restrains its applicability and performance. To support that we
can observe Fig. 6 and Fig. 7. In the DOA estimation step, all 3 observed
sources come from very close angles, with angular distance below 15 degrees.
Because of the source positioning in the auditory scene, the estimated bounds
by MuSIC are not very distinct. As a result, the beamformer is likely to set
incorrect permutations, especially between 95 and 105 degrees, where the ma-
jority of frequency bins are placed, as we can see from the increased values of
P (θ). For scenarios such as this, beamforming fails to enhance the performance
of RLRJ. The problem becomes more apparent for the case of recording 13.
We can see that only 3 peaks can be observed. The examined recordings took
place in a small real room with high reverb, and also the sources were relatively
loud. These highlighted cases demonstrate the limitation of the beamforming
approach, where it clearly fails to provide a good permutation estimate for the
RLRJ.

4.2.4 Statistical Analysis

In this section, we evaluate the statistical significance of the improvement of-
fered by the novel methods presented here. We compare the performance of
the RobustICA-Reduced Likelihood Ratio Jump (RLRJ) method (Framework
2) and the RobustICA-Beamforming-RLRJ method (Framework 3) with the
original FastICA - Likelihood Ratio Jump method (Framework 1). This sta-
tistical analysis is common to machine learning literature, however, in source
separation it firstly appeared recently in Simpson et al [28]. Thus, we will
follow their methodology in our analysis. Since our database consists of very
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Table 4 Efficiency of the MuSIC preprocessing step in terms of Signal-Interference Ratio
(SIR) (dB) for selected recordings for 3 and 10 iterations of the Reduced Likelihood Ratio
Jump (RLRJ) method. For the separation of audio sources, 3 iterations of Robust-ICA with
prewhitening was used.

Rec Src 3 iterations 10 iterations

MuSIC-RLRJ RLRJ MuSIC-RLRJ RLRJ

1 0.05 -0.11 -0.90 -0.85

9 2 2.10 1.95 1.51 1.47

3 -6.36 -6.02 -6.41 -5.79

1 -2.89 -2.65 -3.30 -2.74

12 2 -4.42 -3.95 -3.63 -3.21

3 3.35 1.28 4.59 3.02

4 -3.79 -5.04 -1.97 -3.04

Table 5 Increase in running time (sec) due to the Beamforming preprocessing step. We
measure the running time (sec) of the MuSIC beamforming step, followed by the Reduced
Likelihood Ratio Jump (RLRJ) step for 3 and 10 iterations. MuSIC adds a delay factor to
the overall running time of the algorithm.

Recording 3 iterations 10 iterations

MuSIC RLRJ Total MuSIC RLRJ Total

9 1.66 1.47 3.13 1.51 4.94 6.45

12 2.03 2.91 4.94 2.01 9.53 11.54
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few tracks, in order to increase the population of our results, we will segment
our tracks into overlapping smaller segments and measure SIR on these small
segments. We will treat the SIR score for each source as a separate sample,
i.e. for a 4 × 4 separation example segment, we will get 4 SIR scores, which
will lead to 4 different samples. With this method, we manage to accummulate
140 samples, which will be sufficient to determine the statistical significance
of the results. We repeat the same segmenting procedure and we acquire SIR
scores for the same segments for the 3 Frameworks. Thus, we gather 3 sets
of 140 measurements, one for each Framework, which will be used to evaluate
the statistical significance of the improvement offered by Frameworks 2 and 3.

To decide which statistical test to use, in order to perform post-hoc planned
contrasts (pair-wise tests), we must look into the distribution of the three re-
sults. Empirically, we gather that the three result populations do not follow
the Gaussian distribution, but a rather skewed, non-symmetric distribution.
As in [28], we are prompted to use the pair-wise comparison of the models via
the Wilcoxon signed-rank test, which can cater for non-Gaussian data. The
Wilcoxon signed-rank test can estimate the p-values of a pair-wise compari-
son, i.e. the probability of the null hypothesis that the median of difference
between the two models is zero, i.e. not statistically significant improvement.
Great p-values demonstrate statistically non-significant improvement. Com-
monly in the literature, a p-value smaller than 0.05 (p ≤ 0.05), will demon-
strate statistically significant improvement. In [28], they perform a Bonferroni
correction, which is essentially a division of the estimated p-value, by the num-
ber of different source-types you are comparing in the dataset. We didn’t do
this correction in our case, since we merged 2×2, 3×3 and 4×4 results into a
single dataset in order to increase the number of data samples. Nevertheless,
as we will see, statistical significance is still detected in our experiments.

