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Abstract. We consider network congestion problems between TCP flows
and define a new game, the Window-game, which models the problem
of network congestion caused by the competing flows. Analytical and
experimental results show the relevance of the Window-game to the
real TCP game and provide interesting insight on Nash equilibria of the
respective network games. Furthermore, we propose a new algorithmic
queue mechanism, called Prince, which at congestion makes a scapegoat
of the most greedy flow. Preliminary evidence shows that Prince achieves
efficient Nash equilibria while requiring only limited computational re-
sources.

1 Introduction

Algorithmic problems of networks can be studied from a game-theoretic point
of view. In this context, the flows are considered independent players who seek
to optimize personal utility functions, like the goodput. The mechanism of the
game is determined by the network infrastructure and the policies implemented
at regulating network nodes, like routers and switches. The above described
game theoretic approach has been used for example in [24] and in several recent
works like [3, 21].

In this work, we consider congestion problems of competing TCP flows, a
problem that has been addressed in [13, 3]. The novelty of our approach lies in
the fact that we focus on the congestion window, a parameter that is in the
core of modern AIMD (Additive-Increase Multiplicative-Decrease) based net-
work algorithms. The size of the congestion window, to a large degree, controls
the speed of transmission [12]. We define the following game, which we call the
Window-game, as an abstraction of the congestion problem. The game is played
synchronously, in one or more rounds. Every flow is a player that selects in each
round the size of its congestion window. The router (the mechanism of the game)
receives the actions of all flows and decides how the capacity is allocated. Based
on how much of the requested window has been satisfied, each flow decides the
size of its congestion window for the next round. The utility of each flow is the
capacity that it obtains from the router in each round.

The motivation for this work is the following question, posed in [13, 21]: Of
which game or optimization problem is TCP/IP congestion control the Nash equi-
librium or optimal solution? The first contribution of this work is the definition



of the Window-game, a natural model that is simple enough to be studied from
an algorithmic and game-theoretic point of view, while at the same time it cap-
tures essential aspects of the real TCP game. In particular, the Window-game
aims to capture the interaction of the window sizes of competing TCP flows.
Compared to the model used in [3], the Window-game approach is simpler and
more abstract, but still sufficiently realistic to model real TCP games. We use
the Window-game to study characteristic network congestion games. Further-
more, the plain structure of the Window-game allows us to study also one-shot
versions of the game.

The second contribution is a new queue policy, called Prince (of Machiavelli),
which aggressively drops packets from the most greedy flow. Under normal con-
ditions, Prince rewards flows that do not exceed their fair share, while it punishes
exemplarily the most greedy flow. Consequently, it drives the network towards
efficient Nash equilibria. It is noteworthy that Prince is simple and efficient
enough to be deployable in the demanding environment of network routers. We
provide preliminary theoretical evidence and experimental results to support the
above claims.

Outline. The rest of the paper is organized as follows: The Window-game
is described in Section 2. An overview of TCP congestion control concepts is
given in Section 3. We consider Window-games where the players are AIMD
flows in Section 4 and Window-games with general flows in Section 5. Finally, a
discussion of the results is given in Section 6. Due to lack of space some proofs
are omitted.

2 The Window Game

The main entities of a Window-game is a router with capacity C and a set of
N ≤ C flows, as depicted in Figure 2. The router uses a queue policy to serve
in each round up to C workload. The N flows are the independent players of
the game. Unless otherwise specified, the number N is considered unknown to
the players and to the router. The game consists of one or more rounds. In each
round, every player selects a size w ≤ C for its congestion window and submits
it to the router. The router collects all requests and applies the queue policy to
allocate the capacity to the flows. The common resource is the router’s capacity,
an abstract concept that corresponds to how much load the router can handle
in each round1.

Each round of the game is executed independently; no work is pending at
the start of a round and no work is inherited to a following round. An important
restriction is that the entities (the router and the flows) may use only limited
computational resources like memory and processing power. In particular, the
queue policy of the router should be stateless or use as little state information as

1 To keep the window game simple, we intentionally avoid using the concept of queue-
ing delay, even though it is considered to be a critical parameter of TCP networking.
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possible. This requirement is imposed by the real time conditions that a router2

must work in. We consider several variations of the Window-game:

AIMD flows. First we consider Window-games where the players are AIMD
flows. This class of Window-games is strongly related to the game(s) cur-
rently played by real TCP flows and exists implicitly in the analysis of [13]
and [3]. Each AIMD flow selects the parameters (α, β) once, for the whole
duration of the game. The utility for each flow is its average goodput at
steady state.

