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Abstract

The proposed Generalised Directional Laplacian Distribution (DLD) is a hybrid be-
tween the Laplacian distribution and the von Mises-Fisher distribution aiming at mod-
elling multidimensional sparse directional or angular data. The essential algorithms to
estimate the proposed distribution’s parameters as well as Mixtures of DLD (MDLD) are
presented. The proposed DLD mixture model is used to cluster sound sources that exist
in an underdetermined instantaneous sound mixture, offering a fast and viable solution
to the general K × L (K < L) problem.

1. Introduction

Circular Statistics is the branch of statistics that addresses the modeling of circular data,
i.e. data with rotating values. The von Mises distribution is a continuous probability
distribution on the unit circle (the circular equivalent of the normal distribution) and is
defined by (see Jammalamadaka & Sengupta (2001)):

p(θ) =
ek cos(θ−m)

2πI0(k)
, ∀ θ ∈ [0, 2π) (1.1)

where I0(k) is the modified Bessel function of the first kind of order 0, m and k > 0
describe the mean and the “width” of the distribution. Extending to the multivariate case,
a p-dimensional unit random vector x (||x|| = 1) follows a von Mises-Fisher distribution,
if

p(x) ∝ ekm
Tx , ∀||x|| ∈ Sp−1 (1.2)

where ||m|| = 1 defines the centre, k ≥ 0 and Sp−1 is the p dimensional unit hyper-
sphere. In the case of p = 2, (1.2) is reduced to the von-Mises distribution of (1.1). One
can encounter many methods to fit the von Mises-Fisher distribution or its mixtures to
normally distributed circular data (see Jammalamadaka & Sengupta (2001), Mardia et
al. (1999), Dhillon & Sra (2003)).
This study proposes a novel distribution to model directional sparse data, i.e. data

that are mostly close to their mean value with the exception of several outliers. The
Laplacian distribution p(x) ∝ ek|x−m| appears to be a strong candidate in modelling
sparse data (see Davies (2002)). There were several attempts to model circular sparse
signals by wrapping an 1-D or multidimensional Laplace distributions of infinite support
(see Jammalamadaka & Kozubowski (2002), Mitianoudis & Stathaki (2007)); however, it
is reported to have increased computational cost, as the periodic repetition of a density
function is equivalent to a mixture of density functions.
One application where directional statistical modelling is essential is Underdetermined
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Audio Blind Source Separation (BSS) (see Comon & Jutten (2010)). Assume that a set
of K sensors x(n) = [x1(n), . . . , xK(n)]T observes a set of L (K < L) sound sources
s(n) = [s1(n), . . . , sL(n)]

T . The instantaneous (anechoic) mixing model can be expressed
by x(n) = As(n), where A represents a K × L mixing matrix and n the sample index.
BSS algorithms provide an estimate of the source signals s and the mixing matrix A,
based on the observed signals x and some statistical source profile. The underdetermined
instantaneous case is challenging. In the two-channel (K = 2) BSS scenario, the prob-
lem is reduced to an angular clustering problem of sparse data. Many methods have
been proposed (see Comon & Jutten (2010)). Mitianoudis & Stathaki (2007) introduced
a Laplacian Mixture Model to perform separation. To tackle the angular wrapping at
π, they examined the use of Wrapped Laplacian Mixtures (MoWL). Nonetheless, these
efforts do not offer a closed form solution and can not be expanded to more than two
sensors. Recently, Vincent et al. (2009) used local Gaussian Modelling of minimal con-
strained variance of the local time-frequency neighbours to perform separation. This
study applies the proposed DLD model to address the general K × L source separation
problem, which is rarely tackled in the literature.

2. A Generalised Directional Laplacian model

Assume a r.v. θ modelling directional data with π-periodicity. Mitianoudis (2010) intro-
duced the 1D-DL Density, as follows:

p(θ) = c(k)e−k| sin(θ−m)| ,∀ θ ∈ [0, π) (2.1)

where m ∈ [0, π) defines the mean, k > 0 defines the width (“approximate variance”) of
the distribution, c(k) = 1

πI0(k)
and I0(k) =

1
π

∫ π

0
e−k sin θdθ.

The next step is to derive a generalised definition for the Directional Laplacian model.
To generalise the concept of 1D DLD in the p-dimensional space, we will be inspired by
the p-D von Mises-Fisher distribution. Since ||x|| = ||m|| = 1, the inner product mTx =
cosψ, where ψ is the angle between the two vectors. Following a similar methodology
to the 1D-DLD, we need to formulate the term −k| sinψ|. But | sinψ| =

√
1− (mTx)2.

Thus, the following probability density function models p-D directional Laplacian data
and is termed Generalised Directional Laplacian Distribution (DLD):

p(x) = cp(k)e
−k
√

1−(mTx)2 , ∀ ||x|| ∈ Sp−1 (2.2)

where m defines the mean, k ≥ 0 defines the width (“approximate variance”) of the

distribution, cp(k) = Γ((p−1)/2)
π(p+1)/2Ip−2(k)

, Ip(k) = 1
π

∫ π

0
e−k sin θ sinp θdθ and Γ(·) represents

the Gamma function.
One can employ Mixtures of Generalised Directional Laplacians (MDLD) in order to

model multiple concentrations of directional generalised “heavy-tailed signals”, as follows:

p(x) =
K∑
i=1

aicp(ki)e
−ki

√
1−(mT

i
x)2 , ∀ ||x|| ∈ Sp−1 (2.3)

where ai denotes the weight of each distribution in the mixture, K the number of DLDs
used in the mixture and mi, ki denote the mean and the “width” (approximate variance)
of each distribution.
The mixtures of DLD can be trained using the Expectation-Maximisation (EM) algo-

rithm. Following the previous analysis in Mitianoudis & Stathaki (2007), one can yield
the following simplified likelihood function:
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L(ai,mi, ki) =
N∑

n=1

K∑
i=1

(
log

aiΓ(
p−1
2 )

