
Efficient Approximation Algorithms for Scheduling
Unrelated Parallel Machines

Pavlos S. Efraimidis1 and Paul G. Spirakis2

1 Department of Electrical and Computer Engineering,
Democritus University of Thrace,

Bas. Sophias 12, 67100 Ksanthi, Greece
pefraimi@ee.duth.gr

2 Research and Academic Computer Technology Institute (RACTI)
and Patras University, Greece

Riga Fereou 61, 26221 Patras, Greece
spirakis@cti.gr

Abstract. Scheduling n independent jobs on m Unrelated Parallel Machines
(SUM) is the problem of assigning n jobs j = 1, .., n to m machines i = 1, .., m
so that each job is processed without interruption on one of the machines,
and at any time, every machine processes at most one job. The objective is to
minimize the makespan of the schedule. SUM is an NP-hard problem even when
the number of machines is defined to be m = 2.
In this work, efficient approximation algorithms for SUM, when the number of
machines is an arbitrary constant, are presented. The results hold for SUM and
several extensions of SUM, like the Generalized Assignment Problem (GAP).
The approximation algorithms can achieve any given approximation ratio ε (ap-
proximation schemes) and admit efficient parallelization. The core of the algo-
rithms is a new rounding procedure, the so-called Combinatorial Randomized
Rounding (CRR) technique. Furthermore, an interesting property of combina-
torial optimization problems and a new Chernoff-like bound, are introduced.

1 Introduction

Scheduling unrelated parallel machines is the problem of assigning n jobs j = {1, . . . , n}
to m machines i = {1, . . . , m} so that each job is processed without interruption on
one of the machines, and at any time, every machine processes at most one job. The
processing time for job j on machine i is pij . For each schedule, the makespan is the
maximum load on any machine. The objective of the common scheduling problem SUM
is to find a schedule of minimum makespan. The restriction of SUM where all processing
times pij are within a constant factor β of each other is the problem SUMb. In the
bicriteria problem SUMC, the assignment of each job j to a machine i has, besides
the processing time pij , a cost cij , and the objective is to find a schedule of bounded
makespan and cost. Scheduling problems like SUM, SUMC and other variations have
been widely studied, like for example in [8], [5] and [6]. It is known that the general case
of SUM, where both parameters m and n are specified as part of the problem instance
is NP-hard, and interestingly, it remains NP-hard even when m is defined to be m = 2.

For the general problem, the best known result is a 2-approximation algorithm given
in [8], where it is also shown that, unless P=NP, no approximation ratio better than
3/2 is possible.

Henceforth the number of machines is always assumed to be a constant. A polyno-
mial time approximation scheme (PTAS) is an algorithm that for each ε > 0 finds a
(1 + ε)–approximate solution in time polynomial in the problem size N. If the running
time is also polynomial on ε then the scheme is called Fully PTAS(FPTAS). A FPTAS
for SUM was given in [5] and later an interesting PTAS for SUM was given in [8]. A lin-
ear time FPTAS for SUMb was given in [7]. The best known results are given by Jansen
and Porkolab ([6]) who showed a linear time FPTAS for SUM and and a linear time
ε–relaxed decision procedure (RDP) for SUMC. The RDP for SUMC accepts as input
an instance of SUMC and values T and C, and either finds a schedule of makespan and
cost at most (1 + ε)T and (1 + ε)C respectively, or decides that there is no schedule of
makespan and cost at most T and C respectively. A randomized RDP (RRDP), is a
randomized algorithm that behaves as a RDP with probability of failure at most a given
value ρ : 0 < ρ < 1

2 . Similarly we define randomized PTAS (RPTAS) and randomized
FPTAS (RFPTAS). As a bicriteria problem SUMC admits several optimization ver-
sions. Given an instance of SUMC and a cost value C a natural problem is to find a
schedule of minimum makespan and cost at most C (problem SUMCoptT). Similarly
SUMCoptC is the problem of optimizing the cost when the makespan is bounded. A
third option is to optimize a linear function of both objectives (problem SUMCoptTC).
The best known parallel algorithms, a randomized (2+ε)–approximation algorithm for
SUMb and SUM and a randomized (2 + ε)–makespan 2–cost approximation algorithm
for SUMCoptC, are claimed in [14]. Both algorithms run for problems of size N in
polylog(N) time on O(N) processors. Other parallel algorithms for related but not
directly comparable scheduling problems are given in [2],[12], and [13].