General flows. Then we consider Window-games where the flows can use
arbitrary algorithms to choose their congestion window. We distinguish the
following categories (in order of increasing complexity):
– One-shot game with complete information.
– One-shot game with incomplete information.
– Repeated game with incomplete information.

The action of a general flow is to choose the size of its congestion window for
every round. The utility of the flow is the goodput in one-shot games and
the average goodput at steady state for repeated games.

Assumptions. We make a set of simplifying assumptions similar to the as-
sumptions of [3]. The window game is symmetric: All flows use the same network
algorithms and parameters like Round Trip Time (RTT), loss recovery etc. All
packets are of the same size and packet losses are caused only by congestion.

Solution concept: The solution concept for the Window-games is the Nash
Equilibrium (NE) and in particular the Symmetric Nash Equilibrium (SNE).
A good reason to start with SNE is that the analysis appears to be simpler
compared to general NE. It is noteworthy, that the preliminary analytical results
and the experiments show that in many cases there are only symmetric (or
almost symmetric) NE. For each Window-game we study its SNE and discuss
how efficient the network operates at it or them. In certain cases, we search
experimentally for general, not necessarily symmetric, NE.
2 In particular for the router: Stateful network architectures are designed to achieve

fair bandwidth allocation and high utilization, but need to maintain state, manage
buffers, and perform packet scheduling on a per flow basis. Hence, the algorithms
used to support these mechanisms are less scalable and robust than those used in
stateless routers. The stateless substance of nowadays IP networks allows Internet
to scale with both the size of the network and heterogeneous applications and tech-
nologies [25, 26].



3 Congestion Control in TCP

TCP (Transmission Control Protocol) is a window-based transport protocol.
Every TCP-flow has an adjustable window, which is called congestion window,
and uses it to control its transmission rate [12].

Congestion Window: The congestion window defines the maximum num-
ber of outstanding packets that the flow has not yet received acknowledgements
for [14]. Essentially, the congestion window represents the sender’s estimate of
the amount of traffic that the network can absorb without becoming congested.
The most common algorithm to increase or decrease the congestion window of
a TCP-flow is AIMD.

AIMD: AIMD [6] can be considered as a probing algorithm designed to
find the maximal rate at which flows can send packets under current conditions
without incurring packet drops [13]. AIMD flows have two parameters α and
β; upon success, the window is increased additively by α (in each round), and
upon failure, the window is decreased multiplicatively by a factor β. AIMD is
so far considered to be the optimal choice in the traditional setting of TCP
Reno congestion control and FIFO drop-tail routers. If, however, we consider
the developments like TCP SACK and active queue management, AIMD may
no longer be superior [2].

Packet loss: When congestion occurs, packets are dropped. TCP variants
use different loss recovery schemes to recover from packet losses. These schemes
incur costs to the flow and can be thought of as a penalty on the flows which
suspend their normal transmission rate until lost packets are retransmitted. We
formed a penalty-based model, which is similar to the model of [13, 3], to define
a flow’s behavior when losses occur.

Penalty Model: Assume that a flow with current window size w has lost
L ≥ 1 packets in the last round. Let γ be a small constant (eg. γ = 1). Then:

– Gentle penalty (resembles TCP SACK): The flow reduces its window to
β · w − γ · L in the next round.

– Severe penalty (TCP Tahoe): The flow timeouts for τs rounds and then
continues with a window w = β · w.

– Hybrid penalty (TCP Reno): If L = 1 the flow applies gentle penalty. If
L > 1 a progressive severe penalty is applied. After a timeout of min{2 +
L, 15} rounds, the flow restarts with a window equal to w/L. This penalty
is justified by the experimental results of [7, 19].

