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Abstract—The latest advancement in imaging applications has
increased the need for more High Definition Range (HDR)
imaging, which is not easily attainable by common imaging
sensors. However, the use of multiple exposure images, that
cover multiple exposure settings for the captured scene, and their
combination in a single image via image fusion has been proposed
in the literature and seems a viable solution. In this paper, the
authors combine two image fusion methods to perform multiple
exposure fusion. They use Mitianoudis and Stathaki [1] method
to fuse the luminance channel and the Mertens et al [2] method
to fuse the color channels. The derived fusion output outperforms
both individual methods and other state-of-the-art methods.

I. INTRODUCTION

The latest achievement in the field of imaging sensors have
led to the development of high-specification image cameras.
Thus, one might assume that capturing photos of natural
scenes, as perceived exactly by the human visual system, will
be possible in the near future. However, the maximum-to-
minimum light intensity that can be recorded by a modern
camera imaging sensor is around 28−214. This ratio is called
dynamic range and its logarithm with base 2 is measured
in stops. A conventional DSLR camera can capture correctly
scenes with 8 - 12 stops dynamic range, while professional
movie cameras, such as the Red Epic, can capture scenes
with 14 stops. The human visual system responds correctly
to all the scenes of the natural world, where the dynamic
range exceeds 24 stops. Consequently, in high dynamic range
scenes, a picture taken by a imaging camera will often result
into several areas being under or overexposed, i.e. darker or
whiter colors than in real life.

The solution to this problem is to use multi-bracketing pho-
tography. That is to say, the scene is captured using the same
imaging sensor taking multiple pictures at different exposures.
In this manner, the different areas can well be captured in one
(or more) of the different exposure photos. Commonly, a three-
exposure setup (one under-exposed, one normally-exposed and
one over-exposed) is sufficient for capturing efficiently most
high dynamic range images. The task is then to combine the
useful information from all input images to create a single
composite image that resembles as accurately as possible the
image attained by the human visual system. This task is often
tackled by image fusion algorithms [1], however, we encounter
the term exposure fusion in the literature [2], since we deal

with the problem of fusing multiple exposures of the same
scene.

There has been a lot of work lately on the field of Multiple
Exposure Fusion (MEF). In [2], Mertens et al proposed a
MEF scheme, based on Laplacian pyramid analysis of the
input images, which are then fused using weights created
from contrast, saturation and well-exposedness of the input
images. In [3], Vonikakis et al proposed a MEF scheme, where
well-exposedness is estimated via an illumination estimation
filtering method. These initial estimations are then combined
to create fusion weights via fuzzy membership functions,
which will favor and promote well-exposed pixels to the fused
image. In [4], Tico et al proposed a mechanism to deal with
the motion-blur that may exist in longer exposures, using
photometric calibration. In [5], Jinho and Okuda proposed
novel weighting functions, which retain their independence on
different exposure areas with little overlap. They also address
possible motion-blur and occlusions by using maximum a
posteriori estimation.

There also exist traditional and more general image fu-
sion methods. In [6], Mitianoudis and Stathaki proposed a
self-trained Image Fusion framework based on Independent
Component Analysis, where the analysis transformation is
estimated from a selection of images of similar content [6].
Several fusion rules were proposed under this framework
in [6]. The analysis framework is projecting the images into
localized patches of relatively small size. The local mean value
of the patches is subtracted and stored in order to reconstruct
the local means of the fused image. In [6], an average of the
stored means was used to reconstruct the fused image. In the
case of multi-modal inputs, a gradient algorithm that optimises
the Piella and Heijmans Fusion Quality index [7] was derived
in [1] to infer an optimal means choice for the fused image.

In this paper, the authors propose a multiplr-exposure sys-
tem, where the luminance channels are fused via the traditional
ICA-based image fusion of [1] and the color channels are fused
using the Mertens et al method [2].

II. THE PROPOSED MULTIPLE EXPOSURE IMAGE FUSION
SYSTEM

The proposed system is described by Fig. 1. Next, we are
going to discuss its individual system blocks.



Fig. 1. Flow diagram of the proposed HDR synthesis approach.

