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ABSTRACT

We explore the capabilities of a new biometric trait, which is
based on information extracted through facial motion amplifi-
cation. Unlike traditional facial biometric traits, the new bio-
metric does not require the visibility of facial features, such
as the eyes or nose, that are critical in common facial bio-
metric algorithms. In this paper we propose the formation
of a spatiotemporal facial blood flow map, constructed using
small motion amplification. Experiments show that the pro-
posed approach provides significant discriminatory capacity
over different training and testing days and can be potentially
used in situations where traditional facial biometrics may not
be applicable.

Index Terms— Biometrics, Motion Amplification, Facial
Blood Flow

1. INTRODUCTION

Biometrics and their deployment in identification systems is
more prevalent than ever before. Most mobile and portable
devices have some capacity for biometric identification for
the purpose of user access control. Although mobile systems
usually rely on traditional biometric traits, such as fingerprints
and face, other biometric traits, such as iris and voice, have
also evolved significantly over the years and are now widely
used in many access control situations.

In parallel to traditional biometric methods, new bio-
metric modalities have emerged, including ear, palm or vein
recognition. These new biometrics are deployed either as
stand-alone identification modalities or are integrated in
multi-modal biometric systems [2]. In essence, each new
biometric trait aims at complementing existing biometric so-
lutions in order to improve the performance of traditional
biometric systems.

In [3], Wu et al. introduced the concept of video amplifi-
cation, i.e., a method that can amplify small motions in videos
captured by means of an ordinary camera, so that motions can
become visible to the human eye. As a first application of
the method, the authors of [3, 5] showed that it is possible
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to amplify and render visible the facial blood flow. An exten-
sion of the original framework was presented in [4], where the
complex steerable pyramid decomposition was used to apply
motion amplification only on the phase component of the de-
composition, in order to focus more on the edge information
of the video.

In [1], we proposed a baseline method that uses Facial
Blood Flow (FBF) for person identification. FBF is extracted
from a person’s face using a normal RGB camera, but us-
ing motion amplification [3] to enhance and reveal the ac-
tual blood flow in common RGB video streams. The pro-
posed method was a contact-less method that did not utilize
any traditional facial features. Instead, the method extracts
small facial areas, that are not commonly obstructed by facial
hair and uses the motion-amplified video to extract spatio-
temporal blood flow information, which was shown to work
well as a distinctive biometric [1].

In this paper, we improve our baseline method by taking
into account the temporal evolution of FBF within a period,
which was suppressed in [1]. In addition, a different paral-
lel deep Convolutional Neural Network (CNN) architecture is
adopted improving the accuracy of the proposed system over
different days.

2. ROBUST FACIAL BLOOD-FLOW BASED
IDENTIFICATION

2.1. Video capture and pre-processing

The first stage of the system aims at capturing the subject’s
face using a camera. The aim is to capture facial blood flow.
Thus, we monitor a periodical phenomenon of no more than 2
Hz, since a resting person has an average heart rate of no more
than 60-100 pulses per min. This implies that an ordinary
RGB camera of 30 fps (i.e., 30 Hz) will suffice for capturing
the required facial blood flow, since the Nyquist frequency of
the observed phenomenon is 4 Hz. The extra bandwidth pro-
vided by the camera can be used to track other frequency con-
tent above 2 Hz that may be required to model human identity.
We also need to have multiple captures of each subject over
multiple days. Some of these will be used for the system’s
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Fig. 1. (a) Original face image, (b) Face isolated in a rectangular box using [6], (c) AAM fit on face [8]. The three control
points (two from the AAM and another inferred from the other two) are highlighted, (d) Detection of the forehead region using
two control points, (e), (f) Detection of the left and right facial regions using the left and right control points respectively.

training, while the rest will be used for the system’s testing
phase. Finally, natural day light was used during the video
capture, in order to avoid additional oscillations by electrical
light.

One basic drawback of the motion amplification is that it
requires that the subject remains as still as possible. Any ex-
tra motion will also be amplified, creating artifacts. Unfortu-
nately, humans can not stay still for more than a few seconds.
Therefore, the first stage in our system is to attenuate these
visible motions, by using phase-based motion amplification
with a negative amplification factor «, in the range of [-1,0).

2.2. Facial Blood Flow Motion Amplification

In this step, we use the Eulerian Video Magnification method
by Wu et al. [3] to amplify the facial blood-flow. The ampli-
fication factor was set to o = 120, while the frequency range
of amplification was set between 1 and 2 Hz; this is a good
match for the usual range of heart rates (1-2 beats per second)
in resting humans. Unlike the work in [3], we are only inter-
ested in the amplified blood flow and, therefore, the amplified
stream is not added to the original video. In addition, motion
amplification is only applied to a grayscale version of the in-
put video to reduce computational complexity. The resultant
system configuration yields an image sequence J (z, y, t) that
represents the variation of blood flow on a subject’s face.