Router Policies. The router, and in particular the queue algorithm de-
ployed by the router to allocate the capacity to the flows, defines the mecha-
nism of the Window-game. We examine the common policies DropTail, RED,
MaxMin, CHOKe and CHOKe+, as well as two variants of the proposed Prince
policy and study their influence on the NE of the Window-game.

– Drop-tail: In each round, if the sum of the requested windows does not
exceed the capacity C, all packets are served. Otherwise, the router drops a
random sample of packets of size equal to the overflow.



– RED (Random Early Detection) [8]: At overflow RED behaves like
Drop-tail. However, for loads between min threshold minth = 70% and a
max threshold maxth = 100% of the capacity, packets are dropped with
a probability p. In this case we simulate the behavior of the real RED: A
random sample of packets is selected. The selected packets correspond to
positions higher then minth in a supposed queue. Each chosen packet is
dropped with a probability proportional to the router’s load.

– MaxMin: MaxMin is a stateful, fair queue policy [5] that conceptually cor-
responds to applying round-robin [11] for allocating the capacity.

– CHOKe: A stateless algorithm presented in [20]. We implement it in a
way similar to RED. Every chosen packet that is above the min threshold, is
compared to a packet chosen randomly from the packets below the threshold.
The lower threshold, the upper threshold and the dropping probability are
the same as in RED.

– CHOKe+: A variant of CHOKe presented in [3].
– Prince: Prince is an almost stateless queue policy. At congestion, packets

are dropped from the flow with the largest congestion window. If the over-
flow is larger than the window of the most greedy flow, the extra packets
are dropped from the remaining flows with drop-tail. For reasonable over-
flows, flows that do not exceed their fair share do not experience packet loss.
Hence a greedy flow cannot plunder the goodput of other flows. We define
a basic version of Prince that drops packets only in case of overflow and
a RED-inspired version of Prince, called Prince-R, which applies its policy
progressively starting from minth = 70%.

4 Window-games with AIMD flows

We discuss three characteristic Window-games between AIMD flows with gentle
penalty, where the flows can choose the value of the α parameter3. We use in
our analysis machinery from [3]. Assume N flows. Each flow i has parameters
(αi, βi). At steady state, let Ni denote the window size after a packet loss, τi the
number of rounds between two packet losses and Li the number of packets lost
at packet loss, for flow i. Then, as in [3],

Ni = β(Ni + (αi · τi − γLi)) ≈ 1/2 · (Ni + (αi · τi)) (1)

and this gives
Ni = αi · τi. (2)

3 Experiments with parameter β show that in almost all cases selfish flows will use
for β a value close to 1. The same conclusion can be made from the results in [3].
A simple argument for this behavior is that parameter β is very important when
the flow has to quickly reduce its window size when the network conditions change.
The TCP games examined in this work are rather static: Static bandwidth, static
number of flows, static behavior of all flows during a game and hence there is no real
reason for a flow to be adaptive.



Hence, the goodput of flow i is

Gi = 3/2 · αi · τi. (3)

Drop-tail router with synchronized packet losses and gentle penalty
flows. All flows experience packet loss each time congestion occurs. Hence τ1 =
τ2 = . . . = τn. Let N =

∑n
1 Ni and A =

∑n
i=1 αi. Then N = β(N + A · τ) ⇒

N = A · τ . Since N = β · C = C/2 we get τ = C/(2A). The goodput (average
number of useful packets that are successfully delivered in each round) of flow i
is

Gi =
3 · αi

4 ·A · C . (4)

Gi of flow i is an increasing function of αi, regardless of the parameters α of the
other flows. Hence, at Nash equilibrium all flows use the maximum possible value
for their parameter α. This is an inefficient SNE, that resembles a ”tragedy of the
commons” situation where N players overuse a common resource, the network.
The above claim is in agreement with the results in [3].

Drop-tail router with non-synchronized packet losses and gentle
penalty flows. When congestion occurs, a random set of packets is dropped.
A flow may or may not experience packet loss. The expected number of packets
that it will lose is proportional to its window size. This case has not been studied
analytically before. The fact that packet loss in not synchronized makes the
analysis harder. Experimental results show that at SNE selfish flows will use
large values for α (Figure 9). An explanation is that since Gi = 3/2 · αi · τi, an
increased value for αi, for example αi = 2, increases the factor αi of Gi. Even
though flow i will experience packet loss more frequently (i.e., τi will decrease)
the overall product αi · τi will still increase. Intuitively, if the product would not
increase then τ2 = 2 · τ1 which cannot be true because in this case flow 2 must
have on average a much larger window than flow 1. Consequently, they cannot
have the same goodput.