2 Our results

In this work, we present sequential and parallel approximation schemes for SUMb,
SUM, SUMC and optimization versions of SUMC.We start with a linear time RFPTAS
for the restricted problem SUMb. While this result serves as an introduction to the
more involved techniques of this work, it has its own interest. It is simple, it matches
the best specific sequential algorithm for SUMb of [7] and it clearly improves upon
both the complexity and approximation ratio of the parallel algorithm of [14].

We then show a linear time RRDP for the standard SUM problem and use it to
build a linear time RFPTAS for SUM. Similarly, we show a linear time RRDP for the
bicriteria SUMC problem. Interestingly the two algorithms are almost identical, a fact
that proves the generality of the rounding procedure. Furthermore the same approach
can handle even more criteria with the same approximation guarantee and the same
asymptotic complexity. The results for SUM and SUMC, while matching in performance
guarantee and complexity the best known sequential results of [6] (which however are
deterministic), exhibit, due to the CRR technique, a significantly simpler and more
general rounding scheme. This becomes especially evident in the approximation algo-
rithm for the bicriteria SUMC problem. Finally, we define the poly–bottleneck property

for combinatorial optimization problems and use it with to build O(n log n log log n)
time RFPTAS for the optimization problems SUMCoptT and SUMCoptC.

The algorithms of this work are based on a new randomized rounding (RR) tech-
nique, the combinatorial randomized rounding (CRR) procedure. CRR introduces com-
binatorial arguments to the RR procedure and achieves in specific problems settings to
bound the deviations of the rounded solutions below any fixed ratio. This is a strong,
and partially surprising improvement upon the logarithmic bounds achieved with the
standard RR technique ([11]).

All algorithms admit simple optimal work parallelizations that outperform the best
claimed parallel algorithms for SUM and SUMCoptC ([14]), both in the performance
ratio (1 + ε vs. 2 + ε) and in the running time ((O(log n) or O(log n log log n)) vs.
polylog(n)). The parallel complexities are given for the EREW PRAM, the most real-
istic of the PRAM models. The parallel algorithms require O(1) or (O(log n log log n))
iterations, and hence should imply efficient implementations on practical parallel com-
putation models, like the BSP ([16]) or the LogP ([1]. Due to space limitations certain
proofs have been omitted from this work. A detailed description of all results is given
in [3].

3 The SUMb Problem

SUMb is the restriction of standard SUM where there is a given constant β such that:
pmin

pmax
≥ 1

β , for pmin = mini,j pij , and pmax = maxi,j pij . We show a simple RFPTAS
for SUMb. A fractional schedule is found and then it is rounded to an approximate
schedule with a standard RR technique. This approach can satisfy any given constant
approximate ratio, if the number of jobs n is larger than an appropriate constant n0,
which depends on m, ρ, β, and ε.

Input: An instance of SUMb and constants ε > 0 and 0 < ρ < 1
2
.

Output: Produce a schedule, that with probability at least (1− ρ) is an (1 + ε)-approximate
schedule.

Step 0: Initializations. Let ε2 = ε4 = ε
3
, µ = 3 ln(m/ρ)

(ε4)2
an appropriate constant and n0 =

m · β · µ be a constant threshold value for the number n of jobs.
Step 1: Constant number of jobs. IF (n < n0) THEN optimal schedule can be found in

O(1)–time with a brute force method.
Step 2: Integer program formulation. IF n ≥ n0 THEN formulate SUMb as an integer linear

program and relax it to the linear program LP-SUMβ.
Step 3: Fractional Schedule. Approximate LP-SUMβ within (1 + ε2).
Step 4: Rounding. The approximate fractional solution is rounded randomly to an approxi-

mate integer schedule with XRR, a standard RR technique.