A. Image Alignment - Color System Conversion

In our system, we used the common three exposure im-
ages setup (under-exposed, normally-exposed, over-exposed),
however, the system can work with an arbitrary number of
inputs. The first step was to check for possible registration
errors between the three input images. To address this problem,
we used the Median Threshold Bitmap (MTB) method of
Ward [8], which deals with translational registration errors and
scales linearly with the number of pixels. Since, in a real-life
situation, the registration error between successive shots of a
camera will be most probably translational, the MTB method
offers a fast and viable solution that can be used in real-time
applications.

The next step was to separate the luminance from the three
RGB color channels. To achieve this, we converted the input
RGB images to the YCbCr system, which offers this type of
color separation. Then, the system used the Mitianoudis and
Stathaki algorithm [1] to fuse the three Y channels from the
input images and the Mertens et al algorithm [2] to fuse the
three Cb and the three Cr channels. The inspiration comes
from the human visual system. As it is also noted in the JPEG
compression scheme, humans tend to pay greater attention to
details that exist in the luminance/brightness channel and are
less attentive to errors in the color channels. The Mitianoudis

and Stathaki fusion algorithm yields very good performance
at out-of-focus fusion cases, thus it was selected to fuse the
luminance channels. However, since its performance may vary
with images of different input intensity range, we chose the
Mertens et al algorithm [2] to fuse the color channels, as
a more linear blending color solution. Details of two image
fusion algorithms follow in the next section.

B. Luminance channels fusion

For the fusion of luminance channels, we used the fusion
algorithm proposed by Mitianoudis and Stathaki [1], which
performs fusion in the Independent Component Analysis
(ICA) domain. This technique is a transform-based fusion
method, where the transform is learned by similar content
images, using a statistical signal processing technique, called
ICA. The analysis is performed at local image patches of size
N ×N . The training algorithm extracts a random population
of these patches (in the order of 10000 [9]) are randomly
selected from similar-content training images. These patches
are transformed to vectors xw(t) using lexicographic ordering
and the mean value of each vector is subtracted from the
vector. The idea is to find a set of projection bases bi (arranged
in matrix B) that can lead to a sparse representation of the
input image u(t).

xw(t) = Bu(t) (1)

u(t) = B−1xw(t) = Axw(t) (2)

The training procedure needs to be performed only once, as
the estimated transform can be used for fusing images with
similar content to the training images, as explained in more
detail in [6]. First, we perform Principal Component Analysis
(PCA) on the selected patches, in order to select the K < N2

most important bases. Then, the ICA update rule in [6] for a
chosen L × L neighborhood is iterated until convergence. In
each iteration, the bases are orthogonalised using a symmetric
decorrelation scheme. In the case of multimodal inputs, sample
patches from all inputs are selected to train the ICA bases.

1) Fusion in the ICA domain: After estimating an ICA
transform, Image fusion using ICA bases is performed. Every
possible N × N patch is isolated from each image xk(i, j)
and is consequently re-arranged to form a vector xk(t). These
vectors xk(t) are normalized to zero mean and the subtracted
local mean MNk(t) is stored for the reconstruction process.
Each of the input vectors xk(t) is transformed to the ICA or
Topographic ICA domain representation uk(t), using equation
(2). Optional denoising in the ICA representation is also
possible, by applying sparse code shrinkage on the coefficients
in the ICA domain [9], assuming Laplacian (generally sparse)
priors for the ICA representation. The corresponding coeffi-
cients uk(t) from each image are then combined to construct
a composite image representation uf (t) in the ICA domain.
The next step is to move back to the spatial domain, using the
synthesis kernel B. The optimal means MNf (t) are estimated
using the gradient rule in [1]. In the case of images of similar
contrast, one can use the average means as an optimal choice,
as this is usually the answer of the gradient rule in [1]. The



optimal means are then added to the corresponding image
patch. The image f(i, j) is synthesised by spatially averaging
the image patches uf (t) in the same order they were selected
during the analysis step.

There are a number of fusion rules that can be employed
in ICA-based fusion [6]. Fusion by the absolute maximum
rule simply selects the greatest in absolute value of the
corresponding coefficients in each image (“max-abs” rule).
This process seems to convey all the information about the
edges to the fused image, however, the intensity information
in constant background areas seems to be distorted. In con-
trast, fusion by the averaging rule averages the corresponding
coefficients (“mean” rule). This process seems to preserve the
correct contrast information, however, the edge details seem to
get oversmoothed, since averaging is generally a “low-pass”
filtering process. Finally, a Weighted Combination (WC) pixel-
based rule uses weights wk(t) to combine the different inputs
in the ICA representation. The weights should emphasize
sources with more intense activity, as represented by the L1-
norm. In our study, we used the “max-abs” rule, which seemed
to produce the best results in our problem.