We provide a proof for the case of 2 flows. Assume a router with capacity C
and N = 2 flows with parameters α1 = 1, α2 = z · α1 = z and β1 = β2 = 1/2.
We will show that flow 2 achieves a higher goodput by increasing its parameter
α2. At steady state, we know from Equations 2 and 3 that Ni = αi · τi and
Gi = 3/2 · αi · τi, for i = 1, 2. A congestion round, is a round in which a
packet loss occurs. A loss round for flow i is a congestion round in which flow
i experiences packet loss. Simplification: We assume that at congestion only 1
packet is randomly selected and dropped. Hence only one flow will experience
packet loss.

Assume x such that G2 = x ·G1. Let wc,i be the average window size of flow
i at congestion rounds. Then wc,1 + wc,2 ≈ C.

Claim. Assume y such that wc,2 = y · wc,1. Then τ1 = y · τ2.

Proof. Let wc,i(k) be the window size of flow i at congestion round k. The prob-
ability that flow 1 experiences packet loss in congestion round k is wc,1(k)/C.
Hence we can assume a binary random variable X1(k) with mean value wc,1(k)/C.



The total number Ψ1 of loss rounds of flow 1 is Ψ1 =
∑

k X1(k) and the expected
total number of loss rounds after K congestion rounds is S1 = E[Ψ1] = w1/C ·K.
Using an appropriate Hoeffding-Chernoff bound of [10, Page 200, Theorem 2.3]
we can show (proof omitted) that with high probability S1 ∈ [(1 − ε)w1/C ·
K, (1 + ε)w1/C ·K] for some positive constant ε. A sufficient number of rounds
K can make the constant ε arbitrary small. Since we consider steady state, we
can approximate S1 ≈ w1/C · K for large K. We will assume S1 = w1/C · K.
Similarly S2 = w2/C ·K and so S2 = y · S1. This gives τ1 = y · τ2.

Since G1 = 3/2 · α1 · τ1 = 3/2 · α1 · τ2
y = 3/2 · α2τ2 · α1

α2y = α1
α2

yG2 ⇒

x =
α2

α1
· 1
y

=
z

y
. (5)

Assuming that congestion rounds occur periodically, every τ +1 rounds, gives
that G2 = w2− 1/2 ·α2 · τ = y ·w1− 1/2 ·α2 · τ . Also G1 = w1− 1/2 ·α1 · τ and
G2 = x ·G1 = x(w1 − 1/2 · α1 · τ). Combining the above relations gives

y · w1 − 1/2 · α2τ = x · w1 − 1/2 · xα1τ. (6)

Substituting w1 = C/(y + 1) and τ = τ1/(y + 1) and solving for τ1 we get:

τ1 =
2zC/y − 2yC

zα1/y − zα1
. (7)

The goodput of flow 1 can also be calculated from (proof omitted):

G1 =
1

τ + 1

(
(τ + 1) · w1 +

τ∑

i=0

i · αi − (τ + 1)
w1

C

w1

2

)
, (8)

where (τ +1)·w1 is the number of packets in τ +1 rounds starting at a congestion
round,

∑τ
i=0 i·αi is the number of packets due to the increment of the congestion

window and (τ + 1)w1
C are the average packets lost due to a possible loss round.

From this we get :

G1 = w1 − (w1)2

2C
+

α1τ

2
. (9)

Substituting w1 and τ and solving for τ1 gives:

τ1 =
C

y+1 − C
2(y+1)2

3/2 · α1 − α1
4(y+1)

. (10)

We combine equation 7 and 10 to eliminate τ1 and solve for y. The outcome
is the following polynomial:

12y4 + 22y3 + (10− 16z)y2 + (−20z)y + (−8z) = 0. (11)

We use Mathematica [22] to solve the polynomial. Only one of the four solu-
tions of y is a non-negative real number. The result is a complicated expression
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of z [17]. From y and Equation 5 we calculate x. The plots of y and x (Figures 3
and 4) show that both are increasing functions of z.

