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1. Introduction

The aim of this work is to present a discussion on statistical methods and software pack-
ages (S-PLUS, GENSTAT, SPSS, LOGXACT, GLIM) used in the study of risk assessment
of a complex neurophysiological system. Such packages are very useful in handling large
data sets, implement techniques in time and frequency domain of analyzing binary time
series and apply the popular method of logistic regression. The field of neurophysiology is
a rich source of binary type data, where both parametric and non-parametric methods can
be used in order to assess the interconnections between neural networks and to identify the
behaviour of a complex neurophysiological system of particular interest (seeBrillinger,
1976, 1988; Kotti and Rigas, 2003a; Marmarelis and Marmarelis, 1978; Rigas, 1996;
Rigas and Liatsis, 2000).

In the first part of this work, the cross-product ratio (CPR) is defined as the odds ratio
(OR) in a 2× 2 contingency table between two binary time series. Estimates of the CPR
are presented by using methods of analyzing binary time series both in time and frequency
domain. An example from the field of neurophysiology is described and computation of the
estimates for the CPR is carried out in S-PLUS. In the second part, the logistic regression
is used for assessing the risk factors in the function of the neurophysiological system.
The estimates of the parameters of the logistic model are obtained by using the maximum
likelihood function. This can be done in each of the three packages GENSTAT, S-PLUS or
SPSS. The advantages and disadvantages on the use of these packages are discussed. Finally,
a comparison between the two methods shows that the logistic regression provides extra
information and reveals more characteristics about the function of the neurophysiological
system.

2. Measuring association in binary time series

2.1. The bivariate point process

Let N(t) = {N1(t), N2(t)}, −∞< t <∞, be a bivariate point process whereN1(t)

denotes the number of events of type 1 that occurred in the time interval(0, t] andN2(t) the
number of events of type 2 occurred in the same time interval. By{dNa(t)=Na(t, t +dt]},
we denote the increments ofNa(t), a = 1,2.

Suppose that the process satisfies the following conditions:

(a) It is stationary. This means that the distribution of the variate{N1(I1), N2(I2)} is the
same with the distribution of the variate{N1(I1 + �), N2(I2 + �)}, whereIi = (ai, bi)

andIi + � = (ai + �, bi + �), i = 1,2.
(b) It is orderly. This means that the points of the process are isolated with probability one,

that is Pr(Na(t, t+h]>1)=o(h), a=1,2. The condition of orderliness prohibits events
of the process to occur simultaneously and permits the point process to be considered
as binary time series.

(c) It is strong mixing. This means that increments of the point process well-separated in
time are independent.
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More details about stationary point processes which are orderly and satisfy the condition
of strong mixing can be found inBrillinger (1975), Cox and Isham (1980)andDaley and
Vere-Jones (1988). Examples of point processes include the times of firing of nerve cells,
the times of earthquakes in different places and the times of beats of human hearts.

An example from the field of neurophysiology is presented in this work. Our interest is
to examine the effect of a gamma motoneurone on the behaviour of the neurophysiological
system called muscle spindle. Some basic characteristics of the muscle spindle are discussed
in Kotti and Rigas (2003a). The bivariate point processN(t) = {N1(t), N2(t)} is observed
for a time intervalT = 15866 ms and the events of type 1,N1(T ) = 1010, represent the
pulses of the gamma motoneurone imposed on the muscle spindle while the events of the
type 2,N2(T ) = 538, represent the response of the system to the effect of the gamma
motoneurone. The response of the muscle spindle is recorded from the Ia sensory axon and
the information of the muscle spindle to the spinal cord is transferred through this axon.

