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Abstract 

 

This paper investigates the potential of using a novel Hermite polynomial neural network to model 

shoreline realignment along an urban beach fronted by a highly irregular beachrock reef. Modeling 

takes place on the basis of a number of input variables related to reef morphology and wave forcing, 

whereas the output variable is time series of shoreline position that have been recorded in high 

spatio-temporal resolution using a coastal video monitoring system. The main network functionality 

is the generation of Hermite truncated polynomial series of linear combinations of the input 

variables, and output is calculated as the weighted sum of these truncated series. It is shown that the 

proposed network can approximate any continuous function defined on a compact set of the 

multidimensional Euclidean space to arbitrary accuracy. The network is optimized in terms of a 

modified artificial bee colony method. For comparative reasons, three more related neural networks 

have been tested that have been optimized by employing different swarm intelligence-based 

algorithms. Comparison between the four networks has been carried out by standard performance 

criteria and detailed parametric statistical analysis. Main results of the study are: (a) polynomial 

orders 3 and 4 are able to effectively handle reasonably well the high nonlinear effects imposed by 

the presence of the reef; (b) the statistical analysis indicates that the proposed network outperforms 

the other networks tested; and (c) model efficiency improves noticeably when beach sections behind 
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reef inlets and/or particular wide sections of the reef that introduce high shoreline variability are not 

considered.   

Keywords: Hermite polynomials, polynomial neural network, artificial bee colony method, beach 

shoreline realignment, perched beach, coastal video monitoring.  

 

1. Introduction 

In embayed (‘pocket’) beaches, periodic beach alongshore sediment movement towards opposing 

directions can occur in response to shifts in the direction of incident waves; this can result in 

realignment of the shoreline [56, 57] that could manifest as an apparent rotation of the beach 

planform [28]. In recent decades, this process has been documented in many beaches (e.g. [52, 53, 

57]) and suggested to be an important self-regulatory beach mechanism [28] under changing wave 

regimes [10, 46, 55]. Beach shoreline realignment is a non-linear process, dependent not only on the 

longshore sediment fluxes, but also on the longshore variability in the cross-shore sediment fluxes 

[18, 57]. It is also controlled by the nearshore bed morphology, with particularly complex patterns 

occurring at perched beaches (i.e. beaches underlain and/or fronted seaward by shallow buried 

and/or outcropping natural reefs or engineered hard structures [13, 16]), a beach type that 

proliferates along the global coastline. At such beaches, in addition to the changing wave forcing, 

shoreline realignment is also dependent on the nearshore bed morphology (e.g. the distance and 

dimensions of the offshore natural reefs or engineered structures) the interaction of which with the 

incoming waves can produce complex, non-linear nearshore flows [14, 50, 59]. It appears that 

modeling of the shoreline realignment in perched beaches requires approaches capable of capturing 

the high non-linearities of the system and which can model beach morphological response on the 

basis, if possible, of a minimum number of environmental parameters.  In recent years, a promising 

approach has been to employ neural networks [2, 19, 23, 27, 43].  
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Polynomial neural networks (PNNs) constitute a class of neural networks that use high-order 

functional representations to establish highly nonlinear input-output relationships. They are formed 

by embedding polynomial functions into the network’s topology. PNNs have been shown to form 

effective frameworks in a wide range of applications, such as stock market predictions [31], 

nonlinear channel equalization [42], classification problems [36], solving differential equations [34], 

system identification [41, 45], and shoreline extraction from video images [43, 48, 49, 60].  

Various types of PNNs have been developed so far. Pao [39] introduced the functional link neural 

network (FLNN), a single-layer network without hidden layers. FLNNs are formed by tensor-based 

series expansions of the input variables, whereas the output is estimated as the aggregate of the 

weighted sum of the above expansions. Later studies incorporated Chebyshev [29, 41, 45] and  

Legendre polynomials [31, 34, 42] into the structure of FLNNs. The use of ridge polynomials in 

constructing feedforward networks was discussed in [51]. Oh et al [38] employed Kolmogorov-

Gabor polynomials to design radial basis function (RBF) networks trained by sophisticated 

evolutionary computation procedures, whereas Rigos et al [48] defined the connection weights in the 

output layer of an RBF network through a specialized Chebyshev polynomial structure. The 

implementation of the group method of data handling [24, 35] in the designing fuzzy PNNs was 

studied in [22, 40]; the network was obtained through a dynamic process and included several layers, 

each of which consisted of a set of multi-input single-output nodes with polynomial activation 

functions. A major difficulty associated with the implementation of these networks has been that the 

number of parameters grows fast with the number of input variables.  

To address the above difficulty and reduce the number of polynomial parameters, Ma and Khorasani 

[33] used Hermite polynomials in a more straightforward manner, i.e. as node activation functions, 

with the inputs to the polynomials being linear combinations of the input variables. A similar 

approach was investigated by Rigos et al [47], who embedded non-linear constraint optimization to 
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appropriately normalize the input-side weight parameters of Legendre polynomial activation 

functions. A problem associated with both the above approaches is that the inputs to different 

polynomial activation functions are different to one another, as each linear combination of the input 

variables enters a single polynomial activation function, meaning that the resulting series expansion 

is not exact [33]. Hence, the polynomial representations might be compromised, influencing 

negatively the approximation capabilities of the network.  

In the present contribution, Hermite polynomials are employed to define the activation functions, 

and the above problem is addressed as follows. Linear combinations of the input variables are 

created, each of which corresponds to an inner product operator. Then, contrary to the approaches 

developed in [33, 47], we do not insert each linear combination into a single polynomial activation 

function, but expand it into a Hermite polynomial truncated series and the output is defined as the 

weighted sum of these series. The proposed network is used to model the shoreline 

realignment/rotation of an urban island beach fronted by a natural reef (Ammoudara, Crete, Greece, 

see Fig.1) using a number of environmental variables. The input variables of the proposed network 

are basic morphological characteristics of the fronting reef and the offshore wave forcing, whereas 

output is the shoreline position time series, which were recorded in high spatio-temporal resolution 

using a coastal video monitoring system.  

Main contributions of the study are related to the: development of a novel Hermite polynomial NN 

to model the shoreline realignment at a reef-fronted beach that exhibits complex nearshore 

processes; and the acquisition of accurate nearshore bathymetric information and shoreline position 

and offshore wave data time-series which are then systematically analysed to generate input-output 

data sets that can meaningfully describe beach shoreline realignment/rotation.  
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The paper is structured as follows. The experimental setup and network’s input/output variables are 

described in Section 2, whereas Section 3 describes the structure of proposed neural network. The 

study results and discussion are reported in Section 4. Finally, the paper concludes in Section 5.  

 

2. Study Area and Data  

2.1 Study area 

Ammoudara is a 6.1 km long, urban beach, located to the west of the port of Heraklion, Crete, 

Greece (see Fig. 1). The perched beach can be divided into two main sectors. At the western sector 

(about 1.5 km), beachrock (i.e. lithified beach sediments [61]) is found at or close to the beach face, 

whereas at the eastern sector (about 4.6 km long) beachrock forms a submerged reef oriented almost 

parallel to the coast with a varying width and distance from the shoreline (Fig. 1). Dry beach widths 

range between 22 and 75 m along the beach, with the inner beach associated with low sand dunes, as 

well as extensive human development. Beach face gradients vary, with the steeper gradients (5–8
o
) 

found at the east, where the dry beach forms on sands and gravely sands. Ammoudara beach is 

exposed to winds and waves from the northern sector and analysis of the available historical 

information has shown that it has experienced significant shoreline retreat and sediment loss since 

1960. Shoreline retreat of 10-60 m has been recorded with longer retreats found at the eastern 

section, suggesting that, at least, part of the now submerged reef was originally at the beach face and 

left behind due to beach erosion [3, 4]. Recent research has shown that the shoreline position at the 

eastern section of the beach, is characterized by high spatio-temporal variability [59].   

 

2.2 Experimental Setup and Data Acquisition 

The nearshore bed morphology of the eastern Ammoudara beach was resolved by a highly detailed 

bathymetric survey in late October 2014. The nearshore bed (down to water depths of about 6 m) 
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was surveyed using a dense grid (up to 20 m spacing) of cross- and long-shore bathymetric transects; 

further offshore (to a depth of about 12 m), a coarser grid was used.  

