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ABSTRACT
Background and aims The analysis of large-scale
genetic data from thousands of individuals has revealed
the fact that subtle population genetic structure can be
detected at levels that were previously unimaginable.
Using the Human Genome Diversity Panel as reference
(51 populations - 650,000 SNPs), this works describes
a systematic evaluation of the resolution that can be
achieved for the inference of genetic ancestry, even
when small panels of genetic markers are used.
Methods and results A comprehensive investigation of
human population structure around the world is
undertaken by leveraging the power of Principal
Components Analysis (PCA). The problem is dissected
into hierarchical steps and a decision tree for the
prediction of individual ancestry is proposed. A complete
leave-one-out validation experiment demonstrates that,
using all available SNPs, assignment of individuals to
their self-reported populations of origin is essentially
perfect. Ancestry informative genetic markers are
selected using two different metrics (In and correlation
with PCA scores). A thorough cross-validation
experiment indicates that, in most cases here, the
number of SNPs needed for ancestry inference can be
successfully reduced to less than 0.1% of the original
650,000 while retaining close to 100% accuracy. This
reduction can be achieved using a novel clustering-based
redundancy removal algorithm that is also introduced
here. Finally, the applicability of our suggested SNP
panels is tested on HapMap Phase 3 populations.
Conclusion The proposed methods and ancestry
informative marker panels, in combination with the
increasingly more comprehensive databases of human
genetic variation, open new horizons in a variety of fields,
ranging from the study of human evolution and
population history, to medical genetics and forensics.

INTRODUCTION
The patterns of human genetic variation around
the globe have been forged by the history of the
human population. As indicated from fossil records
and population genetics studies, anatomically
modern humans first appeared in Africa some
200 000e150 000 years ago.1e3 About 60 000 years
ago humans left Africa in waves of migrations and,
through a sequential chain of colonies, spread to
occupy most of today ’s land masses. During this
journey they encountered different environments
and climates and came in contact with novel
pathogens and animals. They formed local
communities, separated by geographic, linguistic,
cultural, and social barriers. Mutation, genetic drift,
and natural selection operated in parallel with
demographic and historical events to weave the

patterns of human variation in extant populations.
The result of this interplay was the imprint of
genetic ancestry and population structure carried in
the genome of each individual.
Analysing microsatellite markers that spanned

the entire genome, Rosenberg et al4 were the first to
report on the patterns of human genetic variation
and population genetic structure based on genome
wide data, revealing clines of genetic diversity
around the world. The advent of modern technolo-
gies and the realisation of the HapMap project
allowed the detailed characterisation of human
genetic variation across all chromosomes in diverse
populations using dense marker maps.5e7 Never-
theless, the thorough evaluation of the extent of
fine-scale genetic structure among closely neigh-
bouring populations, as well as the study of the
ability to infer individual membership down to
a particular population within a continent, have
only begun in the past 3 years.8e12 The initial release
of dense genotypic data on the Human Genome
Diversity Panel (HGDP),8 a collection of samples
including more than 1000 individuals from 51
populations from around the world,13 14 showed
that fine-scale population differentiation was indeed
possible, when hundreds of thousands of single
nucleotide polymorphisms (SNPs) were studied.
The complex fine-scale genetic structure of Euro-
pean populations was recently presented in even
greater detail with data available from multiple,
closely neighbouring populations, revealing strong
correlation of genetic background with geographical
coordinates.9e12 Similar results were obtained from
the first fine -scale study of African diversity,15

focusing on 121 African populations.
With the volume of rich genotypic data rapidly

increasingdthanks to high throughput genotyping
and the availability of dense geographic samplesd
principal components analysis (PCA) emerged as
a powerful technique that can be used to summarise
and process the vast amounts of available informa-
tion. PCA is a linear dimensionality reduction tech-
nique that can effectively extract the fundamental
structure of a dataset without any need for modelling
of the data. It has been used to decompose the
complex genetic structure of human populations4 8 16

and it can be successfully applied to infer genetic
ancestry aswell as substructure in a given sample.17 18

Importantly, it has become an effective tool for the
correction of biases produced by the existence of
stratification in large scale, genome wide association
studies seeking to uncover the genetic basis of
complex disorders.17e19

Using PCA, as well as a fast, efficient imple-
mentation of a maximum likelihood method
implemented in the software frappe,20 Li et al8
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analysed the HGDP samples focusing on the top few axes of
variation, as revealed by PCA, and found that individual
ancestry and substructure were detectable with very high reso-
lution. Biswas et al16 further explored the structure identified by
PCA in this dataset, performing a thorough examination of
lower order principal components (PCs) that they found
significantly correlated with structure in the complete dataset or
in subsets of the data corresponding to the seven predefined
broad geographic regions of the HGDP data. They showed that,
although most researchers traditionally focus on the top few
axes of variation in a dataset, substantial information about
population structure exists in lower ranked PCs. They proceeded
to identify all SNPs that were significantly correlated with the
top two PCs and showed that, to some extent, these markers
could be used to reconstruct the structure of the complete
dataset. However, they did not attempt to evaluate the perfor-
mance of small panels of ancestry informative markers (AIMs)
for ancestry inference or population structure identification. In
fact, given all 51 HGDP populations from around the world, no
previous study has attempted the systematic evaluation of the
potential to infer the ancestry of a given individual down to
a particular population using small panels of SNPs. It should also
be emphasised that no previous study of such large scale has
actually viewed the question of inferring individual ancestry as
a classification problem. Classification is a goal which is parallel,
but more challenging, than simply analysing genetic data from
different populations in order to investigate the extent to which
these populations can be differentiated. Classification involves
cross-validation experiments of assigning individuals of
“unknown” origin to one of several reference populations.

The identification of AIMs is a topic that has attracted
considerable attention due to the value of such markers in
diverse areas, ranging from forensics, to population genetics,
conservation genetics, and medical genetics. Different metrics
have been proposed in order to select such markers. Most of
them (eg, d, Wright’s FST, etc) rely on the maximisation of allele
frequency differences between predefined populations.21e27

A closely correlated measure, informativeness for assignment
(In), as defined by Rosenberg et al,28 computes a mutual infor-
mation based metric on allele frequencies. Leveraging the prop-
erties of PCA we described a method that identifies SNPs that
are correlated with significant PCs (PCA correlated SNPs or PCA
informative markersdPCAIMs for short).18 In fact, we
demonstrated that small panels of such SNPs can successfully
reproduce the structure of a dataset, as identified by PCA,
without any prior knowledge or hypothesis on the origin of
studied individuals or artificial assignment of individuals to
predefined clusters.18 29

The results described herein are a systematic investigation, at
a worldwide level, of the extent to which an individual of
unknown origin can be assigned to a particular population using
only information from small panels of carefully selected SNPs.
Using the HGDP data from 51 populations and 650 000 SNPs as
reference,8 we first performed a comprehensive investigation of
the structure of the dataset as identified by PCA. Instead of
seeking to uncover information in lower ranked PCs, we
dissected the problem into hierarchical steps, proposing a deci-
sion tree for the prediction of individual ancestry. After
processing information at each level we proceeded to analyse the
next one, exposing the picture of population structure in further
resolution until all meaningful information was extracted. AIMs
were selected using two different metrics (In28 and PCA
scores18). Faced with the problem of redundancy in the infor-
mation carried by the selected AIMs, we proposed and evaluated

a simple, clustering-based, strategy in order to minimise the
number of markers needed for the inference of population
structure. In order to estimate the generalisation error of our
methods, we ran over 800 PCA computations and report results
on a thorough cross-validation experiment. Finally, we tested the
applicability of our suggested SNP panels on HapMap Phase 3
populations. Our results demonstrate that fine-scale inference of
individual ancestry is indeed possible even with small, albeit
judiciously selected, sets of genetic markers.