C. Color channels fusion

For the selection of the HDR image colors, we present the
second fusion algorithm of multiple exposures into a high
resolution image by Mertens et al [2]. This technique merges
the input exposures in a manner guided by simple measures
of quality such as the saturation, the contrast and the level
of good exposure. First, we calculate the values of quality
measures in each pixel of the multiple exposures and then we
attach a weight that depends on all quality measures. Finally,
we combine these weights properly to produce an image with
enhanced features that includes all the information of multiple
entry exposures. The three quality measures are calculated as
follows:

• Contrast: applying a Laplacian filter to the gray version
of each exposure, we take the absolute value of the filter
response. This results in a simple index C for the contrast.
This method tends to define large weights on important
elements, such as edges and texture.

• Color saturation: As a picture is subjected to a greater
exposure, colors lose their sharpness and get saturated.
Saturated colors must be preserved as the image becomes
more vivid. For this reason, a measurement of color satu-
ration S is used, which calculates the standard deviation
of the R, G, and B channels for every pixel.

• Well-exposedness: The channel intensities reveal how
well each pixel is exposed. The purpose of this metric
is to keep the intensities that are not close to zero
(underexposed intensities) or one (overexposed). Each
pixel intensity x is weighted by a weight that depends
on how close is to 0.5, using the Gaussian curve:
exp((−(x−0.5)2)/(2σ2)) where σ is equal to 0.2. To take
account of the three color channels, the Gaussian curve
is applied to each channel and is multiplied resulting to
the measure E.

The information from the different metrics is combined
into a single weight map for each pixel using multiplication.
This is performed, because we need to take into account all
these factors simultaneously. We can control the effect of each
metric using a power function:

Wij,k = (Cij,k)
wC × (Sij,k)

wS × (Eij,k)
wE (3)

where C, S and are the contrast, color saturation and
well-exposedness, respectively, and wC , wS , wE are weighting
exponents of the metrics. The indices i, j, k refer to pixel (i, j)
of the k exposure. The fusion of K images can be done with a
weighted average for each pixel, using the weights calculated
from the quality metric. For a sensible result, the values of K
weight maps are normalized so that they sum to 1 for each
pixel (i, j).

In several cases, this simple weighted mixing of the input
image may produce negative results. When the weights vary
quickly, invalid combinations of the input images may appear.
To solve this problem, the input images are decomposed in
a Laplacian pyramid, which consists of band-pass filtered
versions at different scales and then mixing is carried out for
each level separately. Finally, the pyramid is reconstructed to
obtain the fused image. The blending of multiple scales is
quite effective in preventing strange assembly lines, because
it combines the characteristics of the image instead of raw
intensities.

D. Reconstruction and Post-Processing

The outcome of the two fusion algorithms are three images:
one representing the fused luminance Y channel and two rep-
resenting the fused color Cb, Cr channels. The three channels
are combined and transformed to the RGB system, which gives
the final fused image.

Modern HDR applications offer a wide range of post-
processing options that can enhance the color balance in
the fused image, even create surrealistic scenes containing
very vivid colors. The proposed system features a number
of optional post-processing steps that can be applied to the
fused image: a) edge and detail processing (Highlights and
shadows), b) color enhancement (Auto Color Saturation) and
c) sharpness improvement (Local Contrast Adjustment). Edge
and detail processing is achieved using bi-lateral filtering [10].
Auto Color Saturation is performed by boosting saturation
using a patented method, described in [11]. For sharpness
improvement, the common unsharp mask is used. Finally, the
Orton effect can be implemented with a series of elementary
image processing filter, following the method described in
[12].

III. EXPERIMENTS

In this section, we evaluate the performance of the proposed
hybrid multiple exposure image fusion system. We compare
the proposed model with four advanced fusion algorithms:
1) Multiple exposure fusion based on Illumination Estima-
tion [3], 2) Image fusion via quality metrics (Mertens) [2],
3) Fusion based on bilateral filtering (Raman) [13] and 4)



Fig. 2. Ten images from various databases and personal photography that
were used in our experiments.