 
Figure 1. (a), (b) and (c) Ammoudara beach, Crete and locations of the offshore POSEIDON E1-M3A wave buoy and of 

the video monitoring (optical) system at the eastern margin of the beach; the monitored beach area is shown by a red 

square. (d) Detailed bathymetry of the monitored area showing the complex reef architecture; vertical lines correspond to 

the 34 cross-shore sections analysed. (e) TIMEX image, showing also the location of video monitoring system, and the 

extent of the analysed shoreline (noted by a black curve superimposed on the shoreline). 

 

Data were obtained through a single-beam digital Hi-Target HD 370 echosounder and a Differential 

GPS (Topcon Hipper RTK-DGPS) deployed from a shallow draft inflatable boat; additional 

information on seabed elevation was collected by divers over areas of very shallow/outcropping reef 

crests. The dry beach morphology (down to water depths of about 0.8 m to overlay/‘tie’ the 

topographic and bathymetric transects) was recorded using a dense grid of RTK-DGPS cross- and 

long-shore topographic transects. Detailed shallow side scan sonar and bed sediment sampling 

surveys were also carried out, which have shown that the bed sediments inshore of the reef consist of 

patches of poor/moderately sorted, gravely sands and sandy gravels (median size diameters (d50s) 

between 1.8 and 2.7 mm) and offshore of the reef mostly of sands. Seabed sediment thickness varies, 

with extensive areas of the seabed forming on outcropping beachrock, being devoid of surfacial 

sediments; generally the beach sediment wedges seaward towards the outcropping beachrock reef. 
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The morphological information, following standard corrections, was used to generate an accurate 

beach digital elevation model (DEM)/map. Morphological characteristics of 34 cross-shore profiles 

along or very close to actual topographic/bathymetric transects were recorded to provide input 

parameters for the proposed neural network (Fig. 1(d)).  

 

 
Figure 2. Selected cross-shore section (dashed line in Fig. 1(d)), showing the variables used to describe the reef 

architecture and the morphological inputs to the proposed network. The network’s output y, i.e. the crest reef-shoreline 

distance, is also shown. Note: the reef profile has been smoothed through interpolation.  

 

The morphological characteristics selected as input variables are (Fig.2): the water depth d  of the 

crest of the submerged reef, the reef onshore and offshore slopes ( 1  
and 2 , respectively) and the 

reef width w  at 1.2 m water depth. The aforementioned morphological features are considered as 

important controls on wave breaking and transmission over both natural and engineered submerged 

reefs (e.g. [8, 14, 32]) and, thus, on the wave energy distribution along the shorelines they front. 

Note that no input variable related to the texture of beach sediments has been selected, although 

sediment texture also forms a significant control of beach morphodynamics. This is due to the very 

patchy distribution (and, in many areas, absence) of the seabed sediments that does not allow 
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selection of a sediment size that could reasonably represent the bed sediments along the cross-shore 

sections.  

With regard to wave forcing inputs, these were abstracted from the information collected by an 

offshore wave buoy (POSEIDON E1-M3A buoy), located about 35 km to the north of the study area 

(35.66
o
 N and 24.99

o
 E) at 1440 m water depth (Fig. 1(b)) and installed/operated by the Greek 

National Centre for Marine Research (NCMR). Three wave parameters were considered as network 

input variables, namely the significant wave height ( SH , in m), the peak wave period ( PT , in 

seconds), and the wave steepness ( So ) that quantifies the wave height/wave length ratio. Their daily 

values were used, for periods with waves from the northern sector (i.e. waves affecting the beach) 

and for which there was available concurrent information on beach shoreline positions from the 

coastal video monitoring system.    

Time series of shoreline positions at the 34 selected cross-sections were provided by a coastal video 

monitoring system deployed at the eastern margin of Ammoudara beach (Fig. 1). The system 

consisted of three PointGrey FLEA-2 cameras, installed at 26 m above the mean sea level, and a 

field station PC. Hourly 10-min bursts were obtained during daylight with an image acquisition rate 

of 5 Hz. From this imagery, time-averaged (TIMEX) images, i.e. time averages of the bursts’ 3000 

snapshots defined on the red–green–blue (RGB) colour model [1, 21], were produced. As accuracy 

decreases with the distance from the camera due to the increasing pixel footprint, images from the 

proximal beach stretch (1400 m long) have been considered (Fig. 1(e)); in this area, pixel footprint 

(and accuracy of shoreline detection) was always < 0.5 m.  

Images were geo-rectified through standard photogrammetric methods, including the calibration of 

the cameras’ intrinsic parameters (distortion) and estimation of extrinsic parameters on the basis of 

an extensive set of ground control points (GCPs), collected during a dedicated RTK-DGPS 

topographic survey. All images were projected to real-world coordinates, and as multiple cameras 
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were used, geo-referenced mosaics were generated with 0.5 m resolution. Since image intensity at 

the shoreline is associated with the wave foam on the swash zone, the weighted mean positions of 

the innermost zones of high intensity (as manifested in the TIMEX imagery) were used as records of 

the shoreline position at the 34 selected cross-shore sections (Fig. 1) during the hourly 10-min bursts 

(for further details of the image processing methodology see [59]). In all, 1430 TIMEX mosaics in 

122 days were obtained in the period between the 1
st
 January and the 5

th
 November 2014; periods of 

system downtime and/or periods with no recorded waves from the northern sector were ignored. 

Using these mosaics, daily average shorelines were estimated, and shoreline positions at the 34 

cross-sections recorded. From this information, the cross-shore distances y  between the shoreline 

and the fronting (fixed) reef crest (see Fig. 2) were estimated; these distances and their variability in 

time and space define shoreline realignment/rotation and form the output to the proposed network.   

In summary, the input variables selected for the proposed neural network are 1x d , 2 1tanx  , 

3 2tanx  , 4x w , 5 Sx H , 6 Px T , and 7x So , and the output variable y , (the distance (in m) 

between the reef crest and the shoreline). In total, 4148N   input-output data were generated, 

having the form:   1 2 3 4 5 6 7, | , , , , , , , , 1,2,...,T

k k k k k k k k k k kS y x x x x x x x y k N     x x . The 

input-output data are available in http://erabeach.aegean.gr/datasets/. 

 

3. The proposed Neural Network  

The proposed neural network comprises four layers (Fig. 3). In a nutshell, Layer 1 creates linear 

combinations of the input variables. In Layer 2, each linear combination enters a set of Hermite 

polynomials up to the n  -th order and in Layer 3 the corresponding truncated series are generated. 

Finally, Layer 4 sums up the weighted truncated series and estimates the network’s output.  

http://erabeach.aegean.gr/datasets/
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A modified artificial bee colony (ABC) algorithm is used to minimize the network’s square error, by 

optimizing all weight parameters. There are several reasons for using the ABC method [17, 25, 63]. 

First, ABC is a stochastic optimization paradigm, part of the assembly of swarm intelligence-based 

algorithms. In addition, it is capable to effectively optimize non-differential and non-continuous 

functions with continuous and/or discrete variables. Secondly, the strategy used to exploit possible 

solutions can avoid premature convergence. Thirdly, it can be used as a global optimizer which in 

effect can efficiently cope with highly complex and non-linear problems. Finally, it appears to be 

insensitive to initialization, regardless the location/distribution of the initial values.       

 

3.1 Artificial Bee Colony (ABC) Method 

The ABC method has been gaining increasing popularity during the last decade [17, 25, 30]. It 

involves SN  food sources, the positions of which are represented by q -dimensional vectors: 

q

i fs . Different types of bees, are considered, i.e. employed and onlooker bees, as well as scout 

bees. Each employed bee is associated with a specific food source (i.e. there exist SN  employed 

bees) and, typically, the number of onlooker bees is set equal to the number of employed bees; thus, 

the size of the colony is 2CS SN . Food sources are randomly initialized and the employed bees 

produce candidate solutions according to the rule: 

 ij ij ij ij kjfs fs fs                            1 i SN                              (1)
 

where 1 2 ...
T

i i i iq     υ is the position of the i th food source recommended by the 

corresponding employed bee, ij is randomly generated by a uniform distribution within the interval 

 1, 1  , j   is a random integer in  1, q ,  and k  is a randomly generated integer in  1, SN , which 
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must be different than i  . Based on the evaluated fitness functions, a greedy selection between iυ  

and ifs  takes place. Hence, for each food source a probability is calculated: 

1

Pr i
i SN

j

j

Fitness

Fitness





                    1 i SN                                  (2) 

where iFitness  is the value of the fitness function for the i th food source. Based on these 

probabilities, each onlooker bee visits a food source according to a roulette wheel selection 

mechanism, and generates a candidate solution according to eq. (1). Once again, a greedy selection 

takes place. If the number of times a food source fails to be updated is greater than a predefined 

integer number, symbolized as Limit , the corresponding employed bee becomes a scout bee and 

commences searching for a new food source from scratch, by reinitializing its position.  