METHODS
Datasets
We studied a previously described dataset of 1043 individuals
from 51 populations from around the world.8 These samples can
be classified into seven broad geographic regions (Africa, Middle
East, Europe, Central South Asia, East Asia, Oceania, and
America). The samples have been genotyped for approximately
650 000 SNPs across the genome using the Illumina 650Y array.
As a second dataset we also studied SNPs for the selected
ancestry informative panels from the HapMap Phase 3 database
on the Yoruba (YRI), African American from Southwest USA
(ASW), Luhya in Webuye, Kenya (LWK), Maasai in Kinyawa,
Kenya (MKK), CEPH European (CEU), Italian from Tuscany
(TSI), Chinese from Beijing and the Denver Metropolitan area
(CHB and CHD), Japanese (JPT), Gujarati Indians in Houston,
Texas (GIH), and Mexicans in Los Angeles, California (MEX)
samples.5e7 For all datasets we only considered SNPs on auto-
somal chromosomes in our analysis. We excluded SNPs with
more than 10% missing entries, and we analysed a total of
643 862 SNPs. A small number of outlier individuals were also
removed from further analysis. Full details on preprocessing and
encoding the data are provided in the supplementary material.

Selecting ancestry informative markers and removing
redundancy
In order to select ancestry informative markers (AIMs), we used
two previously described procedures. The first procedure18 29

returns the so-called PCA informative markers or PCAIMs for
short and is based on the well documented fact that PCA reveals
population structure.17 18 30e33 The PCAIM selection algorithm
first determines the number of significant principal components
(and thus the number of informative eigenSNPs) in the data (see

Table 1 Number of significant principal components and AIM panel
sizes at each node of the decision tree depicted in figure 1

Decision tree node sign. PCs
Panel P1 Panel P2 Panel P3
# of SNPs # of SNPs # of SNPs

World 4 50 100 150

Africa 2 30 60 90

Bantu, Mandenka, Yoruba 1 100 200 300

Bantu, Yoruba 1 50 100 150

E Asia 6 300 600 900

Chinese 5 500 1000 1500

America 4 30 60 90

Oceania 1 10 20 30

C S Asia, Europe, M East 2 300 600 900

Europe 2 300 600 900

C S Asia 3 150 300 450

Pakistani 1 100 200 300

M East 6 300 600 900

Notice that panel P2 contains twice the number of SNPs in panel P1 and panel P3 contains
three times the number of SNPs in panel P1.
AIM, ancestry informative marker; PCs, principal components; SNP, single nucleotide
polymorphism.
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table 1 for the number of significant principal components and
supplementary material for a detailed description of how this
number was determined for the purposes of the analyses
presented here). Subsequently, a score is assigned to each SNP,
with higher scores corresponding to SNPs that correlate well
with all informative eigenSNPs. The algorithm returns the top
scoring SNPs, and we have demonstrated that these PCAIMs are
very efficient for ancestry prediction.18 The second procedure
computes the so-called informativeness for assignment (In)
metric, a mutual information based statistic that takes into
account self-reported ancestry information from the sampled
individuals.28 We call the selected markers In AIMs for short.

It is worth noting that neither method takes any special
measures in order to avoid redundancy in the set of identified
markers. Such redundancy, especially in the case of dense sets of
SNP markers, is typically due to tight linkage disequilibrium. In
Paschou et al29 we proposed a linear-algebraic method to remove
redundancy from the selected PCAIMs. Our methodology was
based on reducing the redundancy removal problem to the
so-called column subset selection problem and on leveraging
algorithms and software that are available for the latter problem.
Subsequent to our work, Boutsidis et al34 reported a simpler,
alternative strategy for redundancy removal within the context
of data analysis: given genotypic information on m individuals
and r AIMs (either PCAIMs or In AIMs), as well as a target panel
size k, cluster the r AIMs in k clusters and return one represen-
tative AIM from each cluster. This strategy reduces the redun-
dancy removal problem to a clustering problem, for which
efficient and highly accurate software packages are available. An
additional advantage of clustering is that instead of returning just
a set of k non-redundant AIMs, it also returns k lists (clusters) of
AIMs. Within each list, the selected markers are, at least to some
extent, interchangeable. This makes the task of interpreting the
functionality of selected AIMs easier and also provides some
flexibility to researchers that are interested in forming ancestry
informative panels to choose alternative markers.

In light of the above discussion, we evaluated clustering via
straightforward methods as a solution for the redundancy
removal problem. More specifically, we used the publicly avail-
able software ClutoCluster35 with default parameters. Our
metric of similarity was the cosine of the angle between the
m-dimensional vectors representing the AIMs, which exactly
coincides with the metric of similarity used by PCA. We also
compared the performance of clustering for redundancy removal
to the method of Paschou et al29 and found the two methods to
perform comparably (data not shown), with clustering being
about five times slower but slightly more accurate. This obser-
vation, combined with the improved interpretability of clus-
tering, seems to support the conclusions of Boutsidis et al34 that
clustering is a very useful way of addressing the redundancy
removal problem.

Ancestry prediction via nearest neighbours
We model ancestry prediction using panels of AIMs as the
following task: given a database of m individuals of known (eg,
self-reported) population of origin, genotyped on a panel of k
AIMs, and a new individual of unknown ancestry genotyped on
the same panel, we seek to predict the population of origin of
the new sample. This is a standard classification problem and in
order to address it we chose to use one of the most intuitive
methods available in the machine learning literature, namely
a nearest neighbour (NN) approach. NN-type algorithms first
compute the distance of the new sample from the m individuals
in the database and then identify the n ‘nearest neighbours’ of

the new sample. A majority voting strategy is used in order to
assign a population of origin to the new sample. We experi-
mented with different values of n (the number of nearest
neighbours) ranging from five up to 10 in increments of one
without observing a consistent advantage in using any value
above five. Thus, we chose to fix n to five; as a result, in order to
assign an individual to a population X we necessitate that at
least three of its five nearest neighbours belong to the same
population X. If such consensus cannot be reached, we do not
return a prediction. We will refer from now on to our classifi-
cation methodology as 5-NN. Finally, in order to deal with
individuals that are far away from the reference populations, we
augmented our nearest neighbour computation with a simple
confidence metric discarding nearest neighbours whose distance
exceeds the 95% threshold in the distribution of observed
distances. Individuals with three or more ‘discarded’ nearest
neighbours are classified as unknown.
In almost all our experiments we chose the identity-by-state

(IBS) distance as our metric of similarity. IBS simply measures
the number of alleles that agree between the genotypes of the
two samples. The only exception is one experiment where we
represented the genotypic data of the HGDP individuals by
projecting them on the top few eigenSNPs, which results in
fractional values for the genotypes. Since the IBS distance was
not immediately applicable in this setting, we used a standard
generalisation, the Euclidean distance, instead.
To conclude, we note that more advanced classification

methodologies and/or better distance metrics might be appli-
cable to our task. It is quite interesting and exciting that stan-
dard, simple methods such as 5-NN and IBS are highly accurate
and very useful. Finally, details on our validation and cross-
validation experiments, as well as our accuracy metrics, are
available in the supplementary material.