Constant number of jobs. If n < n0 then there are less than mn0 possible assign-
ments of the jobs to the machines, and hence an appropriate schedule can be found
in fully polynomial constant time with an enumeration technique of Horowitz and
Sahni [5] (see technique T1 of [3]).
Fractional Schedule. We assume that n > n0. To simplify the analysis the problem is
scaled with 1/pmax, so that ∀ i, j : 1

β ≤ pij ≤ 1 . The integer program formulation
of SUMb is:

min τ s.t.:

∑n
j=1 pijxij ≤ τ (i = 1, . . . ,m)∑m
i=1 xij = 1 (j = 1, . . . , n)

xij ∈ {0, 1} (i = 1, . . . ,m; j = 1, . . . , n)

For each pair (i, j) the binary variable xij is 1 if job j is assigned to machine i and 0
otherwise. Relaxing the integrality constraints on xij to xij ≥ 0 gives the linear pro-
gram LP–SUMb. The problem variables of LP–SUMb are grouped into n independent
m-dimensional simplices (blocks) and there is a constant number of positive packing
constraints (coupling constraints). These properties are exploited by the logarithmic-
potential based PDD algorithm LogPDD of Grigoriadis and Khachiyan ([4]), to ap-
proximate LP–SUMb within (1 + ε1). The following Theorem follows directly from [4]
and is used throughout this work (Claim 2.1 in [3]).

Theorem 1. The linear program LP–SUMb (and the linear programs LP–SUM and
LP–SUMC) can be approximated within any constant ratio ε in (O(n))–sequential time
and in O(log n)–time on O(n/ log n)–processors.

Let τ∗ be the optimal objective value of LP–SUMb and let τ1 be the approximate
objective value produced by the LogPDD algorithm for error ratio ε2. Then:

∑n
j=1 pijxij ≤ τ1 (i = 1, . . . , m)∑m
i=1 xij = 1 (j = 1, . . . , n)

xij ≥ 0 (i = 1, . . . , m; j = 1, . . . , n)

Let OPT be the optimal makespan of SUMb and let τ∗ be the optimal objective
value of the relaxed problem LP–SUMb. Clearly τ∗ ≤ OPT. Combining this with the
approximation ratio of algorithm LogPDD we get:

τ∗ ≤ τ1 ≤ τ∗ · (1 + ε2) ≤ OPT · (1 + ε2) . (1)

Let dj = mini pij be the minimum processing time of job j, and let D =
∑

j dj be the
sum of all dj . Simply assigning every job j to the machine i that achieves its minimum
processing time dj , gives a feasible schedule of makespan at most D. Since, on the other
hand, the total work of the machines is at least D, even if this work would be optimally
distributed to all machines, the makespan is still at least D/m. Hence for SUMb (and
more generally for SUM):

D

m
≤ τ∗ ≤ OPT ≤ D . (2)

Equation 2 and the bound on β gives D
m ≥ n

βm . From this we get τ1 ≥ D
m ≥ n

βm ≥
mβµ
βm ≥ µ =

3 log(m
ρ)

(ε4)2
. Combining this with Equ. 1 gives

3 log(m/ρ)
(ε4)2

≤ τ1 ≤ OPT · (1 + ε2) . (3)

Rounding. The fractional solution is rounded to an approximate integer schedule with
XRR, a simple extension of technique of [11, Sec.2] to weighted sums of Bernoulli trials.

For each job j independently, exactly one of the xij is set to 1 and the rest is set to
0, that is each job j is independently assigned one of the machines i. The probability
that job j is assigned by the RR procedure to machine i is equal to the fractional value
xij .