In general, two properties decide the effectiveness of a swarm intelligence algorithm, namely 

exploitation and exploration. The former refers to the effective incorporation of old good solutions in 

the search for improved solutions. The latter concerns the ability of exploring different regions in the 

feature space. Implementation of eq. (1) along with the onlooker and scout bees’ phases increases 

the exploration performance of the method [30]. On the other hand, exploitation capabilities may be 

compromised, as, due to the rule described by eq. (1), an old solution may move towards a randomly 

selected food source without any guarantee for its quality. To improve the ABC exploitation 

capability, Zhu and Kwong [63] modified eq. (1) as:  

   ,ij ij ij ij kj ij best j ijfs fs fs fs fs                                                                       (3)  

where ,1 ,2 ,, ,...,
T

best best best best qfs fs fs   fs is the food source position with the best solution so far, and 

ij  is a random number within the interval  0,  , with 0   choosen by trial and error.  
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However, implementation of eq. (3) is carried out only in terms of a randomly chosen dimension (i.e. 

the j th dimension). Therefore, while eq. (3) is expected to improve the exploitation performance, its 

effect may be weak. In order to address this difficulty and inspired by particle swarm optimization 

(PSO) (see Appendix B), we propose a modification in the learning condition (eq. (3)) by 

considering the following vector-based approach. The point-wise product between two vectors 

1 2, ,...,
T

qx x x   x and 1 2, ,...,
T

qy y y   y  is defined as:  

1 1 2 2, ,...,
T

q qx y x y x y   x y                                             (4) 

Then, the vector-based modification of (3) is given by the subsequent rule:  

   i i i i k i best i    υ fs Ψ fs fs Θ fs fs                                 (5) 

with 1 2, ,...,
T

i i i iq     Ψ , where ij  is a random number in 1,1 , and 1 2, ,...,
T

i i i iq     Θ
 

where ij  is a random number in [ , 2]   and  1, 0   with a typical value 0  . Note that, 

according to eq. (5), both employed and onlooker bees attempt to update the position of a food 

source with respect to all dimensions of the vector. This, in turn, will effect movement of the food 

source ifs  towards the vectors bestfs  and kfs , ensuring an efficient exploitation of the feature space.  

 

3.2 Structure of the Proposed Network 

Before presenting the proposed network, a brief description of the Hermite polynomials is provided. 

The Hermite polynomials emerge from the differential operation [6]: 

     2 2

1
n

n x x

n n

d
H x e e

dx

                                                                                                               (6) 

with n  being the polynomial order. They are orthogonal in  ,   with respect to the exponential 

function 
2xe

 [6]:  



  

 13 

       
2 0 ,

,
2 ! ,

x

n r n r n

if n r
H x H x e H x H x dx

n if n r







  


                    (7) 

where ,  stands for the inner product. The individual polynomials can be derived by the following 

recurrence relations:   

 0 1H x                                             (8) 

 1 2H x x                             (9) 

     1 22 2( 1)n n nH x xH x n H x                       (10) 

It can be easily shown that the n  -th order polynomial can be expanded as truncated series, 

 
0

n
k

n nk

k

H x x


                      (11) 

where the coefficients are recurrently estimated as:  

 1, 1 1, 1

1, 1

2 1 , 0

, 0

n k n k

nk

n k

k if k

if k

 




   

 

   
 

 

                      (12) 

with 00 101, 0   , and 11 2  .   

Utilization of Hermite polynomials in the design of neural networks appears to have certain 

advantages compared to other orthogonal polynomials like e.g. the Chebyshev, Legendre, and 

Laguerre polynomials which are orthogonal within bounded intervals. Using polynomial activation 

functions with bounded input ranges requires normalization of the corresponding input-side weight 

vectors which may negatively affect the efficiency of the PNN, particularly when the procedure 

involves regression and classification tasks [33]. In contrast, Hermite polynomials are orthogonal in 

the whole range of real numbers (i.e. in  ,   ), a property that makes the learning process 

unconstrained and easier to handle.   
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The proposed network structure comprises four layers (Fig. 3). Layer 1 includes a set of m  nodes, 

each of which sums up the weighted input variables. By defining the matrix of the input-side weight 

parameters as:  

11 12 1 1

21 22 2 2

1 2

...

...

... ... ... ... ...

...

T
p

T
p

T
m m mp m

  

  

  

  
  
   
  
  

      

α

α
A

α

                                                                                                   (13) 

the i  -th node creates the inner product: 

1

,
p

T

i i ij j

j

x


 α x α x          1 ; 1i m j p                                                                         (14) 
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Figure 3. Topology of the proposed Hermite polynomial neural network. 

 



  

 15 

In Layer 2, each inner product enters a set of n  neurons with activation functions the Hermite 

polynomials up to the n  -th degree:  ,iH α x  for 0,1,...,n . The above polynomials are, then, 

weighted by the parameters  1 , 1i i m n      and processed in Layer 3 that consists of m   

summation nodes. Each of these nodes generates a truncated Hermite polynomial series of the 

corresponding inner product:  

   
0

,
n

i i ig H


x α x                                                                                                                (15) 

The above functions are once more weighted using the parameters  1i i m    and elaborated 

further in Layer 4 that finally provides the network’s output:  

   
1 1 0

,
m m n

i i i i i

i i

y g H  
  

  x α x                                                                                         (16) 

Next it is demonstrated that the proposed network can uniformly approximate any continuous 

function defined on a compact subset of the Euclidean space 
p .  

 

Definition 1 (Shin and Ghosh [51]). Let  C f  be the vector space of all continuous real valued 

functions defined on a compact subset   of the Euclidean space 
p , and 

pa  be a parameter 

vector. Then, all functions of the form  , :f x a , with 1 2, ,...,
T

px x x    x ,  are called 

ridge functions. In addition, a ridge polynomial is a ridge function, which is expanded as 

 
0 1

,
n m

k

ik ik

k i

P 
 

x x a                                                                                                                  (17) 

with 
p

ik a , and ik  .   
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Shin and Gosh [51] have shown that ridge polynomials are able to uniformly approximate any 

continuous function defined on a compact subset of the Euclidean space p to arbitrary accuracy.  

It can be shown (Appendix A) that the network’s output (i.e. eq. (16)) can be equivalently written in  

the form 

0 1

,
n m

k

ik i

k i

y 
 

 α x                                                                                                                          (18) 

with 

n

ik i i k

k

   


                                                                                                                                  (19) 

It thus appears that the output y  is a ridge polynomial and, therefore, the proposed network is able 

to approximate any continuous function defined on a compact subset of 
p to arbitrary accuracy. 

Given a set of N  input-output data pairs   , | , , 1, 2,...,p

k k k kS y y k N   x x , the 

performance of the network can be evaluated by the corresponding square error:   

 
2

1

N

SE k k

k

J y y


                                                                                                                             (20) 

where ky  is calculated in eq. (16) or eq. (18). 

11 mp
12 10

11
2 m1… ……

mn
 

Figure 4. The structure of the food source. 