RESULTS
Decomposing the structure of worldwide human populations
We decided to dissect the problem of recovering individual
ancestry at a fine scale into hierarchical steps, thus attempting to
decompose worldwide human population structure. We
performed a detailed investigation of the observed patterns of
genetic variation and population relationships in the studied
samples as captured by PCA (see plots of projections of the
samples on the top eigenSNPs at the online material at http://
www.cs.rpi.edu/wdrinep/HGDPAIMS/). Our aim was to split the
available populations into groups and levels in a decision tree until
all meaningful information provided by PCA could be extracted.
Thus, we clustered populations into groups according to geog-
raphy; membership to these groups was fine-tuned based on visual
inspection of the top 10 PCs for each such group of populations.
Our analysis is summarised in the decision tree for individual
assignment to a particular population as shown in figure 1.
According to the above scheme, and as we will describe in

detail in the following sections, individuals are first classified to
one of five broad geographic regions: Africa, Europe-Middle East-
Central South Asia, East Asia, Oceania, and America. Moving
further down in the decision tree, individuals are classified into
lower level nodes and are finally assigned to the deepest cluster
that can be inferred given the HGDP dataset. Depending on the
complexity of population structure within each region, as well
as the genetic homogeneity of populations sampled for each of
these regions, one or more levels may follow the initial assign-
ment of an individual to one of the five broad geographic clusters
of the initial node of our tree (world node, figure 1).
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Recall that in this exercise our goal was to, first, evaluate the
extent to which individual ancestry can be inferred using all
available genotypes (650 000 SNPs) and, second, to identify and
examine small panels of AIMs that can reproduce these results.
For example, in our decision tree (figure 1), in order to classify an
individual as Bantu, we first determine whether the individual
originates from the African continent. We then decide whether
the individual belongs to one of the ‘Western African’ popula-
tions in our sample (Bantu, Yoruba, and Mandenka). We then
proceed to differentiate between Mandenka ancestry and Bantu
or Yoruba ancestry (the Bantu cannot be easily differentiated
from the Yoruba at this step and thus we chose to add an
additional node here). Finally, we distinguish between Bantu and
Yoruba. The Bantu people represent today a large number of
ethnic groups in sub-Saharan Africa, extending from Cameroon
and across Central Africa to East Africa and Southern Africa. It is
hypothesised that they originated in Western Africa (the south-
western border of modern Nigeria and Cameroon) and about
3000 years ago expanded throughout sub-Saharan Africa, devel-
oping agriculture and metalworking techniques.36 Our results

support theirWest African origin since they cluster closely (see PCA
plots at the online material accompanying this work: http://www.
cs.rpi.edu/wdrinep/HGDPAIMS/Level_Africa.html) with the
Yoruba, a population predominantly found in Nigeria.
We should point out that, in most cases, individuals can be

ultimately assigned to a single population. However, in some
cases, the decision tree stops at a level which corresponds to
several populations and further differentiation cannot be
adequately achieved, at least using the methods we describe
here. This may be either due to the close genetic relationship
between these populations or the small sample sizes that were
available for study in HGDP, or both. For example, in Europe,
Northern Italians from Bergamo (13 individuals in the studied
dataset) cannot be completely distinguished from Tuscans in
central Italy (eight individuals in the studied dataset), even
when all 650 000 SNPs are used.
Moving to Central South Asia, we cannot achieve successful

differentiation between the Balochi, Brahui, and Makrani. All
three populations reside in the southeast corner of the Iranian
plateau, including parts of Iran, Afghanistan, and Pakistan. In
Central South Asia we are also unable to distinguish between
the Hazara and the Uygur people. The Hazara, from Pakistan,
are a population of Mongol origin, as also supported by Y chro-
mosome studies.37 38 Many consider themselves to be direct
male-line descendants of Genghis Khan. The Uygur are a Turkic
ethnic group descending from tribes in the Altai Mountains and
found today, primarily, at the far northeastern corner of China,
in a region bordering Mongolia, Russia, and Pakistan. Finally, the
Pathan from the North-West Frontier Province of Pakistan are
largely indistinguishable from the Sindhi living close to the delta
of the Indus river in Southeastern Pakistan.
In East Asia the HGDP panel includes a large number of

different but closely neighbouring Chinese ethnic minorities (14
such populations), many of which are only represented by a very
small number of individuals (7e10 individuals for all sampled
populations in that region, except the Han Chinese). However,
clear gradients are observed, even within China, and several sub-
populations can be successfully differentiated. For example, we
can easily differentiate the Dai and Lahu, two populations living
at the South of the Yunnan Province in China and also found in
the neighbouring countries of Laos, Vietnam, Burma, and
Thailand. Several of the remaining populations are grouped
together based on our analysis. Northern China is represented by
the Daur, Hezhen, Oroquen, Mongola, and Xibo populations
originating from (or currently inhabiting) Inner Mongolia and
the far most Northeastern corner of China. The Naxi and Yizu
from Northwestern Yunnan also cluster together in the south of
China, as do the Han and Tujia from the Central Provinces of
China.

Ancestry inference using the decision tree, 5-NN, and the
Illumina 650Y array
First, we discuss ancestry inference using genotype information
from the full Illumina 650Y array. While our primary goal was
the identification of small panels of AIMs that achieve accurate
assignment of individuals to populations of origin using self-
reported ancestry in the HGDP dataset as “ground truth”, we
also ran a complete leave-one-out experiment using all 650 K
available markers in order to assess ancestry inference using all
SNPs. More specifically, figure 2A (see the bar corresponding to
the 650 K panel) summarises the results of the complete leave-
one-out validation experiment when applied at each level of our
decision tree (figure 1), using the number of significant principal
components of table 1 and the 5-NN approach described in
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Europe,
M. East, C.S. Asia
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Oceania
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Figure 1 The decision tree for individual assignment to a particular
population (or population group) of origin using the Human Genome
Diversity Panel data. For each diamond shaped node we propose (small)
panels of ancestry informative markers (AIMs) that may be used to
assign an individual to one of its children nodes. The rows of square
shaped nodes indicate populations (or groups of populations) of origin
that we can separate. For example, using the panel that we proposed at
the Central South Asia node, we can assign an individual to either the
Burusho population, or the Kalash population, or the Hazara-Uygur
populations (we cannot distinguish between Hazaras and Uygurs), or to
the Pakistani populations. Further differentiation between groups of
Pakistani populations is possible using a different panel of AIMs.
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Methods (see supplementary material for a detailed description
of how the number of significant principal components was
selected for the purposes of the analysis presented here). As
indicated in figure 2A, at most nodes of our decision tree, the
classification accuracy was 100%. The classification accuracy
was <100% only at the node differentiating among the three
Chinese ethnic sub-groups (with a classification accuracy of
98.63%), the node differentiating two groups of populations
from Pakistan (97.35%), and the node differentiating four
populations from the Middle East (94.19%). As can be deduced
from the inspection of PCA plots for the Middle Eastern popu-
lations (see the 2-D and 3-D PCA plots for Middle Eastern
populations at http://www.cs.rpi.edu/wdrinep/HGDPAIMS/
Level_MiddleEast.html), the loss of performance in this region is
mainly due to the fact that the studied individuals of Druze and
Palestinian origin overlap.