2.3. Extraction of facial regions of interest

For the extraction of the proposed FBF biometric, we chose
three facial areas, namely the lower part of the forehead, the
area below the left eye, and the area below the right eye (Fig.
1). These areas do not include any facial landmarks (such
as eyes, nose, or mouth) and, therefore, are most suitable for
the assessment of the discriminatory capacity of the proposed
methodology. Further, these areas are usually visible and easy
to record.

The forehead region is selected so that it covers the great-
est part of the forehead. In most of our experiments, this could
be achieved using a rectangular area of 71 x 201 pixels. The
left and right facial areas are both rectangles of dimensions
71 x 101. To extract the three regions of interest, we first

detect the face using the state-of-the-art face detector of Zhu
and Ramadan [6]. Subsequently, we identify facial landmarks
that facilitate the localization of the three areas of interest. For
facial landmark localization in all frames, we use Active Ap-
pearance Models (AAM) [7], as implemented in [8]. Once
the facial landmarks have been identified (Fig. 1(c)), they are
used for inferring the position of the three areas of interest.

The exact positions of the areas below the eyes are de-
termined by correlating key-points on the eyes and the eye-
brows. The eyebrows’ highest and rightmost points are shown
in Fig. 1(d) as blue and green points respectively. There-
fore, we can obtain the point, where the forehead starts above
the eyebrows. This point’s coordinates are the x-coordinate
of the eyebrows’ highest point and the y-coordinate of the
eyebrows’ rightmost point. Therefore, we define the starting
point (see yellow cross in Fig. 1(d)) of the forehead rectan-
gle. We also define the size (width and height) for the fore-
head rectangle and we extend the rectangle over the other eye-
brow. Using the leftmost eyebrows’ point as our reference
point (green point in Fig. 1(e)), we move down by 120 pixels
in order to find the bottom left corner of the left cheek rect-
angle. A similar procedure is performed using the rightest
eyebrows’ point in order to define the area of the right facial
area (see Fig. 1(f)). The size of the rectangle and the distance
of the rectangle from the highest eyebrow point were cho-
sen based on experimentation. An example of the detected
regions of interest is shown in Fig. 1.

3. SPATIOTEMPORAL FACIAL BLOOD FLOW (FBF)
TEMPLATES

In [1], where the proposed biometric modality was first intro-
duced, we used facial regions that were smaller and of lower
resolution. These regions were joined to form a single rectan-
gular area, which was averaged over time in order to construct
a template. That template was constructed by averaging con-
secutive blood flow images F representing blood flow during
1 second (i.e., 30 frames). This time period is sufficient to
capture at least one blood flow cycle.

Averaging facial blood flow (FBF) images over time is



Fig. 2. The FBF DCT features: forehead area, left facial area,
right facial area.

computationally efficient, but ignores temporal dynamics,
which may possess discriminatory capacity. To address this
concern in the present work, we combine FBF image se-
quences in the form of a spatiotemporal cube from which
features are extracted. In this way, the temporal dynamic
component of the extracted flow information is retained. In
order to avoid having to temporally align FBF image se-
quences, we apply the Discrete Cosine Transform (DCT),
which is sensitive to the presence of different frequencies
in a signal and is known to have the capacity for energy
compaction. The use of the DCT alleviates problems arising
from possible temporal shifts between FBF sequences, which
would have an adverse impact on the subsequent training and
classification.

In order to calculate DCT features, for each spatial loca-
tion (z,y) on the facial area of interest, we take the temporal
1D-DCT, which captures blood flow variations over time:

T-1
(i, g,k Z]—"zg, cos T(t+ )]
=0

where T is the number of FBF images within one second of
recording. The three FBF DCT cubes, which are extracted
from the three facial areas of interest, are shown in Fig. 2.
These will be input to the classifier.

4. PERSON IDENTIFICATION USING DEEP CNN

The three DCT FBF cubes extracted in the preceding stages of
the system are input independently to the supervised classifier
shown in Fig. 3(a). We use a novel deep architecture that is
fundamentally different from the classifierin [1]. As seen, the
novel architecture is based on three deep Convolutional Neu-
ral Network (CNN) pipelines that process each facial area in-
dependently. This resolves problems that may have occurred
on the borders between the three cubes had they been joined
into one single component.

The CNN pipelines shown in Fig. 3(a) have identical
structure, and differ only in the size of the input FBF DCT
cube. The prototypical pipeline, shown in Fig. 3(b), consists
of four 2D Convolutional Layers. The first layer consists of 32
3 x 3 filters and uses the ReLU activation function along with
a Batch Normalization (BN) stage [10]. The second layer is
identical to the first and, in addition, is followed by a 2 x 2
max pooling layer. The third layer features 64 3 x 3 filters with
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Fig. 3. (a) Convolutional Neural Network architecture used
with the proposed system, (a) Pipeline for the independent
processing of each of the three facial areas.