Since G2 = x ·G1, the previous results show that flow 2 will achieve a higher
goodput then flow 1 if z > 1. The total goodput G is G = G1 + G2. Hence,
G2 = (x/(x + 1))G, an increasing function of x. The total goodput G variates
slowly as z increases. Overall, the goodput of flow 2 increases, when parameter
α2 is increased4.

Prince router with gentle penalty flows. We present a preliminary argu-
ment for the effectiveness of Prince. Assume a router with capacity C and N flows
i = 1, . . . , N with parameters (αi, βi = 1/2). At steady state, from Equation 2
we know that: Ni = αi · τi. Let wLi be the average window size of flow i at loss
rounds (of flow i). Then Gi = 3/4 · wLi . At congestion,

∑N
i=1 wi > C. Clearly,

maxi=1,...,N wi > C/N . Consequently, wLi ≥ C/N . Assume that flow i would
have exclusive use of a router with capacity C/N . Then, by playing AIMD its
average lost window wL would be wL ≤ C/N and its goodput 3/4 ·C/N . Hence,
with Prince the AIMD flow achieves a goodput at least as good as in the above
(reasonably fair) case. If a flow that does exceed its fair share does not loose
any packet, unless a very large overflow (> max wi) occurs. Interestingly, the
fair share of flow i is ensured, regardless of the strategies of the competing flows.
This is strong evidence that with Prince, the network operates at an efficient
state.

Experimental Results. We performed an extensive set of experiments with
the network model of Figure 1, with N = 10 AIMD flows, a router with capacity
C = 100, several queue policies and both the gentle and the hybrid penalty
models. Parameter α takes values from the set {1, 2, .., 50} and β from the set
{0.5, 0.51, .., 0.99}. We focus on the results for varying parameter α when β is
the fixed β = 0.5. First, we applied the iterative methodology of [3], we call it
M1, to find SNE of the Window-game. Second, thanks to the simplicity of the

4 The experiments showed that G started below 7/8 · C for balanced flows (z = 1)
and decreased slowly to above 6/8 ·C for completely unbalanced flows. An intuitive
argument is that the more unbalanced the flows are, the larger (on average) the
window of the flow that experiences packet loss is, and the larger the reduction
on the overall goodput is. If wL is the window of the flow that loses packet at a
congestion round, then (extreme cases): If w = 1/2 · C at all loss rounds, then
G = 7/8 · C, and if w = C, then G = 6/8 · C.
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Fig. 5. Flows with gentle penalty (part 1)
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Fig. 6. Flows with gentle penalty (part 2)

window game, we could perform a brute force search on all symmetric profiles to
discover all possible SNE (M2). Finally, we used random non-symmetric starting
points along with a generalization of the procedure of [3] to check if the network
converges to non-symmetric NE (methodology M2). The experiments where
performed with a simulator for the Window-game, which is called NetKnack[17].
NetKnack is implemented in Java and can perform from a simple experiment to
massive series of experiments.

The methodology M1 is executed in iterations. In the first iteration, α1 = 1
for flows F1, . . . , Fn−1 and we search for the best response of flow Fn. Let α1,best

be the value α, with which Fn achieves the best goodput. By convention, a flow
switches to a better value for α only if the average improvement of its utility is
at least 2%. In the next iteration, flows F1, . . . , Fn−1 play with α2 = α1,best and
we search for the best αn in this profile. If at iteration k, αk,best = αk then this
value, denoted by αE , is the SNE of the game.

Every experiment consists of 2200 rounds. The first 200 rounds are used to
allow the flows to reach steady state. To avoid synchronization of flows’ windows
the capacity C is variable and changes randomly, with plus 1 or minus 1 steps,
in the region 100± 5 with an average of 100 packets. Finally, the measurements
are averaged over 30 independent executions of each experiment.
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Fig. 7. Flows with hybrid penalty (part 1)
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Fig. 8. Flows with hybrid penalty (part 2)

We present graphs with the results of experiments where flows i = 1, . . . , 9 use
α = 1 and flow 10 tries all possible values for α10 ∈ {1, . . . , 50}. Figures 5 and 6



parameter  α parameter  β 

Queue Policy αΕ goodput 
packets/round 

loss 
rate 
(%) 