Inferring individual ancestry with small panels of AIMs
In our next experiment we evaluated whether small panels of
AIMs can accurately reproduce the excellent results of ancestry
inference using all 650 K available markers. As a first step, we
selected within each level the top 5000 PCAIMs, using the

number of significant principal components of table 1, and
repeated the full leave-one-out validation test at each level using
the 5-NN approach and the standard IBS distance metric. Once
more, a complete leave-one-out validation experiment is
computationally feasible since the top 5000 PCAIMs are selected
once at each node of the decision tree and only one Singular
Value Decomposition (SVD) at each node is needed for the
whole experiment. The 5 K bars in figure 2A indicate the
performance of these panels: with three notable exceptions that
will be discussed below, they are marginally (no more than 5%)
less accurate than the full 650 K panels. However, at the Chinese
node, we have a considerable performance loss in classification
accuracy (approximately 10%). Similarly, at the Bantu-Yoruba
node, we have a performance loss of approximately 17%. Finally,
at the European populations node, we observe the largest
performance loss, with the classification accuracy reduced to
78.21% from 100%. This is still surprisingly accurate, especially
given the genetic homogeneity of European populations.
Supplementary figure 1A (5 K bars) shows that even the smallest
average number of correct nearest neighbours is almost four out
of five, which is a strong indication that our 5-NN approach
works well with the selected SNP panel.

Figure 2 Classification accuracy of
our complete leave-one-out validation
experiment at all nodes of our decision
tree. Five different panel sizes are
evaluated, with 650 K corresponding to
the whole Illumina 650Y array, 5 K
corresponding to the top 5000 ancestry
informative markers (AIMs), and P1, P2,
and P3 corresponding to the panel sizes
depicted in table 1; these smaller panels
emerged by removing redundant
markers from the top 5000 AIMs.
Notice that the top 5000 markers were
selected using the full dataset, in
contrast to the cross-validation
experiment of figure 3. (A) Classification
accuracy results using all available
single nucleotide polymorphism (SNPs)
as well as principal components
analysis (PCA) informative markers
(PCAIMs). (B) Classification accuracy
results using informativeness for
assignment (In) markers. Ban: Bantu,
Man: Mandenka, Yor: Yoruba,
Eur: Europe, CSA: Central South Asia,
ME: Middle East.

PCAIMs

0

10

20

30

40

50

60

70

80

90

100

W
orld

Afri
ca

Ban
-M

an
-Y

or

Ban
-Y

or

Eas
t A

sia

Chin
es

e

Am
er

ica

Oce
an

ia

Eur-M
 E

-C
 S

 A

Euro
pe

C S
 A

sia

Pak
ist

an
i

M E
as

t

C
ro

ss
-v

al
id

at
io

n
 a

cc
u

ra
cy

650K 5K P1 P2 P3

In AIMs

0

10

20

30

40

50

60

70

80

90

100

W
orld

Afri
ca

Ban
-M

an
-Y

or

Ban
-Y

or

Eas
t A

sia

Chin
es

e

Am
er

ica

Oce
an

ia

Eur-M
E-C

 S
 A

Euro
pe

C S
 A

sia

Pak
ist

an
i

M E
as

t

C
ro

ss
-v

al
id

at
io

n
 a

cc
u

ra
cy

5K P1 P2 P3

A

B

J Med Genet 2010;47:835e847. doi:10.1136/jmg.2010.078212 839

Original article

 group.bmj.com on March 12, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


We already observed in prior work29 that such panels of AIMs
tend to contain large amounts of redundant markers, mainly due
to linkage disequilibrium (LD) between densely typed markers.
Thus, our next step was the removal of redundant markers via
the clustering technique described in Methods. We experimented
with numerous panel sizes and we chose to report results on
three different panels (P1, P2, and P3) for each node in our
decision tree. The panel sizes are connected: the number of
markers in P2 is equal to twice the number of markers in P1, and
the number of markers in P3 is equal to three times the number
of markers in P1 (table 1). Not surprisingly, the number of
markers necessary for ancestry inference is very different at the
various nodes of the decision tree, reflecting the fact that certain
(groups of) populations are more or less genetically homoge-
neous. For example, by inspecting figure 2A and table 1, we
conclude that, within the setting of this experiment, 50 SNPs
suffice to classify an individual to one of the five broad
geographic regions at the topmost node of our decision tree with
an accuracy of 98.9%. Individuals who fall within the Europe-
Middle East-Central South Asia cluster can be further assigned
to one of these three regions using an additional 300 SNPs
(98.7% accuracy). Thus, this experiment indicates that 350 SNPs
achieve almost perfect classification accuracy in assigning indi-
viduals to one of the seven broad geographic regions sampled in
the HGDP.

A few interesting observations arise by inspecting figure 2A.
First, even our smallest panels of AIMs (panels P1) achieve very
high accuracy at most nodes of our decision tree. A notable loss
of performance is observed when attempting to classify Euro-
pean individuals. In this case, using 300 markers we can achieve
65.4% classification accuracy, which improves to 73.7% using
900 markers. This is still well below the 100% accuracy that is
achieved using all 650 000 SNPs, but quite close to the 78.2%
accuracy that is achieved using the top 5000 PCAIMs. Much less
dramatic losses in accuracy (not exceeding 5%) are observed for
the closely related Chinese populations (with 500 markers
achieving 84.2% classification accuracy, and 1500 markers
achieving 87.7% classification accuracy), as well as the Middle
Eastern and, to a lesser degree, the East Asian populations. We
also observe that, in general, our largest panels (panels P3)
perform as well as the top 5000 PCAIMs before the redundancy
removal step. This seems to reinforce the conjecture that
redundancy removal from the top PCAIMs does not significantly
affect performance. One additional observation is the improve-
ment in classification accuracy using the non-redundant panels
in the Bantu-Yoruba case, which is probably due to artefacts
related to the removal of a large number of uninformative SNPs
from the initial panel.

We repeated this experiment using AIMs which were selected
based on the metric of In. Figure 2B and supplementary figure 1B
show that, in this exploratory experiment where AIMs are
selected using all available individuals, all In AIMs panels achieve
very high accuracy for population assignment around the world,
even within Europe, China, and the Middle East, where popu-
lation differentiation with the PCAIM panels was less accurate.
Two observations are immediate: first, when comparing figure
2A, B, the accuracy trends are quite similar. In particular, Europe
and China are the worst performing regions in both cases,
especially when using the small panels P1, P2, and P3. Middle
East is also more complex, as explained above. The second
observation is that the better performance of the In SNPs in this
case is due to the fact that it is a supervised method and thus, in
the setting of this experiment at least, it probably overfits the
data and selects exactly the SNPs that differentiate the various

populations. Unfortunately, this superior performance is not
a good predictor of the generalisation error in a true cross-vali-
dation experiment, where certain individuals are left out during
the selection of AIMs. Indeed, as we shall see in the next section,
in a true cross-validation setting the performance of In SNP
panels drops and the resulting panels have comparable or
somewhat worse performance than the PCAIMs panels.