2.2. Parameters of the bivariate point process

Certain parameters of a bivariate point process can be defined both in the time and in the
frequency domain. The mean intensity of typea events is defined by

pa = lim
h→0

Pr{type � event occurs in(t, t + h]}/h (1)

for a = 1,2. The mean intensity does not depend ont because of stationarity. It follows
from the condition of orderliness that

E[dNa(t)] = pa dt. (2)

In the survival literature the quantitypa dt corresponds to the unconditional probability of
hazard rate (seeJohnson and Johnson, 1980, p. 51). The second-order product density of
typea events with typeb events is defined by

pab(u)= lim
h1→0,h2→0

Pr{type � event in(t + u, t + u+ h1] and typeb

event in(t, t + h2]}/h1h2 (3)

for a, b = 1,2 andu is the lag time between the eventsa andb (u 
= 0). It also holds,
because of orderliness, that

E[dNa(t + u)dNb(t)] = pab(u)dudt. (4)

The function that relates the events of typea with events of typeb is called cumulant density
qab(u) and is defined by

qab(u)= pab(u)− papb (u 
= 0 anda, b = 1,2). (5)

The condition of strong mixing implies thatpab(u) → papb, or equivalentlyqab(u) → 0
asu → ∞.
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Table 1
2 × 2 contingency table involving two point processes

( )utdNa +

0 1 Total 

0 1 dupa 1( )tdNb
1 dtpb ( )dtduupab dtpb

Total 1 dupa

We assume further that the point process has the first two moments finite. Then the cross-
spectral density is the Fourier transform ofqab(u) defined by

fab(�)= (2�)−1
∫ ∞

−∞
qab(u)e

−i�u du, −∞< �<∞ (a 
= b). (6)

It is known from the Fourier analysis (seeBrillinger, 1981) that by taking the inverse
transform of (6) we have

qab(u)=
∫ ∞

−∞
fab(�)ei�u d� (a 
= b) (7)

and therefore

pab(u)= papb +
∫ ∞

−∞
fab(�)ei�u d� (a 
= b). (8)

Finally, we define the function̂d(T )a (�) as the modified finite Fourier–Stieltjes transform of
the increments[dNa(t)− pa dt] on (0, T ], given by

d̂(T )a (�)=
∫ T

0
e−i�t [dNa(t)− pa dt]. (9)

The definitions of the above functions both in the time and in the frequency domain are
discussed inBrillinger (1975)andRigas (1996).

2.3. The cross-product ratio

Table 1presents a 2×2 contingency table which is proposed for measuring the association
between the increments dNa(t + u) and dNb(t) of the bivariate point process. This table
suggests the following quantity:

�ab(u)= pab(u)dudt

pa dupb dt
= pab(u)

papb
(10)

(a, b=1,2 anda 
= b) as a measure of the degree of association at lagu between the events
of typea with the events of typeb. This measure is called CPR and corresponds to the OR
for an ordinary 2× 2 contingency table. In the case of independence it is�ab(u)= 1. In the
case of dependence CPR tends to 1 due to the strong mixing condition. Such an approach
is described inBrillinger (1976).



G.J. Karavasilis et al. / Computational Statistics & Data Analysis 49 (2005) 243–263 247

3. Two methods of estimating the CPR

In this section, two methods of estimating the CPR are discussed: the first in the time
domain and the second in the frequency domain.

3.1. Histogram-based estimate

Suppose that the process{N1(t), N2(t)} is observed for 0< t�T and the times of events
of types 1 and 2 are recorded. Let the times of events of type 1 bes1<s2< · · ·<sN1(T ) and
the times of events of type 2 bet1< t2< · · ·< tN2(T ). Then the estimate of second-order
product density (seeCox and Lewis, 1972) is based on the statistic

J Tab(u)= #

{
(sj , tk) such thatu− h

2
<sj − tk < u− h

2
and sj 
= tk

}
, (11)

where “#” counts the number of events of typea which fall in a cell of bin widthh and
midpointu time units along from a typeb event (a, b=1,2). TheJ Tab(u) is a histogram-type
statistic. The estimate of the second-order product density is now given by

p̂ab(u)=
∑m

i=−mwiJ
T
ab(u− ih)

hT
, (12)

wherewi are weights such that
∑m

i=−mwi = 1. The use of weights in (12) improves the

properties of the estimate. It can be proved that
√
p̂ab(u) tends to Normal distribution with

mean
√
pab(u) and variance(1/4hT )

∑m
i=−mw

2
i (seeBrillinger, 1976).An estimate of CPR

can now be obtained by substituting the estimates of the first- and second-order product
densities in (10) as follows:

�̂ab(u)= p̂ab(u)

p̂ap̂b
, (13)

wherep̂a =Na(T )/T andp̂b =Nb(T )/T (a, b = 1,2).