ReLU and Batch Normalization. The fourth is identical to the
third layer and is also followed by 2 x 2 max pooling.  The
outputs of the three pipelines are flattened and concatenated,
and presented to a dense network of 1024 nodes. The output
layer commonly uses the Softmax for classification purposes.

For the training of the proposed architecture, we used
the stochastic gradient descent optimizer with the categorical
cross-entropy loss function, since we deal with more than
two output classes [9]. The learning rate was set to = 0.01
with decay 0.01 and a Nesterov momentum of p = 0.9.
The network trained for 60 epochs using a batch size of 64
samples.

5. EXPERIMENTAL EVALUATION

5.1. Dataset

The proposed Facial Blood Flow (FBF) features were eval-
uated for their effectiveness and robustness as a biometric
trait using a new dataset. For the recording of facial im-
age sequences, a GoPro Hero 4 Black camera was used with
1920 x 1080 resolution and 30 frames per second. A total
of 12 subjects were recorded in a room with natural light, in
order to avoid oscillations from artificial light sources. The
subjects were seated on a chair at a fixed distance from the
camera and were instructed to stay as motionless as possible
during the recording. This arrangement helped avoid possible
scaling and change of posture problems. For each subject, we
recorded 18 20-second recordings for training purposes, giv-
ing a total 360 seconds per person. For testing, we captured
three 20-second recordings from each subject. The record-
ing of training sequences was performed over two different
days, while testing sequences were recorded on a different



day. This allows us to assess the temporal robustness of the
proposed FBF biometric and to reach conclusions on whether
the extracted blood circulation patterns remain the same over
time. The compiled database is summarized in Table 1.

Table 1. Description of the FBF cross-day dataset. Training
sequences were filmed over two different days, while testing
sequences were filmed on another day.

| Database I \
Number of subjects 12
Frame-rate (fps) 30
Resolution 1920 x 1080
Training sequences/subject 360
Testing sequences/subject 60

5.2. Experiments

We implemented the Movement Motion Attenuation and the
Facial Blood Flow Amplification stages based on the code
provided by [3] and [4] respectively. The face isolation and
AAM fitting stages were based on the method in [8]. We
implemented the proposed deep architecture in Python using
TensorFlow, Keras and an NVidia Titan X Pascal GPU. We
compared the proposed architecture to the one we used in [1],
which featured an average image that contains all three re-
gions joined together. The two systems were trained using
the training dataset for 60 epochs. We consequently used the
testing dataset for assessing the system’s performance.

There are significant differences between the system and
the experimental protocol presented in the present work and
the ones presented in [1]. Specifically, the present work uses
features that retain temporal information and, therefore, can
lead to conclusions regarding the discriminatory capacity
of temporal dynamics in facial blood flow sequences. Fur-
thermore, unlike in [1], where facial image sequences for
both training and testing were recorded on the same day, the
present work validates the usefulness of the FBF as a bio-
metric by using recordings taken over multiple days. Two
different days were used for the training material, while test-
ing material was recorded on a separate day.

Recognition accuracy for the proposed method is pre-
sented in Table 2 in comparison to the baseline system in [1].
All systems were tried on the new database. As seen, the
architecture in [1], which is based on temporal averages of
FBF and therefore ignores temporal dynamics, yields 80%
recognition accuracy. The present architecture, however,
models temporal dynamics by deploying the DCT along the
temporal direction of the FBF feature sequence. The resulting
performance improvement provides evidence that temporal
information in FBF should be taken into account during clas-
sification.

Table 2. Recognition Accuracy for the testing dataset for the
previous approach that used the Average FBF template and
for the proposed approach with the 3D FBF and the three par-
allel CNN pipelines.

’ Architecture H Accuracy ‘
Average FBF Template [1] 80 %
Combined FBF DCT cubes + CNN 81 %
Separate FBF DCT cubes + Parallel CNN 85 %

In addition, processing the three facial areas using three
parallel streams also seems to improve the results. In [1],
where the three areas were simply stitched together, system
performance was impacted by the artificial boundaries be-
tween these areas. As seen in Table 2, the single 3D FBF
cube, featuring all areas stitched together yields 81% recog-
nition accuracy, while the proposed system with separate par-
allel pipelines yields 85% accuracy. This highlights the clas-
sification architecture that works well with the proposed bio-
metric.

Last, it is most encouraging to observe that, although
training and testing sequences were recorded on different
days, the proposed FBF DCT cube retains its discriminatory
capacity over time. This observation confirms that blood flow
patterns on the face remain relatively unchanged over time
and can serve as the basis for human identification.

6. CONCLUSIONS

In this paper, we improved the Facial Blood Flow (FBF) bio-
metric proposed in [1]. Our novel feature extraction is based
on the modeling of temporal FBF dynamics via the Discrete
Cosine Transform. The extracted features are used with an
improved deep architecture that processes facial areas of in-
terest independently. Through a new experiment that includes
recording on different days, we showed that FBF can be ro-
bust over time and has the potential to be used as a reliable
biometric in cases where traditional biometrics may not be
applicable.
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