Cross-validation experiment: leave-seven-out cross-validation
using the HGDP dataset
In our first cross-validation experiment we performed 50 splits
of the HGDP dataset, where in each split we constructed a test
set consisting of seven individuals from HGDP, one from each of
the seven broad geographic regions (Africa, Europe, Middle East,
South Central Asia, East Asia, Oceania, and America). The
remaining individuals were used as a training set in order to
select PCAIMs and In AIMs, as well as input for our 5-NN
classification scheme. In each split, care was taken in order to
avoid testing the same individual twice. (This was not possible
in Oceania, where the number of available individuals was <50.)
Figure 3A and supplementary figures 2A, 3, 4, and 7 summarise
the performance of our PCAIM panels over all 50 3 7¼350
individuals in all test sets, while figure 3B and supplementary
figures 2B, 5, 6, and 8 demonstrate the corresponding results for
In AIMs.
The overall performance of our approach using even small

panels of PCAIMs is quite remarkable at most nodes of the
decision tree in figure 1, even when fine scale population
differentiation is the target, both using PCAIMs and In AIMs. In
almost every case, results are comparable to the validation
results presented in the previous section. However, in three
regions, we do observe a loss in performance. The separation of
Bantu and Yoruba individuals proves more difficult. Using
PCAIMs the classification accuracy ranges from 64e72%
depending on the panel size (50 up to 150 PCAIMs) while it lies
between 57e86% with In AIMs. Using PCAIMs within East
Asia, we are able to achieve a classification accuracy ranging
from 82% (using 300 SNPs) up to (almost) 90% (using 900
SNPs), while In AIMs reach 85% with 600 SNPs. Within this
region, a group of closely related Chinese populations are the
most resistant to prediction, with accuracies that do not exceed
61% even using 1500 PCAIMs (57% with In AIMs). In the
Middle East the classification accuracy using PCAIMs panels
ranges from 75% (using 300 SNPs) up to 80% (using 900 SNPs),
with comparable results for In AIMs. As mentioned earlier, this
is due to the difficulty in distinguishing between the Druze and
Palestinians, who cannot be separated even using all 650 000
SNPs.
In Europe, recall that 650 000 SNPs achieve essentially 100%

classification accuracy, while with 5000 PCAIMs (selected using
all available Europeans as training set) the accuracy drops to
78.2%. In our cross-validation experiment, the classification
accuracy ranges from 51% using 300 PCAIMs up to 68% using
900 PCAIMs. Notice that for our PCAIMs analysis, these
numbers agree fairly well with the numbers reported in figure 2
for our validation experiment. On the contrary, although the In
AIMs seemed to perform better at this stage in the validation
experiment, in this leave-seven-out cross-validation test, their
performance is actually comparable to PCAIMs, indicating that
In AIMs overfit the data. Supplementary figure 4 illustrates in
further detail the performance of our smallest and largest
PCAIM panels (P1 and P3) in Europe (see supplementary figure 6
for corresponding results for In AIMs). The Russian, Adygei,
Sardinian, and Basque individuals in our test sets are predicted
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very accurately. The main source of classification error is the
difficulty in distinguishing between the French, Orcadian, and
Italians, when small panels of SNPs are used. Thus, although
individual classification is perfect for these populations when all
650 000 SNPs are used, our panels (combined with 5-NN and the
IBS distance metric) are largely unable to distinguish between
these three populations, although some percentage of correct
ancestry is recovered. Either larger panels or more advanced
methods are needed in order to increase the accuracy of ancestry
prediction for individuals from these populations.

Cross-validation experiment: predicting the population of origin
of the HapMap phase 3 populations
In our second cross-validation experiment we measured the
performance of the SNP panels derived using the full HGDP data
as training set in order to classify individuals from the HapMap
Phase 3 populations. This experiment involves the analysis of
populations that represent extreme cases of admixture not seen
in the HGDP panel (the ASW, of African ancestry in southwest
USA, and the MEX, of Mexican ancestry in Los Angeles, Cali-
fornia). Furthermore, indigenous populations for which no
reference exists in the HGDP sample are also included: the Luhya

in Webuye, Kenya (LWK), the Maasai in Kinyawa, Kenya
(MKK), and the Gujarati Indians from Houston, Texas (GIH).
We extracted the genotypes for all 11 populations from HapMap
release 27 (built 36) raw data and then used our 5-NN classifier
at the relevant nodes of the decision tree in figure 1. Results for
the three panel sizes P1, P2, and P3 in table 1 are reported in
tables 2 and 3. In almost all cases, the performance of PCAIM
SNP panels and In SNP panels is comparable, and thus we focus
our discussion on the classification results using PCAIMs.
Using our PCAIM SNP panels, the Yoruba are very accurately

classified (table 2) all the way down to their self-reported
population of origin. In fact, when the larger panels (P2 and P3)
are used, we achieve essentially 100% classification accuracy all
the way down to the last node in the decision tree. At that node
(the Bantu-Yoruba node) the accuracy drops slightly but still
exceeds 94% with the two larger panels and 90% with the
smallest panel. In Europe, the CEU samples are perfectly assigned
to the continent, even with the smallest panel, as table 2 indi-
cates. The exact European population of origin for the CEU
samples is not known. However, not surprisingly, given prior
work on the CEU samples9 10 which indicates that their ancestry
is closer to northwestern European populations, the vast majority

Figure 3 Classification accuracy of
our leave-seven-out cross-validation
experiment at all nodes of our decision
tree. Three different panel sizes are
evaluated: P1, P2, and P3 (see table 1).
Unlike the experiment in figure 2, panels
P1, P2, and P3 were selected using only
the training set data. Then, our 5-NN
classification scheme was applied on
the selected markers in order to predict
the ancestry of the individuals in the
test set. Thus, this experiment is a good
predictor of the generalisation error of
our methods and panelsdthe error that
our methods are expected to have in
previously unseen data. (A)
Classification accuracy results using
principal components analysis (PCA)
informative markers (PCAIMs) over 50
random splits. (B) Classification
accuracy results using informativeness
for assignment (In) markers over 50
random splits. Ban: Bantu, Man:
Mandenka, Yor: Yoruba, Eur: Europe,
CSA: Central South Asia, ME: Middle
East.
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Table 2 Predicting the population of origin of individuals in six HapMap phase 3 populations that have reference populations in HGDP