From the above results it follows that
√

�̂ab(u) tends asymptotically to a Normal distri-

bution with mean
√

�ab(u) and variance
∑m

i=−mw
2
i /(4hTpapb). Thus a 95% point-wise

approximate confidence interval for
√

�ab(u) is given by

√
�̂ab(u)± 1.96

√∑
w2
i

/ (
2
√
hT p̂ap̂b

)
. (14)

Fig. 1shows the square root of the estimated CPR. The confidence intervals are obtained
from (14) using the weights(0.25,0.5,0.25) andh = 1 ms. It is clear that the system
is more likely to fire in the interval between 11 and 25 ms. This is an assessment of the
muscle spindle’s normal function. Deviations from this behaviour may indicate the existence
of possible risk factors for abnormal firing of the system.
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Fig. 1. Square root of the histogram-based estimate of the CPR for the neurophysiological data set. The solid line
in the middle corresponds to the smoothed estimate and the dotted lines above and below it correspond to the 95%
point-wise approximate confidence limits.

3.2. Periodogram-based estimate

An estimate of the CPR in the frequency domain is based on the modified periodogram
statistic, which is defined by

Î
(T )
ab (�)= 1

2�T
d̂(T )a (�)d̂(T )b (�) (a 
= b). (15)

By d̂
(T )
b (�) we denote the conjugate function ofd̂(T )b (�). More details about the modified

periodogram statistic are given inRigas (1996). An estimate for the second-order product
density can be obtained from (9) as follows:

p̂ab(u)= p̂ap̂b + 2�
T

∑
j

W(T )(�j ) Î
(T )
ab (�j )ei�j u, (16)

where�j = 2�j/T , j = ±1, . . . ,±(T − 1)/2. ByW(T )(�) = W(bT �) we denote a con-
vergence factor or taper (seeBrillinger, 1981) andbT is the bandwidth of the taper. We
choosebT such that,bT T → ∞ asT → ∞ andbT → 0. The convergence factor in
(16) reduces the variance of the estimate and improves its characteristics. The estimate
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Fig. 2. Periodogram-based estimate of the CPR for the neurophysiological data set. The solid line in the middle
corresponds to the smoothed estimate and the dotted lines above and below it correspond to the 95% point-wise
approximate confidence limits.

p̂ab(u) is asymptotically Normal with meanpab(u) and variance

V ar[p̂ab(u)] ∼= (2�)−1papb

bT T

∫
W2(�)d�. (17)

The asymptotic properties of̂pab(u) derive from the work ofRigas (1996), while a more
detailed proof is given inRigas and Tsitsis (1996). This suggests that the estimate�̂ab(u),
of the CPR is asymptotically Normal with mean�ab(u) and variance

V ar[�̂ab(u)] ∼= (2�)−1

bT Tpapb

∫
W2(�)d�. (18)

Thus, a 95% point-wise approximate confidence interval for�ab(u) is given by

�̂ab(u)± 1.96

√
(2�)−1

bT T p̂ap̂b

∫
W2(�)d�. (19)

Fig. 2shows the estimates of the CPR for the neurophysiological data set. The estimate
is obtained by using (16). A Tukey convergence factor was used withbT =0.31. In this case
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∫
W2(�)d� = 0.75. The characteristics of the estimated CPR are almost identical with the

previous estimate involving the square root of CPR. Therefore, both methods show that the
system is likely to fire in the interval between 11 and 25 ms.

The computation of the estimates of the CPR both in the time and in the frequency domain
was carried out on the statistical package S-PLUS. More details about the computations
involved are given in Section 5 and in the appendix.