βΕ goodput 
packets/round 

loss 
rate 
(%) 

DropTail α3=50 5,499 78,8 β2=0,97 9,841 3,9 
RED α2=49 5,485 78,5 β2=0,97 8,309 4,4 

CHOKe α3=49 3,363 86,8 β2=0,94 7,761 5,4 
CHOKe+ α3=50 5,431 79,1 β2=0,96 8,118 4,5 
Prince-R α2=2 9,987 7,4 β3=0,94 9,995 7,3 

Prince α2=4 9,111 13,9 β2=0,94 9,993 7,3 
MaxMin 

����������� 	
� 	�� 	
� β2=0,92 9,998 4,2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. SNE for gentle penalty

parameter  α parameter  β 
Queue 
Policy αΕ goodput 

packets/round 
loss 
rate 
(%) 

βΕ goodput 
packets/round 

loss 
rate 
(%) 

DropTail α5=6 5,863 6,4 β2=0,92 7,999 2,4 
RED α2=4 6,427 4,4 β2=0,96 7,591 3,0 

CHOKe α2=2 6,182 3,6 β4=0,78 6,674 2,6 
CHOKe+ α2=3 6,650 3,8 β2=0,93 7,687 2,9 
Prince-R α1=1 8,693 1,1 β2=0,72 8,759 1,6 

Prince α1=1 9,573 2,1 β1=0,50 9,617 2,1 
MaxMin α1=1 8,547 1,8 β1=0,50 8,503 1,9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. SNE for hybrid penalty

show the results for gentle penalty flows and several queue policies. We separated
the graphs into 2 figures for more clarity. From the above figures (gentle penalty)
we see that Prince and MaxMin induce efficient Nash equilibria with small values
for parameter α, while DropTail, RED, CHOKe and CHOKe+ actuate flow 10
to use large values for α. Figures 7 and 8 show that with Prince and MaxMin
the deviator player 10 has clearly suboptimal performance for α10 > 1. Hence,
the profile αi of the first iteration is a NE.

Figures 9 and 10 show the SNE that have been found with the methodol-
ogy M1. We would like to note that depending on experiment parameters, like
capacity C and number of players N, the value α for the NE may differ signifi-
cantly. However, the NE for MaxMin and Prince are more efficient than the NE
of the other policies. For flows with gentle penalty (Figure 9) the results show
that the Nash Equilibria of Prince’s variants are efficient but their per flow loss
rate is not low under current game parameters, while all other policies result in
an extremely undesirable NE. The results for hybrid penalty flows in Figure 10,
show Prince and MaxMin to be preeminent over all other policies. The NE for
DropTail, RED and CHOKe are inefficient and their loss rates are high.

Finally, the brute force search method M2 on Drop-tail and RED with gentle
and hybrid flows revealed more SNE only for Drop-tail with hybrid penalty flows.
The additional SNE use values of parameter α higher than the SNE found with
the methodology M1 and are less efficient. The search with methodology M3
for non-symmetric NE for all queue policies and with both gentle and hybrid
penalty flows, did not reveal any additional NE.

5 Window-games with non-AIMD flows

We relax the restriction that the flows must be AIMD flows and consider the
more general class of games where the flows can use an arbitrary strategy to
choose their congestion window. We discuss the following strategic games:

– One-shot game with complete information.
– One-shot game with incomplete information.
– Repeated game with incomplete information.



One-shot game with complete information. There is one common re-
source, every player can request an arbitrary part of this resource and the payoff
of every player depends on the moves of all players. Note that this game bears
some similarity with congestion games [23] but it does not fit into the class of
congestion games or weighted congestion games (See for example [23, 16, 15, 9]).
In the one-shot game the cost cannot be a timeout since there is only one round.
Assume N flows with window sizes wi, for i = 1, . . . , N . Let W =

∑
i wi. Let

each successful packet give a profit of 1 and each packet loss cost g ≥ 0.
DropTail: If g = 0 then

utility(N) =
{

wN , if W < C
C·wN

W , if W ≥ C

In both cases, the utility of flow N is an increasing function of wN . There is
a unique SNE, where all flows request the maximum possible value wi = C. The
SNE is very inefficient.