Decision tree nodes

Panel 1 Panel 2 Panel 3

PCAIMs In AIMs PCAIMs In AIMs PCAIMs In AIMs

HapMap YRI

World / Africa 167/167 160/160 167/167 167/167 167/167 167/167

Africa / Ban, Man, Yor 166/167 151/160 167/167 158/167 167/167 166/167

Ban, Man, Yor / Ban, Yor 161/166 145/151 166/167 157/158 167/167 164/166

Ban, Yor / Yor 146/161 123/145 158/166 145/157 157/167 157/164

HapMap CEU

World / Eur, CSA, ME 165/165 165/165 165/165 165/165 165/165 165/165

Eur, CSA, ME / Europe 165/165 165/165 165/165 165/165 165/165 165/165

Europe / Fre and Orc 125/165 58/165 132/165 79/165 128/165 110/165

HapMap TSI

World / Eur, CSA, ME 88/88 88/88 88/88 88/88 88/88 88/88

Eur, CSA, ME / Europe 85/88 81/88 88/88 87/88 88/88 87/88

Europe / Ita and Fre 72/85 52/81 79/88 71/87 83/88 78/87

HapMap CHB

World / E Asia 84/84 84/84 84/84 84/84 84/84 84/84

E Asia / Chinese 82/84 81/84 83/84 82/84 84/84 83/84

Chinese / Han and Tuj 63/82 66/81 71/83 70/82 79/84 74/83

HapMap CHD

World / E Asia 85/85 85/85 85/85 85/85 85/85 85/85

E Asia / Chinese 83/85 84/85 82/85 82/85 83/85 83/85

Chinese / Han and Tuj 75/83 73/84 78/82 79/82 82/83 82/83

HapMap JPT

World / E Asia 86/86 85/86 86/86 86/86 86/86 86/86

E Asia / Jap 49/86 9/85 56/86 33/86 56/86 37/86

We discarded from our analysis individuals with more than 10% missing entries when extracting our PCAIM or In SNP panels P1, P2, and P3.
We report classification accuracy (CACC, see supplementary material), expressed as the fraction of individuals that were assigned to the correct region or population of origin at the respective
node of the decision tree.
Note that as we move down in the decision tree individuals that were incorrectly predicted in previous nodes are omitted.
AIMs, ancestry informative markers; HGDP, Human Genome Diversity Panel; PCAIMs, principal components analysis informative markers; SNP, single nucleotide polymorphism. Ban: Bantu,
Man: Mandenka, Yor: Yoruba, Eur: Europe, CSA: Central South Asia, ME: Middle East, Fre: French, Orc: Orcadian, Ita: Italian, E Asia: East Asia, Tuj: Tujia, Jap: Japanese.

Table 3 Predicting the population of origin of individuals in five HapMap phase 3 populations that do not have reference populations in HGDP

Decision tree nodes

Panel 1 Panel 2 Panel 3

PCAIMs In AIMs PCAIMs In AIMs PCAIMs In AIMs

HapMap ASW

World /Africa 76/83 77/83 80/83 81/83 81/83 82/83

Africa / Ban, Man, Yor 76/76 73/77 80/80 80/81 81/81 81/82

HapMap LWK

World / Africa 90/90 90/90 90/90 90/90 90/90 90/90

Africa / Ban, Man, Yor 89/90 83/90 90/90 80/90 90/90 87/90

Ban, Man, Yor / Ban, Yor 89/89 83/83 90/90 80/80 90/90 87/87

HapMap MKK

World / Africa 169/171 168/171 171/171 171/171 171/171 171/171

Africa / Ban, Man, Yor 162/169 158/168 171/171 162/171 171/171 165/171

Ban, Man, Yor / Ban, Yor 160/162 153/158 171/171 157/162 171/171 163/165

HapMap GIH

World / Eur, CSA, ME 88/88 87/88 88/88 88/88 88/88 88/88

Eur, CSA, ME / CSA 88/88 87/87 88/88 88/88 88/88 88/88

CSA / Pakistani 71/88 71/87 78/88 68/88 74/88 77/88

HapMap MEX

World / Americas 22/77 26/77 26/77 36/77 28/77 39/77

Americas / Maya 19/22 22/26 24/26 26/36 27/28 28/39

World / Eur, CSA, ME 54/77 43/77 51/77 38/77 49/77 34/77

Eur, CSA, ME / Europe 14/54 11/43 16/51 16/38 15/49 17/34

Eur, CSA, ME / CSA 39/54 29/43 33/51 19/38 34/49 17/34

CSA / Pakistani 12/39 16/29 12/33 7/19 6/34 4/17

We discarded from our analysis individuals with more than 10% missing entries when extracting our PCAIM or In SNP panels P1, P2, and P3.
We report classification accuracy (CACC, see supplementary material), expressed as the fraction of individuals that were assigned to the correct region or population of origin at the respective
node of the decision tree.
Again, as we move down in the decision tree individuals that were incorrectly predicted in previous nodes are omitted.
AIMs, ancestry informative markers; HGDP, Human Genome Diversity Panel; PCAIMs, principal components analysis informative markers; SNP, single nucleotide polymorphism. Ban: Bantu,
Man: Mandenka, Yor: Yoruba, Eur: Europe, CSA: Central South Asia, ME: Middle East.
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of the CEU individuals are classified as French or Orcadian; these
are our most Northwestern European HGDP populations. The
origin of the TSI individuals is predicted as French or Italian. As
described in the previous section, Italians can be classified as
French or Italian with 100% classification accuracy using panel
P1; this accuracy drops to 50% when we seek to classify them as
Italians only using the same panel.

Results for the three East Asian populations are shown in
table 2. Regarding the CHB sample, our largest PCAIMs panel
almost perfectly assigns the HapMap CHB subjects to the Han/
Tujia group, with accuracy exceeding 94% even at the last rele-
vant node. Even our smallest panel does a good job predicting
the population of origin, with almost 100% accuracy at the first
two nodes and 77% accuracy at the last node. The CHD are also
accurately assigned to the Chinese group. The situation is
slightly worse for the Japanese sample, where we observed the
least successful performance in this cross-validation experiment.
While we easily achieve 100% accuracy in classifying the Japa-
nese samples to East Asia with all three panels, within East Asia
we only achieve 65% accuracy in assigning the JPT samples to
the Japanese population even with our largest PCAIMs panel.
The remaining 35% of the JPT samples are assigned to Chinese
populations. This seems to indicate that more markers are
necessary at this level; it is worth noting that using all 650 000
SNPs we achieve 98% accuracy in classifying the JPT samples as
Japanese. Using our largest panel (P3), 56 out of the 86 studied
JPT individuals have three or more of their five nearest neigh-
bours in the HGDP Japanese sample, an additional 19 have two
of their five neighbours in the HGDP Japanese sample, seven
have one of their five neighbours in the HGDP Japanese sample,
and only four have no neighbours in the HGDP Japanese sample.
This seems to indicate that we can at least partially capture
Japanese ancestry for the vast majority of the HapMap JPT
samples. We should also note that this is one node of the deci-
sion tree where the performance of In SNPs is considerably worse
than PCAIMs (up to 43% classification accuracy with the largest
panel).