Let τ2 be the makespan of the rounded schedule. For each machine i, let Si =∑
i pijxij be its processing load in the fractional schedule. The rounding procedure

essentially replaces in each constraint the fractional variable xij with a Bernoulli trial
Xij such that E[Xij] = xij . The processing load of each machine i in the rounded
schedule is the random variable Ψi =

∑
i pijXij . Since the Bernoulli trials Xij of the

same constraint are independent with each other, the random variables Ψi are equal
to the Weighted Sums of independent Bernoulli Trials. By linearity of expectation, for
each machine i, the expected rounded load is equal to its load Si in the fractional
schedule:

∀ i : E[Ψi] = E[
∑

i

pijXij] =
∑

i

pijE[Xij] =
∑

i

pijxij = Si . (4)

Equation 4 shows that the mean values of the Ψi satisfy the packing constraints of the
fractional solution. However the random variables Ψi might deviate above their mean
value (and below of course) and hence the makespan of the rounded schedule might be
larger than the fractional makespan. The following bound is an extension of Raghavan
and Spencer’s Chernoff-like bound on the tail of the distribution of the Weighted Sum
of Bernoulli Trials ([10], [9]). The proof can be found in [3] (Theorem 2.1).

Theorem 2. Let λ ≥ 0 be a positive real number and let α1, α2, . . . , αr be reals in
(0,1]. Let X1, X2, . . . , Xr be independent Bernoulli trials with E[Xj] = pj. Let Ψ =
λ +

∑r
j=1 ajXj. Then E[Ψ] = λ +

∑r
j=1 ajpj = S. Let δ > 0, and T ≥ S = E[Ψ] > 0.

Then

Prob[Ψ > (1 + ε4)T] < e

(
− (ε4)2T

2(1+
ε4
3)

)
which is ≤ e

(
− (ε4)2T

3

)
if ε4 < 1 . (5)

Theorem 3. For ε4 ∈ (0, 1) and ρ ∈ (0, 1), the makespan of the rounded schedule is,
with probability at least (1− ρ), not larger than τ1(1 + ε4).

Proof. For each machine i, the probability that its load Ψi in the rounded schedule is
larger than τ1(1 + ε4) can be bounded with Equ. 5:

∀ i : Pi = Prob{Ψi > τ1(1 + ε4)µ} ≤ e−
(ε4)2µ

3 ≤ ρ

m
. (6)

A sufficient bound on the probability that at least one machine in the rounded schedule
has load more than τ1(1 + ε4) is the sum of the probabilities Pi.

Prob{τ2 > (1 + ε4) · τ1) = Prob{∃i : Ψi > τ1 · (1 + ε4)} ≤
∑

i

Pi ≤ ρ . (7)

Using Theorems 1 and 3 we get the main result:

Theorem 4. Algorithm A–SUMb is a RFPTAS for SUMb. It runs in O(n) sequential
time and in O(log n)–parallel time on a n

log n–processor EREW PRAM.

4 The SUM problem

In this section, we present a linear time RFPTAS for the problem SUM. We first show
algorithm A–SUM, a RRDP for problem of SUM and then use it to build the linear
time RFPTAS.

4.1 Algorithm A–SUM

Given an instance of SUM and a makespan T , with probability of success at least (1−ρ)
algorithm A–SUM either produces a schedule of makespan at most (1 + ε)T or decides
that there is no schedule of makespan at most T . Algorithm A–SUM uses the new CRR
technique, since standard RR cannot satisfy the tight approximation guarantee needed
for the approximation scheme. The algorithm first selects a constant number of large
jobs (set J`) and tries every possible assignment of them to the machines. For each
possible assignment ϕ of the large jobs, a corresponding fractional schedule of all the
jobs is found with the LogPDD algorithm. Among all fractional schedules the one of
minimum makespan is selected and rounded to an integer schedule with XRR. Every
job j /∈ J` in the rounded schedule, that has been randomly assigned to a machine i such
that pij > 1 is called ”unlucky” and is removed from the rounded schedule. The result
is a filtered rounded schedule that satisfies a very tight approximation ratio. All the
unlucky jobs are rescheduled independently, each on the machine where its processing
time is minimized. A simple combinatorial argument shows that the total processing
time for the final assignment of the unlucky jobs is at most a given constant fraction
of the optimal makespan. The final schedule with all jobs is with probability at least
(1− ρ), a (1 + ε)–approximate schedule.
Input: An instance of SUM, the constants ε : 0 < ε ≤ 1 and ρ : 0 < ρ < 1, and a makespan

value T .
Output: With probability of success at least (1−ρ), a schedule of makespan at most (1+ε)T

or the problem is infeasible for T .
Step 0: Initializations.