 

Optimization of the network’s parameters is achieved by employing the ABC method using the 

updating rule (eq. (5)) to minimize the above error. In each food source, the whole set of the weight 

parameters is encoded, yielding the string structure depicted in Fig. 4, where the dimension of the 

resulting search space is:   

 2q m p n                                                                                                                                  (21) 
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3.3 Computational Complexity 

The computational complexity due to the addition and multiplication operations performed by the 

proposed network is now discussed. The starting point is eq. (14), for which the number of 

multiplications and additions is 2 1p  . Thus, the total number of operations involved in the 

calculation of all of the quantities ,iα x  for 1, 2,...,i m  is 

 1 2 1T m p                                                                                                                                    (22) 

In addition, the multiplication and addition operations involved in the estimation of the sum 

n

i k

k

 


  (eq. (19)) are equal to ( 1)n k   and n k , respectively, and if the multiplication of the 

parameter i , is considered, then  2 1n k   operations are required for determining the parameter 

ik . Thus, to calculate all parameters ik  for 0,1,...,k n  and 1, 2,...,i m , the total number of 

operations is  

      2

0

2 1 1 2
n

k

T m n k m n n


                                                                                             (23) 

Having calculated the quantities  1 , 1ik i m k n      and  , 1i i m α x , the numbers of 

additions and multiplications for estimating the sum 
0

,
n

k

ik i

k




 α x are equal to n  and 
1

n

k

k


 , 

respectively. Thus, the number of operations involved in eq. (18) is 

 
3

1

2 1

2

n

k

n n n
T m n k m



  
   

 
                                                                                                 (24) 

In view of (22)-(24), the total number of operations performed by the proposed network is, 

    2

1 2 3

1
4 2 3 9

2
T T T T mp m mn mn                                                                                 (25) 

Since,   4 2mp m mp  and  2 23 9mn mn mn , the computational complexity of the network is, 
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    2 2O mp mn O m n p                                                                                                           (26) 

Generally, in order to effectively capture the nonlinearities of a given data set, n  is not required to 

take large values, particularly as overfitting problems may also emerge.  

With regard to the implementation of the ABC method, a most dominant effect is associated with the 

network’s evaluation process in eq. (25)). Since, in each iteration of the ABC, the network is 

evaluated as many times as the number of employed plus the onlooker bees (scout bees form a 

subset of the employed bees’ set), the overall computational complexity per iteration of the proposed 

methodology becomes   2O CS m n p , where CS the colony size in the ABC algorithm.  

 

4. Results and Discussion   

4.1 Simulations  

Based on the analysis presented in Section 2, the available data set includes 4148N   input-output 

data pairs of the form  
1

;
N

k k k
y


x  with 1 2 7...

T

k k k kx x x   x  and ky  . Thus, the 

dimensionality of the feature space is 7p  . The ABC parameters were selected as 20CS  , 0  , 

and 0.5* *Limit SN q , where q  is given in (21).   

To assess the effectiveness of the method, three more networks were considered for comparative 

purposes. First, the Hermite feedforward PNN developed by Ma and Khorasari in [33] which 

encompasses one hidden layer of m nodes (to avoid confusion, this Hermite network will be referred 

to hereafter as ‘Hermite PNN’ and the one developed in the present study as ‘proposed network’). In 

the Hermite PNN, the input layer creates m  linear combinations of the input variables using a set of 

weights. The i -th combination enters only the node with activation function the Hermite polynomial  

 iH x   1 i m   and the network’s output is calculated as the weighted sum of the above 
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polynomials (for a detailed analysis see [33]). Herein, all weight parameters of the Hermite PNN are 

optimized by minimizing the square error using the differential evolution (DE) algorithm [44] and 

the parameters of the DE have been chosen as: 20Np  , 0.6Fr  , and 0.9Cr   (for a brief 

description of DE and the nomenclature used refer to Appendix B).   

The second network tested is a Legendre PNN introduced by Rigos et al in [47]. As in the case of the 

Hermite PNN, it includes a hidden layer that comprises m  nodes with activation functions Legendre 

polynomials up to the m -th polynomial order. The input layer produces linear combinations of the 

input variables, each of which enters only one polynomial activation function. Since Legendre 

polynomials are orthogonal in the interval  1, 1 , their inputs are appropriately normalized by 

confining the input-side weight parameters within a predefined domain of values. All synaptic 

weights are optimized by a standard ABC algorithm that uses the learning rule of eq. (3). The 

parameter values for the ABC are selected as 20CS  , and 0.5* *Limit SN q . 

The third network is a Radial Basis Function neural network (RBFNN), the parameters of which are 

estimated by employing particle swarm optimization (PSO) [9] (see also Appendix B). Using the 

notation of Appendix B, the parameters for the PSO were selected as: 20Np  ,   was randomly 

selected in  0.5, 1 , 1 2 2   , and 2L  .    

The performance of the tested networks was evaluated by the root mean square error:  

2

1

1 N

k k

k

RMSE y y
N 

                                                                                                                  (27) 

In the experiments, data were randomly divided into a training set consisting of the 60%, and a 

testing set consisting of the remainder 40% of the original data set. The four neural networks were 

compared for numbers of hidden nodes varying between 2 and 10, i.e. 2,3,...,10m  . In addition, for 

the proposed network, the polynomial order was varying between 2 and 5, i.e. 2,3,4,and 5n  .  
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Table 1. RMSEs and corresponding standard deviations obtained by the proposed network for various numbers of 

nodes ( )m
 
and polynomial orders ( )n

 
 

# Nodes 

( )m
 
 

2n    3n    4n    5n    

Training Data 

2 6.5500 0.3404 6.0714 0.2319 6.1233 0.2614 6.1859 0.2813 

3 6.1277 0.2702 5.6156 0.3072 5.7621 0.4877 5.8440 0.5054 

4 6.0395 0.2316 5.5343 0.4975 5.5139 0.5943 5.6155 0.5650 

5 6.1283 0.2354 5.5114 0.3671 5.4801 0.3927 5.7297 0.3942 

6 6.0513 0.1949 5.6428 0.4227 5.6273 0.4044 5.8285 0.4809 

7 6.1968 0.1956 5.8202 0.4059 5.8167 0.4375 5.7872 0.4472 

8 6.1363 0.3143 5.8520 0.4272 5.7423 0.3681 5.9915 0.3088 

9 6.3233 0.2751 5.8260 0.3679 5.7284 0.4465 5.9468 0.4257 

10 6.3548 0.2406 5.9114 0.3471 5.6539 0.3900 5.9404 0.3598 

 Testing Data 

2 7.5409 0.2717 7.3954 0.3003 7.3077 0.4142 7.4799 0.2917 

3 7.1779 0.4349 6.6997 0.4182 6.8686 0.5798 6.9410 0.6657 

4 7.2024 0.3278 6.5705 0.6185 6.6016 0.7260 6.8036 0.4992 

5 7.2014 0.3083 6.5704 0.4906 6.5290 0.3972 7.0524 0.3001 

6 7.2011 0.2014 6.6770 0.5412 6.6779 0.4642 7.0057 0.5233 

7 7.3183 0.2676 6.9225 0.4660 6.9391 0.4031 7.0949 0.3668 

8 7.2598 0.3451 6.9553 0.4789 6.9552 0.3671 7.2300 0.3421 

9 7.4904 0.2885 7.0209 0.4031 6.8551 0.5299 7.0951 0.2701 

10 7.4395 0.3869 6.8815 0.3577 6.6856 0.5446 6.9202 0.3256 

 

Table 2. RMSEs and the corresponding standard deviations obtained by the proposed network  

for various numbers of nodes ( )m
 
 

# Nodes 

( )m
 
 

Hermite PNN Legendre PNN RBF NN 

Training Data 

2 13.4106 2.8782 10.3176 0.8567 10.9265 0.4690 

3 9.4066 1.8315 10.0382 1.0957 10.6796 0.0879 

4 7.7167 1.9167 9.2737 0.8174 10.6412 0.0890 

5 7.6683 1.3192 9.3614 1.3644 10.5746 0.0976 

6 7.5587 1.3157 9.2451 1.5286 10.5318 0.0766 

7 6.8030 0.7428 9.0974 1.2664 10.4765 0.1111 

8 6.9952 0.8232 8.9176 1.5656 10.4345 0.1059 

9 6.3589 0.4126 9.2072 1.1807 10.4458 0.1002 

10 6.5115 0.5813 8.8851 1.3194 10.4378 0.0755 

 Testing Data 

2 14.1771 2.5615 10.4748 0.8061 10.9447 0.5937 

3 9.8489 1.7116 10.1846 0.9512 10.6387 0.1498 

4 8.4968 1.5980 9.5094 0.7539 10.5882 0.1592 

5 8.2854 0.9858 9.6321 1.9384 10.5088 0.1275 

6 8.2095 0.9066 9.4664 1.3467 10.4139 0.1557 

7 7.7270 0.4408 9.1570 1.2250 10.3272 0.1559 

8 7.7946 0.5844 9.0250 1.4221 10.3509 0.1410 

9 7.2342 0.4188 9.2797 1.2280 10.2689 0.1693 

10 7.2725 0.5427 9.1666 1.1610 10.2813 0.0807 
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For each network, each number of nodes and each polynomial order we evaluated all the networks 

by using 20 distinct runs with random initializations. Tables 1 and 2 report the resulting RMSEs and 

corresponding standard deviations.  