Moving on to the populations for which we have no reference
in the HGDP dataset, we observe that, in most cases, individuals
are classified to the closest geographically neighbouring popu-
lation available (table 3). The individuals from populations of
African ancestry (ASW, LWK, and MKK) are assigned to Africa
with essentially 100% accuracy, even with our smallest panel (50
SNPs, P1). The predominantly Western African origin of African
Americans is also well documented, and, appropriately, our
panels also classify them as West African. The Bantu speaking
LWK from Kenya are classified as Bantu or Yoruba, as are the
MKK from Kenya. About two thirds of the population in Kenya
is represented by Bantu tribes, which is the closest neighbouring
population in the HGDP panel to the MKK and LWK. The
Gujarati Indians (GIH), originating from Gujarat (the most
western state of India and immediately adjacent to Pakistan) are
easily placed in Central South Asia where they are classified as
Pakistanis. Finally, the analysis of Mexicans from California
(MEX) yields slightly unexpected results. With the smallest
PCAIM panels, 14 individuals are assigned to Europe, 22 are
assigned to America, and 39 to Central South Asia (where they
are ultimately classified as Pakistani or Afghans). Although this
case illustrates the limitations of the method for extremely
admixed populations, it could also indicate a higher than
expected degree of Punjabi Mexican American ancestry in this
Californian Mexican sample. The Punjabi Mexican Americans
(people of Mexican and Pakistani or Indian ancestry) originate
from the Sacramento valley in California.39

Studying the PCA plots for these ‘untested’ populations
(supplementary figures 9e19) it is clear that individual genetic
distances are often far from any one of our HGDP reference
populations. In order to address this issue, we decided to apply
a more stringent test, introducing a simple confidence metric for
our assignments. More specifically, our confidencemetric discards
the nearest neighbours (out of the top five) of an individual, for
which the corresponding distance is an outlier (exceeds the
standard 95% threshold) in the distribution of observed distances
(see supplementarymaterial for details). Individuals with three or
more ‘discarded’ nearest neighbours are classified as unknown.
Results for the HapMap populations when this confidence
threshold is applied at the top two levels of the decision tree in
figure 1 are shown in table 4 and supplementary table 1. The
power of this methodology, as well as the fact that certain
HapMap phase 3 populations have no reference samples in
HGDP, is highlighted with the majority of the individuals clas-
sified as unknown, sometimes even at the topmost level.

DISCUSSION
Despite the relatively low levels of genetic differentiation among
geographically defined human populations when compared to
other mammalian species, population genetics analysis can
uncover the genetic signatures left on regional populations, by
demographic, environmental, and historical factors.40e44 In this
work, we investigated the extent to which geographically close
populations can be discerned based on genetic information
alone. To this end, we analysed data from 1043 individuals and
51 populations from around the world, genotyped for 650 000
SNPs (HGDP dataset).8 In doing so, we undertook a compre-
hensive evaluation of population genetic structure around the
world. We report on the feasibility of fine scale genetic ancestry
testing on a global scale, not only using information from the
whole genome (650 000 SNPs) but, importantly, evaluating the
performance of small panels of judiciously selected genetic
markers. In order to tackle this challenging task we propose
a hierarchical decomposition of worldwide human population
structure. A decision tree is formed, thus enabling the stepwise
assignment of individuals to their region and, ultimately,
population of origin, as well as the sequential selection of
subsets of genetic markers that can be used for ancestry infer-
ence. Moving through the proposed decision tree investigators
have the opportunity to tailor their needs for marker selection
according to the desired level of resolution and/or prior infor-
mation on the origin of the samples under study.
Through this scheme we achieve very accurate prediction of

individual ancestry when this particular set of 51 populations is
considered. We should point out that (see Results) in some cases
our decision tree stops at a group of two or three populations
and further differentiation cannot be adequately achieved, at
least with the methods proposed here. So, for instance, using the
given dataset we cannot and do not seek to distinguish between
Italians and Tuscans or among Northern Chinese populations.
The fact that in some cases certain populations are indistin-
guishable from one another and are grouped together (even
when information from all 650 000 SNPs is used), could be due
to the close genetic relationship among these populations or the
small sample sizes that are included in this dataset. Thus, our
decision tree provides insight into the level of population
differentiation that can be achieved using the HGDP as reference
if all 650 000 SNPs are used. In fact, we demonstrate that the
accuracy of prediction of individual ancestry at a fine scale is
essentially 100% for the targets that we propose.
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Seeking to identify those markers that actually capture
population genetic structure we evaluated two different
methods for the selection of AIMs: a PCA based method that we
have previously described18 and a method based on the infor-
mativeness for assignment (In) metric.28 In previous work, PCA
has been used to summarise the vast amounts of information in
the dataset we studied here by projecting individual genotypic
variation into a low dimensional space.8 16 Determining the
number of significant PCs in a dataset is a crucial step in our
analysis and represents a challenging research topic in the
statistics and numerical analysis literature. For the complete
dataset analysed here, Biswas et al16 recently reported that 18
PCs are significant if a parametric method based on the
TracyeWidom statistic is used. The number of statistically
significant PCs changes when different subsets of the data are
analysed. For the purposes of this study our stepwise view of
human genetic variation around the world as a decision tree
greatly simplified our search for significant PCs. At every level of
our decision tree we only need to retain those PCs that are
deemed useful for population differentiation at the targeted level
of resolution. This allowed better interpretability of the signifi-
cant PCs for each subset of populations under study.

Performing a thorough cross-validation experiment, we tested
individuals from each one of the studied populations, and
showed that in most cases that were analysed here the number
of genetic markers needed for ancestry inference can be
successfully reduced to <0.1% of the original 650Y Illumina
array while retaining high accuracy in ancestry prediction. This
reduction could be achieved using a clustering based redundancy
removal algorithm. Such techniques seem extremely promising
in addressing the problem of removing redundant markers from
a dataset, since they allow interchangeability and interpret-

ability of the SNPs that fall in the same cluster. However, in
three geographic regions, we were faced with great difficulty in
reducing the number of genetic markers needed for ancestry
prediction. In Europe, even when 5000 carefully selected SNPs
were used (either PCAIMs or In SNPs), the performance of our
test dropped below 80%. Still, this is a rather remarkable result
given the genetic homogeneity of European populations.
Although the north to south axis of genetic variation in Europe
can be easily recovered with a few hundred markers,29 45e48 this
does not seem to be the case for accurate assignment to
particular populations. In a similar fashion, when information
from small sets of SNPs is used, it is very difficult to differentiate
between the Yoruba and the Bantu population or among the
closely related Chinese ethnic groups.
The highly accurate results that we describe for the HGPD

samples are partly due to the reasonable separation (both
geographic and genetic) between most HGDP populations. For
example, if we were provided with a larger sample of over-
lapping European populations, then the classification accuracy
using a stringent voting strategy in our leave-one-out experi-
ment would undoubtedly diminish. Furthermore, the HGDP
project targeted clearly defined populations of anthropological
interest that were established before the great diasporas of the
15th and 16th centuries.14 Thus, although we have shown that
a simple majority voting scheme will actually predict individual
ancestry with accuracy close to 100% in most cases, it may be
preferable to report the ancestry of all five nearest neighbours.
An additional deficiency of the HGDP as reference panel for
genetic ancestry testing is the fact that it mostly comprises of
small sample sizes for each population, which undoubtedly do
not capture the full amount of variation in a given population.
Larger samples and more detailed sampling will allow a better

Table 4 Predicting the population of origin of individuals in five HapMap phase 3 populations that do not have reference populations in HGDP,
applying a confidence metric