If g > 0, then a SNE can be calculated as follows: Assume the N−1 flows use
wi = y and flow N uses wN = x. The utility for flow N is the average number of
successful packet minus g times the average number of lost packets (we assume
y ≥ C/(N − 1)):

utility(y, x) = x · C

(N − 1)y + x
− g · x · (1− C

(N − 1)y + x
) (12)

Solving the partial derivative of utility(y, x) with respect to x we get one positive
(and one negative) solution x = y(1−N) +

√
2Cy(N − 1). Using x = y we get

y = 2C(N−1)
N2 . For example, if C = 100 and N = 10 then the SNE is at w = 18.

Experimental results are presented in Figure 11.
MaxMin: In MaxMin there is a SNE where all flows play wi = C/N . This

SNE is the optimal solution for the Window-game problem. If g > 0, then this
is the only NE of the game. As already discussed, the disadvantage of MaxMin
is that it is a stateful policy.

Prince: If a flow i plays at most its fair share wi ≤ C/N then it will experi-
ence no packet loss. Clearly, the profile where all flows play wi = C/N is a SNE.
If the cost for packet loss is g > 0 then this is the only NE of the game.

utility function Queue 
Policy Passed 

packets 
Passed-

0.1*dropped 
Passed- 

0.5*dropped 
Passed-
dropped 

DropTail 100 〉 60 26-30 17,18 
RED 100 〉 70 26-28 20 

CHOKe ≈44 ≈ 35  21-22 14-16 
CHOKe+ 100 〉 70 29 17-18 
Prince-R 10,11 10,11 10 10 

Prince  10,11 10,11 10 10 
MaxMin ≥10 10 10 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 11. Window sizes of NE for the one-shot game with complete information

One-shot game with incomplete information. If the players do not
know the total number of players N then we get a one-shot game with incomplete



information. We have to distinguish two different cases: If the players have no
prior probabilities on the number of players, or else they have no distribution
information for the unknown number N, then we get a game with no prior
probability or a pre-Bayesian game [4, 1].

In a pre-Bayesian game, we can apply ex-post equilibrium or safety-level
equilibrium or robust equilibrium or other related equilibrium concepts. The
common characteristic of these equilibrium concepts is that the player selects a
very conservative action. In this case the players have to assume that the number
of players N is the maximum possible number N = C. Hence, the players will
play as in the game with complete information with N = C. For strategies like
Prince and MaxMin, the choice of each player would be w = 1. Interestingly,
common TCP implementations, like Reno or Tahoe, use a very conservative
initial window w = 1 when starting a new flow.

However, in practice the flows are likely to have some prior information on
the number N . Note that the TCP-game is a repeated game, which means that
the flow would essentially in most cases5 have an estimation about its fair share
(except of the first round or a round after some serious network change). If the
flow has prior information on the distribution of the unknown parameter N , we
get a Bayesian game. We leave the analysis of this and the following case as
future work.

Repeated game with incomplete information The actual game that
a TCP flow has to play is a repeated game with incomplete information. The
problem has been addressed from an optimization and an on-line algorithm point
of view in [13]. One other approach would be to consider this as a learning game:
There are N = C players and each player chooses either to participate in the
game or to stay idle. The goal of each player is to ”learn” the unknown number
N of players who decide to participate. Each player may change its decision with
a predetermined probability.

6 Discussion

We present a game-theoretic model for the interplay between the congestion
windows of competing TCP flows. Preliminary theoretical and experimental re-
sults show that the model is relevant to the ”real” TCP game. Furthermore we
propose a simple queue policy, called Prince, with a sufficiently small state, and
show that it achieves efficient SNE despite the presence of selfish flows.

Future work includes extending the analysis of the Window-game to the cases
of the game with incomplete information. We also consider the proposed Prince
policy of independent interest and intend to study further possible applications.
We intend to investigate a realistic adaptation and implementation of Prince,
possibly with streaming algorithms, on real TCP networking conditions or with
the network simulator[18].

5 Unless we assume that the network conditions fluctuate a lot and therefore, the
network load can change drastically and unpredictably from round to round.
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