Let ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = ε
9

= Θ(ε). ∀j, dj = mini{pij}, D =
∑

j
dj , µ =

3 ln 2m
ρ

(ε4)2
,

ξ = e2 + ln
(

2m
ρ

)
, and k =

⌈
ξ · µ ·m · m

ε3

⌉
.

Step 1: Simple Filtering.
∀i, j : IF pij > T THEN xij = 0

Step 2: Large jobs.
Let J` = {j|dj belongs to the k largest dj} be the set of large jobs and let Φ be the set of
all possible assignments of the large jobs to the machines. Let Φfbe an appropriate subset
of Φ.

Step 3: Best Fractional Schedule xij.
∀ assignment ϕ ∈ Φf do
1. Formulate the corresponding scheduling problem as an integer program ILP-SUM(ϕ).
2. Relax ILP-SUM(ϕ) to the linear program LP-SUM(ϕ).
3. Find the approximate fractional schedule with algorithm LogPDD.

Among all fractional schedules select the one of minimum makespan.
Step 4: Combinatorial Randomized Rounding.

1. Round the fractional schedule with XRR.
2. Filtering : If a job j has been randomly assigned to a pij > 1 THEN job j is called

”unlucky” and it is removed from the schedule.
3. ∀ unlucky job j, assign job j to machine i = argmini{pij}

4.2 Analysis of algorithm A–SUM

To show that A–SUM is a RRDP for SUM it is sufficient to show that if the given
T is a feasible makespan value then A–SUM returns with probability at least (1 − ρ)
a schedule of makespan at most (1 + ε)T . Let µ = 3 ln 2m

ρ (ε4)−2 be an appropriate
constant value. As in Sec. 3 let dj = mini pij and D =

∑
j dj . To simplify the analysis,

the problem is scaled by the factor µ
T so that the given makespan becomes T = µ. The

value T = µ has been chosen so that if all coefficients pij would be pij ≤ 1, rounding
a fractional schedule with XRR would give, with probability at least 1− ρ, an integer
schedule with makespan within the required approximation guarantee. The next steps
deal with the existence of large coefficients pij > 1.
Simple Filtering. This step deactivates all xij for which the corresponding pij is larger
than T . This action is called ”simple filtering” and does not influence the feasibility of
any integer schedule of makespan at most T . Now all active pij are not larger than T ,
but some of the pij can still be larger than 1.
Large Jobs. Let k be the constant k = dξ · µ ·m ·m · ε−1

3 e , and let the k jobs with
the largest’s dj (ties are resolved arbitrarily) be the ”large jobs”. Let J` be the set of
the k large jobs: J` = {j | dj belongs to the k largest dj}.
Enumeration. Let Φ denote the set of all possible assignments ϕ of the large jobs
j ∈ J` to the m machines. Let ϕ∗ be the assignment of the large jobs to the machines as
they are assigned in an optimal schedule of SUM. Since ϕ∗ is not known, the algorithm
is executed for each of the possible assignments ϕ ∈ Φ. The cardinality of Φ is at
most mk, a constant. However k = O(m2 ln2(2m/ρ)ε−3) and hence 1/ε appears as
an exponent of m. Section 3.3 of [3] shows that it is sufficient to examine only a
substantially smaller subset Φf ⊆ Φ, with cardinality polynomial on ε. The set Φf

is obtained from Φ by applying T1, a grouping technique of Horowitz and Sahni ([5])
in the way it has been used in [6], and T2, a geometric grouping technique. Detailed
description of T1 and T2 and the proof of Lem. 1 are given in Sec. 3.3 of [3].