The best results for all nodes m  were obtained by the proposed network for polynomial orders 

3,4,and5n  . On the other hand, the Hermite PNN is competitive to the proposed network for 

2n  , whereas it clearly outperforms the Legendre PNN and the RBF NN which shows the worst 

performance in all cases. It appears that the most effective polynomial orders of the proposed 

network (showing the best performances in both the training and testing data) are orders 3n    

and 4n  . 

 

     
Figure 5. Mean values of the RMSEs (see Tables 1 and 2) for the testing data versus the number of nodes  

for the four networks. 

 

 

A more rigorous statistical analysis of the performance of the four networks was conducted with 

respect to the testing data, only. The case 4n    is considered for the proposed network, and values 

for the number of nodes as: 4,5,...,10m  . Fig. 5 shows the average RMSEs for each method by 

node. The proposed network does not show a decreasing trend in the average RMSE, whereas the 

other three networks do (particularly the Hermite PNN). 
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The distribution of RMSE is summarized in the boxplots shown in Fig. 6. It is evident that the 

RMSE values exhibit different variability for the four networks studied with the RBFNN showing 

the lowest variability. The pooled standard deviations in RMSE were equal to 0.5146, for the 

proposed network, 0.8938 for the Hermite PNN, 1.2265 for the Legendre PNN and 0.1472 for the 

RBF NN. 

method

nodes

RBF NNProposedLegendre PNNHermite PNN

10987654109876541098765410987654

12

11

10

9

8
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5

R
M

S
E

Boxplot of RMSE

 
Figure 6. Boxplots of the RMSEs for the four methods.  

 

A weighted two-way ANOVA model was fit to the data: 

   1,2,3,4; 4,5,...,10ij i j ijij
RMSE i j            , where i denotes the method and j   

the number of nodes, i  and  j  are the main effects for method and number of nodes, respectively, 

and  
ij

   is the method by node interaction effect. Heteroscedasticity due to differences in variance 

between methods was modelled assuming that ij  were independent error terms that followed a 

Gaussian distribution with mean  0 and variance 
2

i . The weights used in the two-way ANOVA 

were estimates of the inverse variance for each individual RMSE. Method-specific variances were 

estimated by pooling over the seven node levels for each method and equaled to the square of the 
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pooled standard deviations given in the previous paragraph (each estimate is associated with 133 

degrees of freedom). The weighted two-way ANOVA results are provided in Table 3. 

 

Table 3. Analysis of variance (ANOVA) 

Source 
Degrees of Freedom 

(DF) 
Adj SS Adj MS F-Value P-Value 

Method 3 7400.60 2466.87 2448.46 0.000 

Nodes 6 21.15 3.52 3.50 0.002 

Method*Nodes 18 54.66 3.04 3.01 0.000 

Error 532 536.00 1.01   

Total 559 8069.25    

 

 

The highly statistically significant interaction effects (p-value < 0.001) confirm that the effect of 

increasing the number of nodes is dependent on the method used (see also Fig. 5). It also shows that 

differences between methods depend on the number of nodes used and, thus, we cannot give a single 

estimate of the mean RMSE differences between two methods after controlling for the number of 

nodes. Instead, a multiple comparison procedure was carried out as a follow-up where the mean 

RMSE of the proposed network with 4m  nodes (the simplest computationally) was compared to 

all others. A Dunnett multiple comparison procedure yielded simultaneous 95% confidence intervals 

for the mean difference in RMSE between the proposed method with 4m  nodes and all other 

methods by nodes combinations (Fig. 7).  

On the basis of these results, it is suggested that there is: (1) no statistically significant effect for the 

proposed NN when using more than 4m  nodes, i.e. there is no significant gain in increasing the 

number of nodes above 4; (2) clear superiority of the proposed method when using 4m nodes over 

the Legendre PNN and RBF NN methods irrespective of their number of nodes (all adjusted p-

values associated with the comparisons were < 0.001); (3) superiority of the proposed network (4 

nodes) over the Hermite PNN with < 9 nodes (all adjusted p-values < 0.001); (4) a marginally 

significant difference in average RMSE in favor of the Proposed method (4 nodes) over the Hermite 
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PNN with 10 nodes (estimated difference = 0.671, adjusted 95% confidence interval (-0.023, 1.365), 

adjusted p-value = 0.067); and (5) a non-significant difference in average RMSE in favor of our 

Proposed method (4 nodes) over the Hermite PNN with 9 nodes (estimated difference = 0.633, 

adjusted 95% confidence interval (-0.062, 1.327), adjusted p-value = 0.107). 

 

 

Figure 7. Dunnett simultaneous 95% CIs for mean difference in RMSE between all method by node combinations 

(illustrated as method followed by number of nodes) and the proposed method with 4 nodes (control mean). If an interval 

does not contain zero, the corresponding mean is significantly different from the control mean.  

 

In summary, the proposed network performs efficiently for a small number of nodes (i.e. 4,5m  ), 

while it appears to reasonably model the nonlinearities of the problem utilizing a small polynomial 

orders (i.e. 3, 4n  ). Finally, in most of the simulation cases, it significantly outperforms the other 

networks.    
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4.2 Shoreline Realignment: Observations and Model Results   

In the previous section it was shown that the proposed network, and particularly its 4
th

 polynomial 

order, can model more efficiently shoreline realignment at the reef-fronted Ammoudara beach than 

all other neural networks tested. In this section, the ability of the proposed methodology to deal with 

the non-linearities and predict actual shoreline realignment on the basis of a limited number of 

environmental variables in this complex nearshore system is discussed.    

Concerning the spatial characteristics and their variability of the modeled beach the following can be 

observed. The fronting reef shows a complex architecture and large spatial variability. The distance 

y  of the reef crest from the shoreline and its depth d generally increase towards the east (Fig. 8). 

The reef width also varies, being greater towards the western and eastern margins of the monitored 

area, whereas there are also areas where the continuity of the reef is broken, forming reef inlets 

(Figs. 1 and 8) with the main inlet being approximately 130 m wide (at x about 327300-327450, 

cross-sections 20-24). The cross-shore shoreline position also showed significant variability in 

relation to the fronting reef along the 34 selected cross-sections during the 10-month monitoring 

period (Fig. 7); changes in y   (i.e. differences between the minimum and maximum y at a cross-

section) were found to range between 3.1 and 6.7 m. Main areas of increased y variability are 

associated with the reef inlets, with the variability being greater at the shoreline behind and to the 

west of the main reef inlet (at profiles 14-20, Fig. 8). In these areas, previous research has shown that 

complex, non-linear wave induced flows dominate [59].  

RMSEs between the observed and the modeled distances ( y ) between the reef crest and the 

shoreline were estimated to be less than 6 and 7 m for the training and testing data sets, respectively 

(Table 1), which are considered reasonable if the complexity of the domain and the small number of 

input variables utilized are taken into account. Model efficiency improves when cross-sections 

associated with inlets and/or particular wide sections of the reef are not considered. For example, in 
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the case shown in Fig. 8, RMSEs between modeled and observed shoreline position are 4.67 and 

5.48 m for the training and testing experiments, respectively. When cross-sections that are associated 

with reef inlets or the particularly wide section of the reef at the eastern margin of the beach (profiles 

20, 21, 22, 26, 33, 34) where field observations and modeling have shown particular complex across-

reef flows are not considered, RMSE decreases to 4 m which is close to the lower end of the 

minimum cross-shore shoreline change (3.15 m) detected in Ammoudara during the monitoring 

period; this is a reasonable prediction considering the complexity of the domain. It is also interesting 

to note that the relative trend of the modeled and observed shoreline positions changes to the east of 

the main inlet (to the east of profiles 24: here, the model appears to underestimate shoreline retreat, 

i.e. its range of predictions for y are generally lower than those observed.  

