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1 PROBLEM DEFINITION

The problem of random sampling without replacement (RS) calls for the selection of m distinct
random items out of a population of size n. If all items have the same probability to be selected, the
problem is known as uniform RS. Uniform random sampling in one pass is discussed in [1, 5, 10].
Reservoir-type uniform sampling algorithms over data streams are discussed in [11]. A parallel
uniform random sampling algorithm is given in [9]. In weighted random sampling (WRS) the items
are weighted and the probability of each item to be selected is determined by its relative weight.
WRS can be defined with the following algorithm D:
Algorithm D, a definition of WRS

Input : A population V of n weighted items
Output : A set S with a WRS of size m
1 : For k = 1 to m do
2 : Let pi(k) = wi/

∑

sj∈V −S wj be the probability of item vi to be selected in round k
3 : Randomly select an item vi ∈ V − S and insert it into S
4 : End-For

Problem 1 (WRS).
Input: A population V of n weighted items.
Output: A set S with a weighted random sample.

The most important algorithms for WRS are the Alias Method, Partial Sum Trees and the
Acceptance/Rejection method (see [8] for a summary of WRS algorithms). None of these algorithms
is appropriate for one-pass WRS. In this work, an algorithm for WRS is presented. The algorithm
is simple, very flexible, and solves the WRS problem over data streams. Furthermore, the algorithm
admits parallel or distributed implementation. To the best knowledge of the entry authors, this is
the first algorithm for WRS over data streams and for WRS in parallel or distributed settings.

Definitions: One-pass WRS is the problem of generating a weighted random sample in one-pass
over a population. If additionally the population size is initially unknown (eg. a data streams),
the random sample can be generated with reservoir sampling algorithms. These algorithms keep
an auxiliary storage, the reservoir, with all items that are candidates for the final sample.
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Notation and Assumptions: The item weights are initially unknown, strictly positive reals.
The population size is n, the size of the random sample is m and the weight of item vi is wi.
The function random(L,H) generates a uniform random number in (L,H). X denotes a random
variable. Infinite precision arithmetic is assumed. Unless otherwise specified, all sampling problems
are without replacement. Depending on the context, WRS is used to denote a weighted random
sample or the operation of weighted random sampling.

2 KEY RESULTS

The crux of the WRS approach of this work is given with the following algorithm A:
Algorithm A

Input : A population V of n weighted items
Output : A WRS of size m

1: For each vi ∈ V , ui = random(0, 1) and ki = u
(1/wi)
i

2: Select the m items with the largest keys ki as a WRS

Theorem 1. Algorithm A generates a WRS.

A reservoir-type adaptation of algorithm A is the following algorithm A-Res:
Algorithm A with a Reservoir (A-Res)

Input : A population V of n weighted items
Output : A reservoir R with a WRS of size m
1: The first m items of V are inserted into R
2: For each item vi ∈ R: Calculate a key ki = u

(1/wi)
i , where ui = random (0,1)

3: Repeat Steps 4–7 for i = m + 1, m + 2, . . . , n
4: The smallest key in R is the current threshold T

5: For item vi: Calculate a key ki = u
(1/wi)
i , where ui = random (0,1)

6: If the key ki is larger than T, then:
7: The item with the minimum key in R is replaced by item vi

Algorithm A-Res performs the calculations required by algorithm A and hence by Theorem 1
A-Res generates a WRS. The number of reservoir operations for algorithm A-Res is given by the
following Proposition:

Theorem 2. If A-Res is applied on n weighted items, where the weights wi > 0 are independent
random variables with a common continuous distribution, then the expected number of reservoir
insertions (without the initial m insertions) is:

n
∑

i=m+1

P [ item i is inserted into S ] =
n

∑

i=m+1

m

i
= O

(

m · log
( n

m

))

Let Sw be the sum of the weights of the items that will be skipped by A-Res until a new item
enters the reservoir. If Tw is the current threshold to enter the reservoir, then Sw is a continuous
random variable that follows an exponential distribution. Instead of generating a key for every
item, it is possible to generate random jumps that correspond to the sum Sw. Similar techniques
have been applied for uniform random sampling (see for example [3]). The following algorithm
A-ExpJ is an exponential jumps - type adaptation of algorithm A:
Algorithm A with exponential jumps (A-ExpJ)

Input : A population V of n weighted items
Output : A reservoir R with a WRS of size m
1: The first m items of V are inserted into R
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2: For each item vi ∈ R: Calculate a key ki = u
(1/wi)
i , where ui = random (0,1)

3: The threshold Tw is the minimum key of R
4: Repeat Steps 5–10 until the population is exhausted
5: Let r = random(0, 1) and Xw = log(r)/ log(Tw)
6: From the current item vc skip items until item vi, such that:
7: wc + wc+1 + .. + wi−1 < Xw ≤ wc + wc+1 + .. + wi−1 + wi

8: The item in R with the minimum key is replaced by item vi

9: Let tw = Tw
wi , r2 = random(tw, 1) and vi’s key: ki = r2

(1/wi)

10: The new threshold Tw is the new minimum key of R

Theorem 3. Algorithm A-ExpJ generates a WRS.

The number of exponential jumps of A-ExpJ is given by Proposition 2. Hence algorithm A-
ExpJ reduces the number of random variates that have to be generated from O(n) (for A-Res) to
O(m log(n/m)). Since generating high-quality random variates can be a costly operation this is a
significant improvement for the complexity of the sampling algorithm.

3 APPLICATIONS

Random sampling is a fundamental problem in computer science with applications in many fields
including databases (see [4, 8] and the references therein), data mining, and approximation algo-
rithms and randomized algorithms [6]. Consequently, algorithm A for WRS is a general tool that
can find applications in the design of randomized algorithms. For example, algorithm A can be
used within approximation algorithms for the k-Median [6].

The reservoir based versions of algorithm A, A-Res and A-ExpJ, have very small requirements
for auxiliary storage space (m keys organized as a heap) and during the sampling process their
reservoir continuously contains a weighted random sample that is valid for the already processed
data. This makes the algorithms applicable to the emerging area of algorithms for processing data
streams([2, 7]).

Algorithms A-Res and A-ExpJ can be used for weighted random sampling with replacement
from data streams. In particular, it is possible to generate a weighted random sample with replace-
ment of size k with A-Res or A-ExpJ, by running concurrently, in one pass, k instances of A-Res
or A-ExpJ respectively. Each algorithm instance must be executed with a trivial reservoir of size
1. At the end, the union of all reservoirs is a WRS with replacement.

4 OPEN PROBLEMS

None is reported.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.
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7 URL to CODE

The algorithms presented in this work are easy to implement. An experimental implementation in
Java can be found at: http://utopia.duth.gr/˜pefraimi/projects/WRS/index.html

8 CROSS REFERENCES

None is reported. Entry editors please feel free to add some.
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