4. Formulation of a logistic regression model

In this section, a logistic regression model is formulated, in order to describe the behaviour
of the muscle spindle, when it is affected by the presence of a gamma motoneurone. The
effects of the imposed stimulus are transmitted to the spinal cord by the axon of a sensory
nerve closely associated with the muscle spindle. The axon of the sensory nerve fires when
the membrane’s potential exceeds a critical level called threshold. The membrane’s potential
is influenced both by external and internal processes. The model which is used for the
description of this system is discussed inBrillinger (1988)and involves three parameters:
the threshold, the recovery and the summation function.

LetYt denote the firing process of the sensory nerve which is associated with the muscle
spindle. By choosing the time sampling intervalh, the observations of the output can be
written as follows:

yt =
{

1 when a spike occurs in(t, t + h],
0 otherwise,

wheret = h, . . . , Nh andT =Nh is the time interval in which the time series is observed.
In our case we choose the sampling intervalh=1 ms. The inputXt imposed by the gamma
motoneurone on the system consists of the observationsxt defined similarly.

Let�t denote the threshold level at the trigger zone at timet , given by:�t =�∗
t +�t , where

�t is the noise process, which includes contributions of unmeasured terms that influence
the firing of the system. There is experimental evidence and theoretical verification that�t
follows a normal distribution (seeHolden, 1976). �∗

t is a function oft , which represents the
form of threshold at timet . We assume in this case that�∗

t = �0, where�0 is an unknown
constant.

The function representing the external processes that influence the membrane’s potential
at the trigger zone is the summation function. This function represents the effect of the input
on the output of the system at any given timet and is described by a set of coefficients{au}.
Thus, the membrane’s potential at any given timet , due to external stimuli is defined by

SF t =
∑
u� t

auxt−u,

wherext−u is the observation of the input at timet − u.
The internal processes are responsible for the spontaneous firing of the system. This

is an ability of the system to produce a series of nerve pulses on its own by increasing
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the membrane’s resting potential to the level of threshold. The recovery function can be
described by a polynomial function of orderk which is given by

Vt =
k∑

i=1

�i�it ,

where{�i} are the coefficients of the recovery function and�t is the time elapsed since the
system last fired.

The logistic regression model that describes the behaviour of the muscle spindle under
the influence of a gamma motoneurone at any given timet , incorporates the threshold, the
summation, the recovery function and can be expressed in the form

log

(
�t

1 − �t

)
=

∑
u� t

auxt−u +
k∑

i=1

�i�it − �0, (20)

where�t is the probability of an output spike to occur, i.e.�t = Pr(Yt = 1). The unknown
parameters are the summation function coefficients{au}, the recovery function coefficients
{�i} and the constant threshold�0. The minus before the constant level of the threshold
indicates that the strength of the external and the internal processes must exceed the level
of threshold in order to get an output spike. Such a model is discussed inBrillinger (1988),
but instead of the logistic link function he uses the probit link function. It is known byCox
and Snell (1989)that these two link functions produce similar results. The only difference
we notice is the scaling in the graphs of the estimated functions.

The maximum-likelihood estimates for the unknown parameters included in the model
can be obtained by one of the most commonly used statistical packages, like GENSTAT, S-
PLUS or SPSS.Table 2gives the output of GENSTAT,Fig. 3depicts the estimated functions
of the fitted model andFig. 4 presents the OR of the estimated coefficients{au}, together
with the 95% pointwise confidence intervals. The estimated coefficients of the summation
function are positive and far from zero in the interval 11–30 ms, which implies that the
covariatesxt−11, . . . , xt−30 can be considered as risk factors because they significantly
increase the OR of an output spike. The overall behaviour of the summation function is
excitatory, which means that the input spikes from a gamma motoneurone accelerate the
firing of the system. The recovery function is described by a second-order polynomial since
�i; i�3 are not statistically significant. It is clear that the recovery function does not cross
the estimated threshold level, which indicates that the presence of the gamma motoneurone
prohibits the spontaneous firing of the system. However, the contribution of the recovery
function to the firing of the system is not negligible, as it is indicated inTable 3.