In a similar manner to [28], Fig. 8 shows box-plots for each of the Frame-
works. The boxplots show the median (red), the box itself represents the inter-
quartile range (IQR) and the “whiskers” represent 1.5× IQR. Outliers (defined
as data points outside the 1.5 x IQR “whiskers”) are given as red plus signs.
In Table 6, we can see the mean and median SIR scores for the three tested
Frameworks. It is clear for a first view that Frameworks 2 and 3 improve the
performance on average, compared to the original Framework 1. The next step
is to quantify how statistically significant is the improvement. We calculate the
p-value for the two-tailed Wilcoxon signed-rank test, between Frameworks 1
and 2 (p12) and between Frameworks 2 and 3 (p23). The two-pair tests give
p12 = 0.0132 and p23 = 0.02, which are well below the critical value of p = 0.05,
which denotes that the improvement offered by Frameworks 2 and 3 is sta-
tistically significant. This implies that the two presented Frameworks really
improve the previous Framework 1 of Mitianoudis and Davies.

A final point was to see how statistically significant is the difference between
Frameworks 2 and 3. We calculated the p-value for the two-tailed Wilcoxon
signed-rank test between Frameworks 2 and 3 p23. The two-pair test yields a
p23 = 0.5611, which implies there is no significant difference between Frame-
works 2 and 3. This implies that we may have experienced some improvement
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Fig. 8 Box-plots of the SIR performances for the three Frameworks. Medians of Frameworks
2 and 3 are slightly higher compared to Framework 1 which is indicative of the overall offered
improvement.

Table 6 Comparing the mean and median SIR (dB) scores for the complete statistical test
for the three Frameworks. It is clear that both Frameworks 2 and 3 improve performance
compared to the original Framework, although it is not clear which is the best.

Statistical Framework

Measurement 1 2 3

Mean -0.9926 -0.5585 -0.5862

Median -1.8933 -1.6496 -1.4707

using beamforming in the previous section, however, this is not very impor-
tant. This is also visible from Table 6, where in the complete statistical test,
Framework 2 has the best mean SIR value, whereas Framework 3 has the best
median SIR value, giving no real winner.

5 Conclusion

In this paper, we presented an extension of the previous work of Mitianoudis
and Davies for convolutive audio source separation. First of all, the FastICA
separation algorithm was replaced with the RobustICA algorithm, which im-
proves the performance and stability of the framework. The next improvement
was the proposal of a Reduced LRJ solution, in order to reduce the increased
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computational cost in the case of more than 2 sensors and sources. The Re-
duced LRJ offers a robust solution for the more than 2 sensors-sources case,
a task that is not frequently attempted in the literature. The Reduced LRJ,
although a suboptimal solution, seems to achieve better separation, since it
doesn’t allow more source flippings than necessary. This improvement has
shown to be statistically significant in our experiments. A MuSIC beamforming
based initialisation of the sources’ permutation at lower frequencies appeared
to boost the performance of the RLRJ solution in several cases, however, it
has shown not to be statistically significant. Not to mention that this solution
can operate, provided the whole auditory scene arrangement satisfied several
beamforming performance criteria.

The new framework has been tested on a newly recorded dataset using
the cost-efficient Microsoft Kinect platform with success. For future work, the
authors would like to extend this framework for underdetermined recordings,
i.e. dealing with real-room recordings containing more sources than sensors.
This is an underdetermined problem that cannot be resolved by traditional
ICA-based source separation approaches, but we can use several developments
of this paper in terms of DOA estimation and time amplitude envelopes.
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