NetKnack Readme

 To run an experiment you should execute the *.jar file followed by all parameters listed below.

 Below we enumerate all the necessary parameters.

1. game type: {SYMMETRIC, ASYMMETRIC, ONE_SHOT}

2. experiment type: {GAME, BGAME, BGAME_ALL_A, BGAME_ALL_B, WINDOW_GAME, ALL_WINDOW_GAME}

3. number of blended games: <int>

4. game id: <int>

5. duration of the game: <int>

6. duration of pregame: <int>

7. capacity (in packets) for each round: <int>

8. variable capacity: 0 for false, 1 for true

9. penalty model: {HYBRID, GENTLE, SEVERE}

10. queue policy: {DROPTAIL, RED, CHOKE, CHOKEPLUS, MAXMIN, PRINCER, PRINCE}

11. number of players: <int>

12. flow's policy: {AIMD}

13. players' parameter a or players' window: <int>

14. players' parameter b: <double>

15. last player's parameter a: <int>

16. last player's parameter b: <double>

17. seed of function Random(seed): if negative Random(), if positive Random(seed).

An explanation for each parameter:

1. {SYMMETRIC} to run a window game, where we seek for the value of parameter a (or b) that last player must adopt in order to obtain maximum goodput. Warning!!! All application parameters are meaningful!!!

 {ASYMMETRIC} to run a window game, where we seek for both symmetric and asymmetric equilibria. Players start with ramdomized values for a (or b) and in each round seek independently for their optimum value between a fixed minimum and a fixed maximum. Warning!!! Only one of parameters 13, 14 can be chosen correspondingly to b or a variation. Parameters 15, 16 are inactive.

 {ONE_SHOT} to run a window game where players choose a window size and play only one round. Warning!!! Only parameters 1,2,3,4,7,10,11,13,17 are active!!!

2. {GAME, BGAME, BGAME_ALL_A, BGAME_ALL_B} options are available only for SYMMETRIC game and corresponds to a game for one set of parameters (a,b) {GAME}, a blended game where we export the average statistics of some GAMEs {BGAME}, a blended game for many sets with different values for a {BGAME_ALL_A}, a blended game for many sets with different values for b (BGAME_ALL_B}.
 A BGAME (Blended Game) is a series of simulations which run with the same parameters for a number of identical games (number of blended games). The results are an average of the results of all blended games.

 To run a series of BGAMEs with different values for a congestion parameter of the deviator flow (last flow) you must choose either BGAME_ALL_A (for α variation) or BGAME_ALL_B (for β variation). For BGAME_ALL_A a series of simulation are performed with parameter α taking values from 1 to C/2 (C=router’s capacity). For BGAME_ALL_B a series of simulation are performed with parameter β taking values from 0.5 to 0.99 with 0.01 step.

 For ASYMMETRIC game only {BGAME_ALL_A, BGAME_ALL_B} options are available. Choosing a BGAME_ALL_A game the simulator runs automatically games for every hardcoded value of a (1 to Capacity/2).

 For ONE_SHOT game only {WINDOW_GAME, ALL_WINDOW_GAME} options are available. With WINDOW_GAME we play a set of window games with every flow having a fixed window with size equal to parameter 13, except from one flow which has different window in every game. The last flow's window differs between two fixed values. With ALL_WINDOW_GAME the simulator runs many WINDOW_GAMEs each of them with different window values for the standard group of players (except one player who tests all possible window sizes in every single game).

3. Number of individual games that must be played to export the statistics for a single game. A number of blended games greater than 20 gives better accuracy to the derived results.

4. Just an id number to differentiate games when a set of them run in a batch.

5. Number of rounds for a SYMMETRIC or an ASYMMETRIC game.

6. Number of pregame rounds for the above games (to bring the game to a steady state before statistics start counting)
7. Total capacity of the common link.

8. Variable capacity to prevent synchronization.

9. TCP's loss recovery simulation.

10. type of queue policy on the router.

11. number of players participating in the game.

12. flow's congestion avoidance algorithm.

13. value of parameter {a} for {SYMMETRIC, ASYMMETRIC} games and size of window for {ONE_SHOT} game.

14. value of parameter {b} for {SYMMETRIC, ASYMMETRIC} games.

15. value of parameter {a} for last flow of a {SYMMETRIC} game.

16. value of parameter {b} for last flow of a {SYMMETRIC} game.

example 1. Given the command:
java –jar netknack.jar SYMMETRIC BGAME 20 1 2000 200 100 1 HYBRID PRINCER 10 AIMD 1 0.5 2 0.6 -1

the simulator will start a SYMMETRIC blended(20) game with 2000 rounds, 200 pregame rounds, 100 packets variable capacity, hybrid penalty, queue policy: PRINCE-R, participation of 10 flows, 9 of 10 flows play with {a,b}={1,0.5} and one flow play with {a,b}={2,0.6}.
example 2. Given the command:
java –jar netknack.jar ONE_SHOT ALL_WINDOW_GAME 30 1 1000 500 300 1 HYBRID DROPTAIL 20 AIMD 1 0.5 2 0.6 -1

the simulator will start a set of ONE_SHOT blended (30) games with 300 packets variable capacity, 20 flows participating, Droptail queue policy and flows' window size changing automatically for every game, irrespectively of parameter 13 to 16.
example 3: Given the command:
java –jar netknack.jar ASYMMETRIC BGAME_ALL_A 1 1 1500 300 100 1 GENTLE MAXMIN 5 AIMD 1 0.7 2 0.6 -1.

the simulator will start an ASYMMETRIC game with 1500 rounds duration, 300 pregame rounds, 100 packets router’s variable capacity, type of penalty: GENTLE, MAXMIN queue policy and 5 AIMD flow participation with (α,β)=(1….C/2, 0.7).
Example 4: Given the command:
java –jar netknack.jar SYMMETRIC BGAME_ALL_B 15 1 3000 200 300 0 HYBRID PRINCE 12 AIMD 2 0.55 5 0.86 -1.

the simulator will start a SYMMETRIC game with variation of parameter β for the last flow and with 15 blended games, 3000 rounds duration, 200 pregame rounds, 300 packets router’s static capacity, type of penalty: HYBRID, PRINCE queue policy, 12 AIMD flow participation with (α,β)=(2, 0.55) for the first 11 players/flows and (α,β)=(5,0.50…0.99) for last player (β12 varies in every iteration).
The results are exported to a results-GameType-QueuePolicy.txt file.