Lemma 1. The cardinality of Φf and the running time for generating it are polynomial
in ε. Using Φf instead of Φ in algorithm A–SUM introduces at most an arbitrary small
constant error factor of (1 + ε5) · (1 + ε6) to the final solution.

Using Lem. 1 improves A–SUM to a RFPTAS, at the cost of introducing an arbitrarily
small constant error factor to the approximation guarantee of the final solution. The rest
of the analysis is done with the assumption that the algorithm examines all assignments
of Φ. This assumption is later relaxed by introducing the extra ratio (1 + ε5) · (1 + ε6)
to the final approximation guarantee (see Equ. 12).
Fractional Schedule. Given the assignment ϕ∗ of the large jobs J` to the m ma-
chines, the problem of assigning the remaining jobs in an optimal way (to minimize the
makespan) can be formulated as the following integer linear program ILP-SUM(ϕ∗).
Let ϕi be the load on machine i due to the large jobs.

min τ s.t. :

ϕi +
∑

j∈[n]−J`
pijxij ≤ τ (i = 1, . . . ,m)∑m

i=1 xij = 1 (j ∈ [n]− J`)
xij ∈ {0, 1} (i = 1, . . . ,m; j ∈ [n]− J`)

Let τ∗ be the optimal objective value of ILP-SUM(ϕ∗). Since the value T is assumed
to be feasible for the problem and ϕ∗ is assumed to be the optimal assignment of the
large jobs τ∗ ≤ T . ILP-SUM(ϕ∗) is relaxed to the linear program LP-SUM(ϕ∗) which
has a block-angular structure and is approximated within constant ε2 with algorithm
LogPDD (The. 1). The approximate solution xij of makespan τ1 satisfies:

ϕi +
∑

j∈[n]−J`
pijxij ≤ τ1 (i = 1, . . . , m)∑m

i=1 xij = 1 (j ∈ [n]− J`)
xij ≥ 0 (i = 1, . . . , m; j ∈ [n]− J`)

By the approximation guarantee of PDD and since τ∗ ≤ T we get: τ1 ≤ τ∗ · (1 + ε2) ≤
OPT · (1 + ε2). For each ϕ ∈ Φ the PDD algorithm finds an approximate fractional
solution to LP-SUM(ϕ). At the end the algorithm selects among all fractional schedules
the one with the smallest makespan τ2. Let (xij) be a fractional solution with makespan
τ2. Then:

τ2 ≤ τ1 ≤ T · (1 + ε2) . (8)

Rounding. Let J be set of all jobs j and Js the set of all jobs except the large jobs
Js = J\J` (set difference). The fractional schedule (xij) is rounded with XRR (Sec.3)
to an approximate integer schedule for SUM. The rounding concerns only the jobs
in Js. Let τ3 be the makespan of the rounded schedule. The rounding procedure is
equivalent with replacing for j ∈ Js all variables xij with a corresponding Bernoulli
trial Xij , such that E[Xij] = xij . As in the rounding step of Algorithm A–SUMb load
Ψi of each machine i in the rounded schedule is equal to the sum of a given positive
value ϕi and the weighted sum of independent Bernoulli trials Ψi = ϕi +

∑
j∈J′ pijXij .

Let ξ = e2 + ln
(

2m
ρ

)
be an appropriate deviation ratio and let E1 be the event:

E1 = { The makespan τ3 of the rounded solution is τ3 > ξ · τ2} . (9)

Applying The. 2 as in The. 3 proves the following Proposition:

Proposition 1. The probability of event E1 is at most ρ/2.