Since the logistic regression model is based on a binomial distribution and involves
binary data, we can rely on the difference of deviance between successive models, in order
to decide which of them gives the best fit (seeMcCullagh and Nelder, 1989). The difference
of deviance is asymptotically distributed as a chi-square(�2

p) with p degrees of freedom,
wherep is the difference in the number of parameters between two successive models.
The possible models, the values of their deviance and the degrees of freedom are shown in
Table 3. The change in deviance on adding a second-order recovery function to the model
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Table 2
Output of GENSTAT for the logistic regression model

Estimate s.e. t (*) t pr. Antilog of
estimate

Constant −7.444 0.229 −32.53 <0.001 0.000585
th[1] 0.225 0.0161 13.98 <0.001 1.252
th[2] −0.004 0.000353 −11.32 <0.001 0.996
A[1] 0.366 0.173 2.11 0.035 1.442
A[2] −0.11 0.203 −0.54 0.587 0.8956
A[3] −0.187 0.209 −0.9 0.369 0.8292
A[4] −0.003 0.194 −0.02 0.986 0.9967
A[5] −0.104 0.201 −0.52 0.606 0.9013
A[6] −0.477 0.228 −2.09 0.036 0.6208
A[7] 0.048 0.19 0.25 0.799 1.05
A[8] −0.008 0.192 −0.04 0.966 0.9918
A[9] −0.025 0.194 −0.13 0.898 0.9754

A[10] 0.312 0.175 1.78 0.075 1.366
A[11] 0.83 0.15 5.53 <0.001 2.293
A[12] 1.011 0.144 7.03 <0.001 2.75
A[13] 1.673 0.127 13.2 <0.001 5.328
A[14] 1.938 0.126 15.44 <0.001 6.946
A[15] 1.826 0.135 13.55 <0.001 6.21
A[16] 1.595 0.144 11.07 <0.001 4.927
A[17] 1.732 0.145 11.94 <0.001 5.652
A[18] 1.115 0.169 6.61 <0.001 3.05
A[19] 1.404 0.155 9.04 <0.001 4.072
A[20] 1.162 0.164 7.08 <0.001 3.198
A[21] 1.173 0.162 7.23 <0.001 3.232
A[22] 0.978 0.17 5.76 <0.001 2.659
A[23] 0.818 0.173 4.74 <0.001 2.266
A[24] 0.89 0.168 5.3 <0.001 2.435
A[25] 0.532 0.18 2.96 0.003 1.702
A[26] 0.681 0.171 3.99 <0.001 1.975
A[27] 0.146 0.2 0.73 0.465 1.158
A[28] 0.344 0.182 1.89 0.059 1.411
A[29] 0.383 0.177 2.16 0.031 1.467
A[30] 0.917 0.152 6.02 <0.001 2.502
A[31] 0.144 0.188 0.77 0.443 1.155
A[32] 0.316 0.177 1.78 0.074 1.372
A[33] 0.193 0.182 1.06 0.289 1.213
A[34] 0.315 0.173 1.82 0.068 1.371
A[35] 0.232 0.177 1.31 0.19 1.262
A[36] 0.306 0.173 1.77 0.077 1.358
A[37] 0.36 0.169 2.13 0.033 1.433
A[38] 0.203 0.176 1.15 0.249 1.225
A[39] 0.4 0.168 2.38 0.017 1.492
A[40] −0.388 0.217 −1.78 0.074 0.6783
A[41] −0.11 0.194 −0.57 0.571 0.8958
A[42] 0.472 0.161 2.93 0.003 1.603
A[43] 0.323 0.167 1.93 0.054 1.381
A[44] 0.061 0.182 0.34 0.737 1.063
A[45] 0.316 0.172 1.84 0.066 1.372
A[46] −0.434 0.226 −1.92 0.055 0.6482
A[47] 0.044 0.186 0.24 0.814 1.045
A[48] 0.009 0.185 0.05 0.963 1.009
A[49] 0.252 0.172 1.47 0.142 1.287
A[50] 0.042 0.185 0.23 0.822 1.043
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Fig. 3. Estimates of the threshold, the recovery and the summation functions, obtained by the logistic regression
model given by (20). The dotted lines correspond to the 95% confidence limits. The recovery function does not
cross the level of threshold. Therefore, the system does not fire spontaneously. The summation function is outside
the confidence interval between 11–25 ms.