Decision tree nodes

Panel 1 Panel 2 Panel 3

PCAIMs In AIMs PCAIMs In AIMs PCAIMs In AIMs

HapMap ASW

World / Africa 9/83 3/83 8/83 0/83 3/83 2/83

Africa / Ban, Man, Yor 9/9 3/3 8/8 0/0 3/3 2/2

HapMap LWK

World / Africa 53/90 47/90 60/90 46/90 49/90 32/90

Africa / Ban, Man, Yor 53/53 41/47 60/60 42/46 49/49 30/32

Ban, Man, Yor / Ban, Yor 53/53 41/41 60/60 42/42 49/49 30/30

HapMap MKK

World / Africa 10/171 10/171 7/171 0/171 2/171 1/171

Africa / Ban, Man, Yor 9/10 10/10 7/7 0/0 2/2 1/1

Ban, Man, Yor / Ban, Yor 9/9 10/10 7/7 0/0 2/2 1/1

HapMap GIH

World / Eur, CSA, ME 45/88 46/88 57/88 36/88 38/88 32/88

Eur, CSA, ME / CSA 43/45 45/46 56/57 36/36 38/38 32/32

CSA / Pakistani 33/43 38/45 50/56 25/36 32/38 28/32

HapMap MEX

World / Americas 2/77 2/77 0/77 0/77 0/77 0/77

Americas / Maya 1/2 1/2 0/0 0/0 0/0 0/0

World / Eur, CSA, ME 19/77 28/77 24/77 23/77 22/77 23/77

Eur, CSA, ME / Europe 2/19 3/28 4/24 2/23 4/22 5/23

Eur, CSA, ME / CSA 6/19 3/28 3/24 1/23 2/22 1/23

CSA / Pakistani 1/6 1/3 2/3 0/1 0/2 0/1

We discarded from our analysis individuals with more than 10% missing entries when extracting our PCAIM or In SNP panels P1, P2, and P3.
In this case, we included our metric of confidence in the computation of nearest neighbours (see supplementary material) and we report classification accuracy (CACC, see supplementary
material), expressed as the fraction of individuals that were assigned to a region or population of origin at the respective node of the decision tree.
Note that most individuals of, for example, Mexican (MEX) ancestry are now unassigned (compared to table 3), since they lie far away from the HGDP reference populations.
AIMs, ancestry informative markers; HGDP, Human Genome Diversity Panel; PCAIMs, principal components analysis informative markers; SNP, single nucleotide polymorphism. Ban: Bantu,
Man: Mandenka, Yor: Yoruba, Eur: Europe, CSA: Central South Asia, ME: Middle East.
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representation of population genetic variation and will further
increase the classification accuracy.

Our second cross-validation experiment focused on the
HapMap phase 3 populations aiming to place a test individual
within its actual population of origin, or to the closest possible
neighbouring population, if no actual reference existed in the
training dataset. Naturally, the populations included in the
training set influence the outcome of the test (for example, all
HapMap Japanese would be classified as Chinese if no Japanese
reference population existed in the HGDP). However, we have
also shown that our methods can be fine tuned to include flags
for samples for which the reference dataset cannot provide
information. We introduced a simple confidence metric similar
to the algorithms proposed in Heath et al.11 More elaborate
metrics that depend on the end purposes of the ancestry test are
an interesting topic for future work. Using our confidence
metric, individuals from two admixed populations that we
studied (Mexican and African Americans) would be classified as
unknown. Nevertheless, had these populations been included in
the reference set, it would be easy to differentiate them, as
evidenced from PCA plots (see supplementary material).

It is very interesting to consider the chromosomal location
and possible function of the polymorphisms that are selected to
capture human genetic variation in such detail. In fact, popu-
lation differentiation has been considered as an indication of
selective pressure, and several genome scans for natural selection
were based on the identification of loci that appear as outliers in
empirical distributions of genotypic patterns (see several
studies6 49e53 among others). As Pickrell et al54 recently pointed
out, even though one would expect patterns of loci that are
under natural selection to be distinct from neutral variation
(with demography operating on the whole genome rather than
on a few loci), it is often the case that putatively selected loci
conform to the geographic patterns that are characteristic of
neutrality. It follows that distinguishing between demographic
forces and natural selection is extremely difficult. However,
observing the lists of PCAIMs that we propose, the top SNPs
reside in genomic locations which constitute prominent candi-
dates for natural selection. For example, in our panel for differ-
entiating individuals into five broad geographic regions (world
node in figure 1), the top two scoring SNPs sit in a region that has
been previously suggested as a candidate for natural selection by
multiple genomic scans, no more than 30 Kb from SLC24A5,
a gene which is known for its involvement in skin
pigmentation.55e57 Interestingly, these two SNPs exhibit the
same patterns of variation as two SNPs in the EDAR gene
appearing immediately after them in our top cluster (see online
supporting material and lists of AIMs at http://www.cs.rpi.edu/
wdrinep/HGDPAIMS/Level_World.html). EDAR is another well-
known candidate for natural selection, responsible for hair follicle
formation.58 59 In a similar fashion, the top places in the list of
PCAIMs for European populations are occupied by five SNPs
(see http://www.cs.rpi.edu/wdrinep/HGDPAIMS/Level_Europe.
html) that are located in the 2.4 Mb region of the selective sweep
that has been associated with the LCT gene.58 Such analysis can
provide useful clues on the possible functional role of the SNPs
that we have selected as informative for the fine-scale inference
of population ancestry.

The sets of markers that we have identified (see http://www.
cs.rpi.edu/wdrinep/HGDPAIMS/) and the methodology that we
introduce have important implications in many different
settings, ranging from the study of population history to the
elucidation of the genetic background of common complex
disorders. In all of these cases, the markers that we have iden-

tified can greatly reduce genotyping costs, reducing to <0.1% of
the original 650 000 SNPs the number of markers needed in order
to assign an individual to a particular population of origin, or
simply place this individual within the axes of variation seen in
the reference dataset. In evolutionary genetics studies, the
proposed marker sets can be used to investigate the relationship
between extant populations. In medical genetics, they can be
used to inform patients about disease risks associated with
different ethnic groups. In genetic association studies, multina-
tional studies have proven essential and two-stage study designs
are often followed, with additional samples being genotyped
only at those loci that have proven promising in an initial
genome wide association study.60e62 In such settings the
markers we propose can be used to correct for the biases intro-
duced by population stratification. Furthermore, the methods
described herein, in combination with the increasingly more
comprehensive databases of human genetic variation that are
becoming available, open new horizons for the potential of
forensic and commercial genetic ancestry testing. Genetic
ancestry testing in commercial settings has received considerable
attention recently, and several policy forums and sets of guide-
lines have been published.63e65 In such settings, we would like
to stress the importance of actively informing and counselling
clients that seek hints about the origin of their ancestors, not
only about the possibilities, but also about the caveats and
limitations of different methodologies and reference datasets.
In summary, we have described a comprehensive study of the

level of resolution that can be achieved for genetic ancestry
inference in worldwide populations when small panels of
genetic markers are used. The HGDP as a reference dataset
provides the most complete catalogue of worldwide human
genetic variation to date.8 However, the full extent of human
genetic variation will only be appreciated through the analysis of
larger and geographically denser samples of populations. This is
becoming a reality through the concerted efforts of investigators
studying European populations9e11 66 and, more recently,
African populations15 and populations from the Indian
subcontinent.67 Furthermore, since most polymorphisms
included in commercial genotyping chips were actually ascer-
tained in European populations, a large proportion of human
genetic variation remains undiscovered. The feasibility of large
scale complete sequencing of large numbers of samples will
combat this deficiency, allowing unbiased genotyping of diverse
populations. It is worth noting that our methods are readily
extensible to larger or more detailed samples and that our deci-
sion tree can be used as a starting point for future studies.
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