Let Ju be the set of unlucky 1 jobs of the rounded schedule, that is Ju is the set of all
jobs j ∈ Js that have been randomly assigned to a ”bad” pij > 1.
Filtering. All unlucky jobs are removed from the rounded schedule. The remaining
schedule is called the filtered rounded schedule. For each machine i, let Ψ ′i be the
random variable: Ψ ′i = ϕi +

∑
j∈Js AND pij≤1 pijXij . Ψ ′i corresponds to the load of

the machine i due to all the remaining jobs, if unlucky jobs are excluded. The random
part of the random variables Ψ ′i is a weighted sum of Bernoulli trials, where each weight
is at most 1. Let τ4 be the makespan of the filtered rounded schedule and let E2 be the
event:

E2 = { In the filtered rounded schedule τ4 > (1 + ε4) · τ2}. (10)

The probability of event E2 is bounded by the following Proposition which is proved
similarly to Lem. 3:
1 Note that unlucky jobs are dynamically defined and hence separate roundings of the same

fractional schedule might give different sets of unlucky jobs.

Proposition 2. The probability of event E2 is at most ρ/2.

The following combinatorial argument is used to handle the unlucky jobs:

Lemma 2. Let d1 ≥ d2 ≥ . . . ≥ dn > 0 be a sorted sequence of real numbers and
let D =

∑n
j=1 dj. Let p ≥ 0 be a non-negative integer and ε3 > 0 a constant. Let

k = dp/ε3e. Any set S of at most | S |≤ p reals di that contains none of the k largest
reals di | i < k satisfies

∑
di∈S di ≤ ε3 ·D .

Proof. The number of jobs n is assumed to be larger than the constant k (else SUM can
be solved by a brute force method in constant time). The real dk satisfies dk ≤ ε3

p D,

because else
∑k

i=1 di > D (contradiction). Since ∀ di ∈ S ⇒ i > k this implies
∀ di ∈ S : di ≤ dk ≤ ε3

p D . Hence:
∑

di∈S di ≤ p · ε3
p ·D ≤ ε3 ·D .

Corollary 1. For any set Jp of at most p = m · ξ · µ jobs that do not belong to the
large jobs J` (Jp

⋂
J` = ∅), the sum of their minimum processing times dj is at most∑

j∈Jp
dj ≤ ε3 · τ2 .

Let E3 be the event that the sum of the minimum processing times dj of all unlucky
jobs j ∈ Ju is larger than ε3 · τ2:

E3 = {
∑

j∈Ju

dj > ε3 · τ2} . (11)

Proposition 3. The probability of event E3 is at most ρ
2 .

Proof. By Proposition 1 the probability that the non-filtered rounded schedule has
makespan larger than ξ · τ2 is at most ρ

2 . Hence the probability that the total load
on all machines in the rounded schedule exceeds m · ξ · µ is at most ρ

2 . Since each
unlucky job has processing time larger than 1, the probability that the total number
of unlucky jobs in the rounded schedule is larger than m · ξ · µ is at most ρ

2 and hence
from Corollary 1 with the same probability the sum of their minimum processing times
dj is at most ε3 · τ2. Hence by assigning each unlucky job to the machine where its
processing time is minimized, even if in the worst case all unlucky jobs end up on the
same machine the makespan of the schedule does not increase by more than ε4 · τ2.

Final Schedule. The final schedule is obtained from the filtered schedule, by simply
assigning every unlucky job j ∈ Jp to a machine i, where pij = dj . Let τ5 be the
makespan of the final schedule.

Proposition 4. Let E4 be the event E4 = E2

⋃ E3. Then:

1. The probability of event E4 is at most ρ, and
2. IF event NOT(E4) THEN the makespan τ5 of the final schedule is not larger than

(1 + ε) · T .

Proof. 1. Prob{E2

⋃ E3} ≤ Prob{E2}+ Prob{E3} ≤ ρ .
2. If event E4 is NOT TRUE then both events E2 and E3 are NOT TRUE and hence
by Prop. 2 and 3 the makespan τ5 of the final schedule is:

τ5 ≤ (τ4 + ε3 · τ2) · (1 + ε5) · (1 + ε6) ⇒ τ5 ≤ (1 + ε) · T . (12)

Combining The. 1 and Prop. 4 gives:

Theorem 5. Algorithm A–SUM is a O(n)–time RRDP for SUM. The parallel running
time is O(log n) on a O(n

log n) processor EREW PRAM.