Dynamic Photo HDR, which is a commercial application. The
proposed algorithm is called Hybrid HDR, since it combines
two methods to produce the fused image. The method’s devel-
opment and performance comparison were performed in the
MATLAB 2015a programming environment. For the proposed
HybridHDR system, we used a neighborhood of 7 × 7 local
patches for the ICA fusion framework, without dimensionality
reduction and no post-processing. The developed system can
be downloaded online1. MATLAB implementations for all
the other methods were traced online, either at the authors’
website or at the Mathworks resource center website.

To evaluate and compare the different algorithms with the
proposed Hybrid HDR method, we applied the Image Quality
Assessment (IQA) model of Ma et al [14], which is based on
the principle of the structural similarity approach and a novel
measure of patch structural consistency. This model gives a
maximum score of 1 to the best fusion result. We have chosen
10 sequences of exposures, covering diverse content including
exterior views, natural landscapes and artificial architectures.
Some of them were selected from common multiple-exposure
datasets, whereas some others were photographed by the
authors and are freely available for download2. All input
images are shown in Figure 2 and they contain 3 exposures
(under-exposure, over-exposure and normal exposure) between
the cases. The results are presented in Table I.

As it can be seen from the results, the fusion method based
on the illumination estimation has on average the best score.

1http://utopia.duth.gr/nmitiano/download.htm
2http://utopia.duth.gr/nmitiano/download.htm

Fig. 3. Comparison of the four MEF algorithms using the “SeaRock” images.

The proposed Hybrid HDR nearly reaches the best quality,
followed by the Dynamic Photo HDR application and Mertens
algorithm. The method, which is based on bilateral filtering
(Raman) gives the worst results, which are also reflected
perceptually, if we compare visually all the results. The latter
method fails to adequately convey small details and color
information of the input images in the fused image. Subjective
evaluation can be performed by looking at some indicative
fusion results depicted in Fig. 3, 4 and 5. It is promising to
see that the proposed HybridHDR outperforms the Mertens
method, which implies that the ICA fusion for the luminance
channel outperforms and improves the traditional Mertens
method.

Therefore, we conclude that the proposed method gives, in
accordance with the quality metric evaluation of the previous
paragraph, better fusion results compared to many techniques
that have been developed to date. Finally, it should be noted
that although the algorithm based on the Illumination Esti-
mation has a better average score than the proposed model
(Hybrid HDR), it tends to show artificial objects around the
edges, which results to intense brightness fluctuations (Fig.
3, 4 and 5 ). This is due to the fact that the algorithm doesnt
have a perceptually correct representation of the physical scene
at these points, but we reckon that it shows a higher rating,
because the quality assessment model applied does not take
account of the brightness components.

IV. CONCLUSIONS

In this paper, the authors propose a Hybrid multiple expo-
sure algorithm, by combining a traditional image fusion algo-
rithm and the Mertens et al algorithm. The first is used to fuse
luminance input channels, whereas the latter is used to fuse
color channels Cb and Cr. The proposed algorithm outperforms
Mertens algorithm in most cases, and scores favourably with
the Illumination Estimation method. The authors are looking to



TABLE I
QUALITY ASSESSMENT OF DIFFERENT MULTIPLE EXPOSURE FUSION ALGORITHMS.

Method Flowers Mask SeaRock Paris SecretBeach Garden Kluki Hill OldHouse SeaCave Average
Illumination Estimation [3] 0.9675 0.9531 0.9562 0.9643 0.9624 0.9536 0.9605 0.9665 0.9669 0.9706 0.9621

HybridHDR 0.9720 0.9748 .09444 0.9662 0.9381 0.9588 0.9552 0.9671 0.9770 0.9641 0.9617
DynamicPhoto 0.9705 0.9777 0.8822 0.9698 0.9360 0.9724 0.9652 0.9686 0.9753 0.9491 0.9566

Mertens [2] 0.9642 0.9323 0.9316 0.9522 0.9508 0.9369 0.9601 0.9386 0.9743 0.9336 0.9474
Raman [13] 0.9064 0.9163 0.8964 0.853 0.9270 0.9010 0.8988 0.9166 0.9591 0.8813 0.9088

Fig. 4. Comparison between the HybridHDR and the Illumination Esti-
mation method for three image sets. One can see more halo artifacts in the
Illumination Estimation method.

Fig. 5. Comparison of the four MEF algorithms using the “Venice” images

expand the method, by following a strategy to remove possible
halo artifacts from the fused image.
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