π
p+1
2 Ip−2(k)

− k
√

1− (mTxn)2

)
p(i|xn) (2.4)

where p(i|xn) represents the probability of sample xn belonging to the ith DLD of the
mixture. In a similar fashion to other mixture model estimation, the updates for p(i|xn)
and αi can be given by the following equations:

p(i|xn)←
aicp(ki)e

−ki

√
1−(mT

i
xn)2∑K

i=1 aicp(ki)e
−ki

√
1−(mT

i
xn)2

, ai ←
1

N

N∑
n=1

p(i|xn) (2.5)

Taking the derivatives along mi and ki, it is straightforward to derive the following
gradient iterative updates:

m+
i ←mi + η

N∑
n=1

mTxn√
1− (mTxn)2

xnp(i|xn), m+
i ←m+

i /||m
+
i || (2.6)

Setting ∂L/∂ki = 0 yields the following ratio and ki can then be estimated numerically
from a lookup table.

Ip−1(ki)

Ip−2(ki)
=

∑N
n=1

√
1− (mT

i xn)2p(i|xn)∑N
n=1 p(i|xn)

(2.7)

The training of this mixture model is also dependent on the initialisation of its parame-
ters, especially the means mi, which are initiallised by a Directional K-Means algorithm
(see Mardia et al. (1999)).

3. Source Separation using MDLD

The generalised Directional Laplacian Density offers a faster and complete solution to the
problem, as it can be automatically applied to the general K×L audio source separation
scenario. Once the MDLD are fitted to the multichannel directional data, separation can
be performed by ”hard-thresholding” for the 1D-case (intersections of individual DLDs),
or ”soft-thresholding” for the general p-D case in a similar manner to Mitianoudis &
Stathaki (2007). Hence, the ith source can be associated with those points xn, for which
p(xn) ≥ (1 − q)αicp(ki), where q ∈ [0.7, 0.9]. Having attributed the points x(n) to the
L sources, using either the “hard” or “soft” thresholding technique, the next step is to
reconstruct the sources. Let Si ⊑ N represent the point indices that have been attributed
to the ith source and mi the corresponding mean vector, i.e. the corresponding column of
the mixing matrix. We initialise ui(n) = 0, ∀ n = 1, . . . , N and i = 1, . . . , L. The source
reconstruction is performed by substituting ui(Si) = mT

i x(Si), ∀ i = 1, . . . , L

Next, we evaluate the proposed MDLD algorithm for audio source separation and
compare with the “GaussSep” algorithm by Vincent et al. (2009) (MATLAB code from
http://www.irisa.fr/metiss/members/evincent/software). In order to quantify the
performance of the algorithms, we estimate the Signal-to-Distortion Ratio (SDR), the
Signal-to-Interference Ratio (SIR) and the Signal-to-Artifact Ratio (SAR) from the BSS EVAL
Toolbox v.3 (see http://bass-db.gforge.inria.fr/bss eval.). The input signals for
the MDLD were sparsified using the Modified Discrete Cosine Transformation (MDCT).
We tested the algorithms with test signals from the Signal Separation Evaluation Cam-
paigns (see http://sisec.wiki.irisa.fr/). In this section, we will attempt to perform
separation of the Dev3Female3 set from SiSEC2011 and a 3× 5 (3 mixtures - 5 sources)
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SDR (dB) SIR (dB) SAR (dB)
MDLD GaussSep MDLD GaussSep MDLD GaussSep

Dev3Female3 6.02 16.93 23.84 22.43 6.17 18.40
Example 3× 5 3.91 9.94 17.92 15.21 4.17 11.68
Example 4× 8 2.24 -18.63 16.4 -17.58 2.52 9.39

Table 1. The MDLD approach is compared with the GaussSep approach (K = 3, 4). Scores
are averaged for all sources of each experiment.

and a 4 × 8 (4 mixtures - 8 sources) scenario using the male and female voices from
Dev3. After fitting the MDLD model, we employed the soft-thresholding scheme, using
a value of q = 0.8. The separation results for these experiments are summarised in Ta-
ble 1. In the case of K = 3 mixtures, both algorithms managed to perform separation.
The “GaussSep” algorithm featured higher SDR and SAR performances, whereas the
proposed MDLD featured higher SIR performance. The image is completely different
in the case of K = 4 mixtures, where the MDLD manages to separate all 8 sources in
contrast to the “GaussSep” that fails to perform separation. This might be due to fact
that the sparsest ML solution in the optimisation of “GaussSep” is restricted to vectors
with K ≤ 3 entries, i.e. 3 sources present at each point. In contrast, the proposed MDLD
algorithm can operate for any arbitrary number of sensors K. In addition, the MDLD re-
quired an average of 7.66 secs to perform separation, which is similar to the K = 2 cases.
In contrast, the “GaussSep” algorithm’s processing has increased considerably with K.
For K = 3, it required an average of 1310 sec and for K = 4, it required 2359 sec which
is almost the double processing time for K = 3.

4. Conclusions

The problem of modelling multidimensional Directional sparse data is addressed by a
novel generalised Directional Laplacian model. The proposed algorithm can also offer a so-
lution for the general multichannel underdetermined source separation problem (K ≥ 2),
offering fast and stable performance and high SIR compared to state-of-the-art methods.
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