 

 

Figure 8. Example run showing the comparison between observed and modeled ranges between the minimum and 

maximum reef crest – shoreline distances during the monitoring period  
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Part of the difference found between the observed and modeled shorelines may be related to the 

nature/characteristics of the input and output variables used in the proposed network. Regarding the 

inputs, the morphological variables used (i.e. the 1, ,d w  , and 2  see Fig. 2) form only geometric 

approximations of the highly uneven cross-sections of the natural reef. Secondly, these variables 

have been selected due to their significant control on wave breaking and energy transmission over 

the reef and, thus, the nearshore hydrodynamics [12]. However, as submerged ‘hard’ reefs have 

fixed crest levels, crest submergence ( )d  variability due to the astronomical/baric tides, influences 

these processes (e.g. [21]) and, ultimately, the patterns of shoreline change behind the reef. In the 

present study, crest submergence ( )d  has been constant, representing conditions at the mean sea 

level; therefore, although Ammoudara is a microtidal beach, with an astronomical tidal range of up 

to 0.10 - 0.15 m tidal oscillations over the very shallow water depths over the crest reef (Fig. 8) may 

introduce noticeable effects on the nearshore wave processes. Thirdly, the wave forcing used did not 

contain detailed directional information being based on offshore, deepwater records. Although 

previous research has shown good correlation between the buoy’s wave parameter trends and those 

recorded at the inshore waters (at 10 m water depths) in terms of wave heights and periods [59], it is 

likely to have been wave directional changes that could have affected back-reef hydrodynamics and, 

ultimately, beach shoreline realignment/rotation. Finally, data on sediment texture which is a 

significant control on beach morphodynamics have not been available (and for the wave direction 

rarely are) to be introduced as an input variable to the neural network.      

On the other hand, the data forming the output of the network ( y ) are not only very accurate (the 

shoreline position, and, thus, the cross-shore distance to the fixed reef crest ( w ) recorded to an 

accuracy of < 0.5 m, see Section 2.2), but also represent the integrated beach response to the 

nearshore hydrodynamics and sediment dynamics and their interaction with the actual, complex reef 

architecture. Therefore, differences between the observed and modeled shorelines at both the 
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training and testing exercises are expected, particularly for a nearshore environment of such 

complexity. Accuracy of the neural network predictions is expected to increase substantially in 

beaches protected by engineered reefs as, in these cases, the offshore structures have simpler, 

designed cross-sections (e.g. [2,23]).  

Under a changing climate, large changes are projected for the global shoreline with most of the 

changes associated with beaches, the vast majority of which is expected to be under severe erosion 

[5, 7, 15, 20, 62]. Different options should be considered to protect the beaches, including offshore 

submerged structures (breakwaters), the functional design of which is still developing [2]. Neural 

networks that can model shoreline evolution on the basis of a relatively few and easily obtained 

environmental variables could be efficient tools to test designs of technical responses to beach 

realignment/erosion under changing climatic conditions. In this context, the proposed neural 

network, which has been able to reasonably predict shoreline realignment at a very challenging 

beach that is fronted by a highly irregular reef, may present a promising way forward.   

  

5. Summary and Conclusions  

The study forms an investigation on the potential of a novel Hermite polynomial neural network to 

model shoreline realignment along an urban beach fronted by a highly irregural beachrock reef 

which introduces significant non-linearity in the nearshore hydrodynamics and morphodynamics, on 

the basis of a small number of input variables related to reef morphology and the wave forcing. The 

main functionality of the proposed network is to generate Hermite truncated polynomial series of 

linear combinations of the input variables and the network’s output is calculated as the weighted sum 

of the above truncated series. It is analytically shown that the proposed network can approximate any 

continuous function defined on a compact set of the multidimensional Euclidean space to arbitrary 

accuracy and the network is optimized in terms of a modified artificial bee colony method. It is 
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shown that the proposed network can model shoreline realignment reasonably well and generally 

much better than the 3 other neural networks tested, i.e. a Hermite PNN, a Legendre feedforward 

PNN and a Radial Basis Function NN. It is also shown that there is no significant gain in increasing 

the number of nodes above 4; at this setting, the proposed network achieves its best performance and 

is clearly superior to all other networks tested.  

Concerning the model efficiency, RMSEs between the observed and modeled shorelines (i.e. their 

proxies y - the distance between the reef crest and the shoreline) are estimated to be less than 6 and 7 

m for the training and testing data sets, respectively, in all simulations. Model efficiency improves 

when cross-sections associated with the reef inlets and/or particular wide sections of the reef are not 

considered; in this case, RMSE decreases to  4 m, a reasonable prediction considering the complexity 

of the domain. 

Part of the difference found between the observed and modeled by the proposed method shorelines 

may be related to the input and output variables used. Regarding the inputs, the morphological 

variables related to the reef form only geometric approximations of the highly uneven cross-sections 

of the natural reef, and there are no input variables related to significant morphodynamic controls 

such as tidal oscillation, wave direction and beach sediment texture. On the other hand, the data 

forming the output of the network ( y ) are not only very accurate (accuracy of < 0.5 m), but also 

represent the integrated beach response to the nearshore hydrodynamics and sediment dynamics and 

their interaction with the actual, complex reef architecture. Therefore, differences between the 

observed and modeled shorelines are expected with the accuracy of the method predictions expected 

to increase substantially in beaches protected by engineered reefs with simpler, designed cross-

sections. In this context, the proposed neural network, which has been able to reasonably model 

shoreline realignment at a very challenging coastal environment may present a promising way 

forward.   



  

 30 

Acknowledgements 

This research has been co- financed in 85% by the EEA GRANTS, 2009-2014, and 15% by the 

Public Investments Programme (PIP) of the Hellenic Republic. Project title ERABEACH: 

“Recording of and Technical Responses to Coastal Erosion of Touristic Aegean island beaches”. 

 

Appendix A. Proof of eq. (18) 

In view of eq. (11), the quantity  ,iH α x  can be precisely evaluated by the following relation,  

 
0

, ,
k

i k i

k

H 


α x α x                                                                                                           (A.1) 

Therefore, the eq. (15) is modified as 

 
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n n
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i i k i i k i

k k

g    
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   x α x α x                                                                      (A.2) 

By expanding  ig x  using the individual terms for an increasing order of the index , we get 
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which implies that, 
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and thus, 
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In the above equation the term ,
k

iα x does not depend on index . Therefore, by setting 

n

ik i k

k

b  


                                                                                                                                  (A.5) 

we arrive at  
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i ik i
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g b
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x α x                                                                                                                     (A.6)       

In view of eq. (16), the network’s output comes in the form, 

 
1 1 0
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y g b 
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Taking into account eq. (A.5) and choosing,  

n

ik i ik i i k

k

b    
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                                                                                                                      (A.8) 

Finally, by substituting (A.8) and rearranging the sums, the eq. (A.7) is identical to eq. (18). 

 

Appendix B 

B.1 Differential Evolution  

The differential evolution (DE) involves a population of Np  individuals that search the space for an 

optimal solution [44, 54]. Each individual is a q -dimensional vector 1 2, ,...,
T

i i i iqd d d   d  

1,2,...,i Np , which is randomly initialized. It employs three basic learning phases namely, 

mutation, crossover, and selection. In this paper, to perform the mutation phase, we randomly select 

two distinct individuals ad , bd  different from id ; the individual bestd  that corresponds to the best 

solution found so far; and a random number  0,1Fr . Then, the mutation vector 

1 2, ,...,
T

i i i iq     δ is estimated according to the next rule [38],     
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 i best a bFr  δ d d d                                                                                                                    (B.1) 

The crossover phase is typically used to increase the diversity of the population by generating a trial  

vector 1 2, ,...,
T

i i i iq     ν  as follows, 

  0,

,

ij

ij

ij

if rand Cr j j

d otherwise




   
 


                                                                                                   (B.2) 

where rand  is a random number in  0, 1 ,  0, 1Cr  is the crossover factor, and 0j  is a random 

integer in the interval  1, q .  

Finally, in the selection phase, if  iν  comes with a better solution than the id  then it is transferred to 

the next iteration. 