From Equation 2 it is known that the optimal makespan OPT of SUM is always
in the interval [D

m , D]. Hence using algorithm A–SUM within a simple binary search
procedure gives an approximation scheme for the optimization version of problem SUM:

Theorem 6. We provide a O(n)–time RFPTAS for SUM. Its parallel running time is
O(log n) on a O(n

log n) processor EREW PRAM.

5 Makespan and Cost

Algorithm A–SUM can be extended to handle the bicriteria problem SUMC. The re-
sultant algorithm A–SUMC differs from A–SUM only in that

– the measure dj is extended to dj = mini{pij + cij},
– in several expressions m is replaced with m + 1, and
– a job j /∈ J` is unlucky if it is randomly assigned to a machine i, such that pij > 1

or cij > 1.

The proof the following theorem is similar to the proof of theorem 5.

Theorem 7. Algorithm A–SUMC is a O(n)–time RRDP for SUMC. The parallel run-
ning time is O(log n) on a O(n

log n) processor EREW PRAM.

5.1 Optimization versions of SUMC

The randomized relaxed decision procedure A–SUMC can be used within a binary
search framework to build efficient approximation schemes for optimization versions
of SUMC, like SUMCoptC, SUMCoptT and SUMCoptTC. More precisely, techniques
presented in [2] can be used with A–SUMC to build RFPTAS algorithms for SUM-
CoptC and SUMCoptT. The optimization problem SUMCoptTC is discussed in [15] for
an unrestricted number of machines. Using A–SUMC within the technique of [15] gives
a RFPTAS for SUMCoptTC. A detailed description of the approximation schemes for
the optimization versions of SUMC can be found in [3].

References

1. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. Logp: Towards a realistic model of parallel computation. In 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

2. P. Efraimidis and P. Spirakis. Positive linear programming extensions: Complexity and
applications. In European Conference on Parallel Computing (Euro-PAR 2000), Technical
Univeristy of Muenich, Germany, 2000.

3. P.S. Efraimidis and P.G. Spirakis. Randomized approximation schemes for scheduling
unrelated parallel machines. Technical Report TR 00-007, Electronic Colloquium on Com-
putational Complexity (ECCC), January 2000.

4. M. Grigoriadis and L. Khachiyan. Coordination complexity of parallel price-directive de-
composition. Mathematics of Operations Research, 21:317–327, 1996.

5. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. Journal of the ACM, 23:317–327, 1976.

6. K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unrelated
parallel machines. In ACM Symposium on Theory of Computing, pages 408–417, 1999.

7. Y. Kopidakis, D. Fayard, and V. Zissimopoulos. Linear time approximation schemes for
parallel processor scheduling. In 8th IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 482–485, 1996.

8. J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for scheduling un-
related parallel machines. Mathematical Programming, 46:259–271, 1990.

9. P. Raghavan. Randomized Rounding and Discrete Ham-Sandwich Theorems: Provably Good
Algorithms for Routing and Packing Problems. PhD thesis, Computer Science Division,
UC Berkeley, 1986.

10. P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating pack-
ing integer programs. Journal of Computer and System Sciences, 37:130–143, 1988.

11. P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

12. A.S. Schulz and M. Skutella. Scheduling-lps bear probabilities: Randomized approxima-
tions for min-sum criteria. In R. Burkard and G. Woeginger, editors, Proceedings of the 5th
Annual European Symposium on Algorithms (ESA’97), Lecture Notes in Computer Science
1284, pages 416–429, Berlin, 1997. Springer.

13. A.S. Schulz and M. Skutella. Scheduling unrelated machines by randomized rounding.
Submitted.
(http://www.math.tu-berlin.de/∼skutella/publications.html), May 1999.

14. M. Serna and F. Xhafa. Approximating scheduling problems in parallel. In EuroPAR 97,
1997.

15. D. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, A62:461–474, 1993.

16. L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, August 1990.