 

B.2 Particle Swarm Optimization  

The particle swarm optimization (PSO) involves a swarm of Np  vectors  1q

i i Np  p , 

called particles [9, 11, 26]. Each particle is assigned a velocity q

i h . The positions with the best 

solution obtained so far by the particle ip  and by all particles are respectively denoted as ( )best

i tp  

and  best tp . Then, the velocity is calculated as [26], 

                 1 21 0,1 0,1best

i i i i best it t t t t t       h h U p p U p p                      (B.3) 

where  is the vector point-wise product defined in eq. (4),  0, 1U  is a vector with elements 

randomly generated in [0, 1];  , 1 , and 2  are positive constant numbers called the inertia, 

cognitive and social parameter, respectively. Finally, the position of each particle is updated as, 

( 1) ( ) ( 1)i i it t t   p p h                                                                                                                 (B.4) 

The elements of the particle are confined in the range [38], 
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min max

j ij jp p p                                                                                                                                (B.5) 

where min

jp  and max

jp  are the boundaries of the domain of values in the j th dimension of the 

particles’ search space. As stated in [37, 58], the above version of the PSO lacks a mechanism 

responsible to control the magnitude of the velocities, which fosters the danger of swarm explosion 

and divergence. Therefore, the velocities are restricted in the intervals max max

j ij jH h H    with  

 max max min

j j jH p p L                                                                                                                    (B.6) 

with L  being a positive integer [37, 58].  

 

References 

  [1] 

 

 

[2] 

 

 

 

[3] 

 

 

 

[4] 

 

 

 

[5] 

 

 

[6] 

 

[7] 

 

 

[8] 

 

 

[9] 

 

 

[10] 

 

 

[11] 

S. G. J Aarninkhof, I. L. Turner, T. D. T. Dronkers, M. Caljouw, L. Nipius, A video-based technique for 

mapping intertidal beach bathymetry, Coastal Engineering 49(4) (2003) 275– 289.  

 

A. S. Ahmadian, R.R. Simons, Estimation of nearshore wave transmission for submerged breakwaters using a 

data-driven predictive model, Neural Computing and Applications (2016) 1–15, DOI: 10.1007/s00521-016-

2587-y.   

 

G. Alexandrakis, S. E. Poulos, G.  Ghionis, G. Leivaditis, A morphological study of a reef with beachrock 

characteristics, in association with the recent evolution of the Ammoudara beach zone (Heraklion, Crete), 

Bulletin of the Geological Society of Greece 39(3) (2006) 146-155. 

 

G. Alexandrakis, G. Ghionis, S. E. Poulos, The effect of beach rock formation on the morphological evolution 

of a beach. The case study of an Eastern Mediterranean beach: Ammoudara, Greece, Journal of Coastal 

Research, SI 69 (2013) 47-59.  

 

K. Allenbach, I. Garonna, C. Herold, I. Monioudi, G. Giuliani, A. Lehmann, A.F. Velegrakis, Black Sea beach 

vulnerability to sea level rise, Environmental Science & Policy 46 (2015)  95–109. 

 

G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, UK,  2000. 

 

C. Armaroli C, E. Grottoli, M. D. Harley, P. Ciavola, Beach morphodynamics and types of foredune erosion 

generated by storms along the Emilia-Romagna coastline, Italy, Geomorphology 199 (2013) 22–35.  

 

C. E. Blenkinsopp, J. R. Chaplin, The effect of relative crest submergence on wave breaking over submerged 

slopes, Coastal Engineering 55 (2008) 967 – 974.  

 

M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex 

space, IEEE Transactions on Evolutionary Computation 6 (1) (2002) 58-73. 

 

F. Dolique, E. J. Anthony, Seasonal-term profile changes of sandy pocket beaches affected by Amazon-Derived 

Mud, Cayenne, French Guiana, Journal of Coastal Research 21 (6) (2005) 1195-1202. 

 

R. C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in: Proceedings of the 



  

 34 

 

 

[12] 

 

 

[13] 

 

 

[14] 

 

 

[15] 

 

 

 

 

[16] 

 

[17] 

 

 

[18] 

 

 

[19] 

 

 

[20] 

 

 

 

[21] 

 

 

[22] 

 

 

 

[23] 

 

 

[24] 

 

 

[25] 

 

 

[26] 

 

[27] 

 

 

 

[28] 

 

 

[29] 

IEEE Congress on Evolutionary Computation (2001) 94-100, Seoul, Korea. 

 

H. C. Friebel, L.E. Harris, A new wave transmission coefficient model for submerged breakwaters, in: 

Proceedings of the 29th International Conference on Coastal Engineering (2004) 19-24, Lisbon, Portugal. 

 

S. L. Gallop, C. Bosserelle, I. Eliot, C. B. Pattiaratchi, The influence of limestone reefs on storm erosion and 

recovery of a perched beach, Continental Shelf Research 47 (2012) 16-27.   

 

S. L. Gallop, C. Bosserelle, I. Eliot, C. B. Pattiaratchi, The influence of coastal reefs on spatial variability in 

seasonal sand fluxes, Marine Geology  344 (2013) 132-143.  

 

S. L. Gallop, M. Collins, C. Pattiaratchi, M. Eliot, C. Bosserelle, M. Ghisalberti, L. B. Collins, I. Eliot, P. L. A. 

Erftemeijer, P. Larcombe, I. Marigomez, T. Stul, D. White, Challenges in transferring knowledge between 

scales in coastal sediment dynamics, Frontiers in Marine Science - Coastal Ocean Processes 2 (2015), Article 

82. 

 

M. R. Gourlay, Wave transformation on a coral reef, Coastal Engineering 23 (1–2) (1994) 17–42. 

 

H. Habbi, Y. Boudouaoui, D. Karaboga, C. Ozturk, Self-generated fuzzy systems design using artificial bee 

colony optimization, Information Sciences 295 (2015) 145-159. 

 

M. D. Harley, I. L. Turner, A. D.  Short, New insights into embayed beach rotation: The importance of wave 

exposure and cross-shore processes, Journal of Geophysical Research 120 (8) (2015) 16. 

 

M.R. Hashemi, Z. Ghadampour, S.P. Neill, Using an artificial neural network to model seasonal changes in 

beach profiles, Ocean Engineering 37 (2010) 1345–1356. 

 

J. Hinkel, R. J. Nicholls, R. S. J. Tol, Z. B. Wang, J. M. Hamilton, G. Boot, A. T. Vafeidis, L. McFadden, A. 

Ganopolski, R. J. T. Klein, A global analysis of erosion of sandy beaches 1207 and sea-level rise: An 

application of DIVA, Global and Planetary Change 111 (2013) 150–158. 

 

R. A. Holman, J.  Stanley, The history and technical capabilities of Argus, Coastal Engineering 54(6–7) (2007)) 

477–491. 

 

W. Huang, S.-K. Oh, W. Pedrycz, Design of hybrid radial basis function neural networks (HRBFNNs) realized 

with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs), 

Neural Networks 60 (2014), 166-181. 

 

G. Iglesias, I. López, A. Castro, R. Carballo (2009). Neural network modelling of planform geometry of 

headland-bay beaches, Geomorphology, 103, 577–587,  

 

A. G. Ivakhnenko, Polynomial theory of complex systems, IEEE Transactions on Systems, Man and 

Cybernetics 1 (4) (1971) 364-378. 

 

D. Karaboga, B. Bastrurk, A powerful and efficient algorithm for numerical function optimization: artificial bee 

colony (ABC) algorithm, Journal of Global Optimization 39 (2007) 459-471. 

 

J. Kennedy, R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, Berlin, 2001. 

 

T. Kerh, H. Lu, R. Saunders, Shoreline change estimation from survey image coordinates and neural network 

approximation, International Journal of Civil, Environmental, Structural, Construction and Architectural 

Engineering 8(4) (2014 ) 381-386. 

 

A. H. F  Klein., F. L. Benedet, D. H. Schumacher, Seasonal-term beach rotation processes in distinct headland 

bay systems, Journal of Coastal Research 18 (3)  (2002) 442-458. 

 

T.-T. Lee and J.-T. Jeng, The Chebyshev-polynomials-based unified model neural networks for function 



  

 35 

 

 

 

[30] 

 

 

[31] 

 

 

[32] 

 

 

[33] 

 

 

[34] 

 

 

[35] 

 

 

[36] 

 

 

[37] 

 

 

 

[38] 

 

 

 

[39] 

 

[40] 

 

 

[41] 

 

 

[42] 

 

 

[43] 

 

 

[44] 

 

 

[45] 

 

 

[46] 

 

 

[47] 

 

approximation, IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 28 (6) (1998) 925-

935. 

 

Z. Li, W. Wang, Y. Yan, Z. Li, PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony 

for high-dimensional optimization problems, Expert Systems with Applications 42 (2015) 8881–8895. 

 

F. Liu, J. Wang, Fluctuation prediction of stock market index by Legendre neural network with random time 

strength function, Neurocomputing 83 (2012) 12–21. 

 

R. J. Lowe, C. Hart, C. B. Pattiaratchi, Morphological constraints to wave-driven circulation in coastal reef-

lagoon systems: A numerical study, Journal of Geophysical Research  115 (2010) C09021. 

 

L. Ma, K. Khorasani, Constructive feedforward neural networks using Hermite polynomial activation functions, 

IEEE Transactions on Neural Networks 16 (4) (2005) 821–833. 

 

S. Mall, S. Chakraverty, Application of Legendre Neural Network for solving ordinary differential equations, 

Applied Soft Computing 43 (2016) 347–356. 

 

I. Maric, Optimization of self-organizing polynomial neural networks, Expert Systems with Applications 40 

(2013) 4528–4538. 

 

B. Naik, J. Nayak, H. S. Behera, A. Abraham, A self adaptive harmony search based functional link higher 

order ANN for non-linear data classification, Neurocomputing 179 (2016) 69–87. 

 

S.-K. Oh, H.-J. Jang, W. Pedrycz, A comparative experimental study of type-1/type-2 fuzzy cascade controller 

based on genetic algorithms and particle swarm optimization, Expert Systems with Applications 38 (2011) 

11217–11229. 

 

S.-K. Oh, W.-D. Kim, W. Pedrycz and S.-C. Joo, Design of K-means clustering-based polynomial radial basis 

function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential 

evolution, Neurocomputing 78 (1) (2012), 121-132. 

 

Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks, Reading MA: Addison-Wesley, 1989. 

 

B.-J. Park, W. Pedrycz, S.-K. Oh, Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling, 

IEEE Transactions on Fuzzy Systems 10 (5) (2002) 607-621. 

 

J. C. Patra, A. C. Kot, Nonlinear dynamic system identification using Chebyshev functional link artificial neural 

networks, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 32 (4) (2002) 505-511. 

 

J. C. Patra, P. K. Meher, G. Chakraborty, Nonlinear channel equalization for wireless communication systems 

using Legendre neural networks, Signal Processing 89 (2009) 2251–2262. 

 

N. G. Plant, S.G.J. Aarninkhof, I.L. Turner, K.S. Kingston, The performance of shoreline detection models 

applied to video imagery, Journal of Coastal Research 23(3)  (2007) 658–670. 

 

K. V. Price, R. M. Storn, J. A. Lampinen, Differential evolution: a practical approach to global optimization, 

Springer-Verlag, 2005. 

 

S. Purwar, I. N. Kar, A.N. Jha, On-line system identification of complex systems using Chebyshev neural 

networks, Applied Soft Computing 7 (2007) 364–372.  

 

R. Ranasinghe, R. McLoughlan, A. Seasonal, G. Symonds, The southern oscillation index, Wave Climate and 

Beach Rotation, Marine Geology, 204 (3-4) (2004)  273-287. 

 

A. Rigos, G. E. Tsekouras, A.  Chatzipavlis, A. F.  Velegrakis, Modeling beach rotation using a novel Legendre 

polynomial feedforward neural network trained by nonlinear constrained optimization, in: Proceedings of the     



  

 36 

 

 

 

[48] 

 

 

 

[49] 

 

 

 

[50] 

 

 

[51] 

 

[52] 

 

 

[53] 

 

 

[54] 

 

 

[55] 

 

 

[56] 

 

 

[57] 

 

 

 

[58] 

 

 

[59] 

 

 

 

[60] 

 

 

 

[61] 

 

 

[62] 

 

 

 

 

 

 

 

12th IFIP International Conference on Artificial Intelligence Applications and Innovations (2016) 167-179, 

Thessaloniki, Greece. 

 

A. Rigos, G. E. Tsekouras, M. I. Vousdoukas, A. Chatzipavlis,  A. F. Velegrakis, A Chebyshev polynomial 

radial basis function neural network for automated shoreline extraction from coastal imagery, Integrated 

Computer-Aided Engineering 23 (2016) 141–160. 

 

A. Rigos, M. I. Vousdoukas, G. E. Tsekouras, O. P. Andreadis, A. F. Velegrakis, On the systematic 

implementation of artificial neural networks in the classification of variance images and shoreline extraction. 

Fresenius Environmental Bulletin 23(2014) 2677-2686.   

 

A. Sancho-García, J. Guillén, E. Ojeda, Storm-induced readjustment of an embayed beach after modification by 

protection works, Geo-Marine Letters 33 (2013) 159-172. 

 

Y. Shin, J. Gosh, Ridge polynomial networks, IEEE Transactions on Neural Networks 6 (3) (1995) 610-622. 

 

A. D. Short, G. Masselink, Embayed and structurally controlled beaches, in: A. D. Short  (Ed.), Handbook of  

Beach and Shoreface Morphodynamics, John Wiley and Sons Ltd., Chichester,  1999, pp. 230-250. 

 

A. D. Short, A. C. Trembanis, Decadal Scale Patterns of Beach Oscillation and Rotation: Narabeen Beach, 

Australia, Time Series PCA and Wavelet Analysis, Journal of Coastal Research 20 (2) (2004) 523-532. 

 

R. Storn, K. Price, Differential evolution- a simple and efficient heuristic for global optimization over 

continuous spaces, Journal of Global Optimization 11 (4) (1997) 341-359. 

 

T. Thomas, M. R. Phillips, A. T. Williams, R. E. Jenkins, Decadal timescale beach rotation: Gale climate and 

offshore island influences, Geomorphology 135 (2011) 97-107. 

 

T. Thomas, M. R. Phillips, A. T. Williams, A centurial record of beach rotation, Journal of Coastal Research 65 

(2013) 594-599.  

 

T. Thomas, N. Rangel-Buitrago, M. R. Phillips, G. Anfuso, A. T. Williams, Mesoscale morphological change, 

beach rotation and storm climate influences along a macrotidal embayed beach, Journal of Marine Sciences and 

Engineering 3 (2015) 1006-1026. 

 

G. E. Tsekouras, A simple and effective algorithm for implementing particle swarm optimization in RBF 

network's design using input-output fuzzy clustering, Neurocomputing 108 (2013) 36-44. 

 

A. F. Velegrakis V. Trygonis, A. E.  Chatzipavlis, T.  Karambas, M. I. Vousdoukas, G.  Ghionis, I. N. 

Monioudi, T. Hasiotis, O. Andreadis, F. Psarros, Shoreline variability of an urban beach fronted by a beachrock 

reef from video imagery. Natural Hazards 83 (1) (2016) 201–222.   

 

M. I. Vousdoukas,  P.M. Ferreira, L.P. Almeida, G. Dodet, F. Psaros, U. Andriolo, R. Taborda, A.N. Silva, A. 

Ruano, O.M. Ferreira, Performance of intertidal topography video monitoring of a meso-tidal reflective beach in 

South Portugal, Ocean Dynamics 61(10) (2011) 1521–1540. 

 

M. I. Vousdoukas, A. F.  Velegrakis, C. Plomaritis, Beachrock occurrence, characteristics, formation 

mechanisms and impacts, Earth Science Reviews 85 (2007) 23-46.  

 

P. P. Wong, I.J. Losada, J.P. Gattuso, J. Hinkel, A. Khattabi, K.L.McInnes, Y. Saito,  A. Sallenger, Coastal 

systems and low-lying areas, in: In: C.B.Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. 

Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C.Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, 

P.R. Mastrandrea, L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: 

Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel of Climate Change, Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA, 2011, pp. 361–409. 

 



  

 37 

[63] 

 

 

 

G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied 

Mathematics and Computation 217 (2010) 3166-3173.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