that includes only a constant term alone is 4699− 4634= 65 on 2 d.f. Since the upper 5%
point of the�2 -distribution on 2 d.f. is 5.99, this is very significant at the 5% level. If the
summation function is added to a model that includes only a constant term, the deviance
is reduced by 687 on 50 d.f. which is highly significant. However, when both the recovery



254 G.J. Karavasilis et al. / Computational Statistics & Data Analysis 49 (2005) 243–263

time (msec)

O
D

D
S

  R
A

T
IO

0 10 20 30 40

2

6

10

odds ratio
confidence limits

4

8

50

Fig. 4. The estimate of the OR by the logistic regression model. The solid line in the middle corresponds to the
OR of the estimated coefficients{âu}. The dotted lines above and below the OR correspond to the 95% point-wise
confidence limits.

Table 3
Comparison of the deviance between successive logistic regression models, for the assessment of the goodness of
fit

Model Deviance d.f.

Null 21995 15866
	t = −�0 4699 15865
	t = �1�t + �2�2

t − �0 4634 15863
	t = ∑

u� t auxt−u − �0 4012 15815
	t = �1�t + �2�2

t + ∑
u� t auxt−u − �0 3708 15813

and the summation function are included in the model the change in deviance becomes
4699− 3708= 991 on 52 d.f. which proves that the best-fitted model should include both
the recovery and the summation function.

The number of the explanatory variablesxt−u can be reduced by choosing a smaller
intervalu for studying the behaviour of the summation function. In fact, fitting the model
with 35, 40, 45 and 50 explanatory variablesxt−u, causes successive changes in deviance by
16, 15, and 7 units, respectively. These changes imply that some of the explanatory variables
betweenxt−35 andxt−45 are significant risk factors and cannot be eliminated from the
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model. The explanatory variablesxt−46, . . . , xt−50 can be excluded from the model since
the upper 5% point of the�2-distribution on 5 d.f. is 11.07.

The validity of the specific model can be checked by carrying out a graphical comparison
between the theoretical and the empirical probability (seeBrillinger, 1988), as follows:
selected values of the linear predictor	 are obtained, by dividing the range of the estimated
linear predictor of the model̂	t , into a number of small intervals, usually of equal width.
The center value of each interval is considered as a selected value of the linear predictor.
The theoretical probability is given by

�(	)= exp(	)
1 + exp(	)

.

The estimated probability of firinĝ�(	) for a given linear predictor	, can be defined as the
ratio of the number of firings to the total number of possible firings into the small interval
(	 − h, 	 + h)

�̂(	)=
∑

t {Yt = 1, 	 − h< 	̂t < 	 + h}∑
t {t, 	 − h< 	̂t < 	 + h} .

Fig. 5depicts the goodness-of-fit plot for the logistic regression model given by (20). The
validity of this model depends on the closeness of the estimated probability to the theoretical
probability. There seems to be a reasonable fit for this model.

5. Discussion on the use of different statistical packages

S-PLUS see (http://www.insightful.com) is a very powerful statistical package, which
has been used for the computation of the CPR. S-PLUS is programmable, because it is
based on S-language. This feature offers great flexibility, since it allows the development
of new functions which can then be incorporated into any application. R-language is an
open source project see (http://www.r-project.org) which is also based on S-language. An
additional characteristic is that S is an object-oriented language. Every data set or graph like
vectors, matrices, lists, data frames, etc. can be considered as an S-object. In S-language
it is preferable to work with S-objects rather than with individual elements of a vector
or a matrix (seeVenables and Ripley , 2002). Specifically a loop with upwards of 50000
iterations is not very workable (seeInsightful Corporation, 2001). An attempt to compute
Jab [u] in Program 1 (see Appendix) usingf or commands and a counter, such as

f or (i in 1 : NaT ) {
f or (j in 1 : NbT ) {

f or (u in 1 : n) { ...
J ab [u]<− Jab [u] + 1
...} } }
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Fig. 5. Goodness of fit plot for the validation of the logistic regression model given by (20). The empirical
probability is depicted as a small circle, while the vertical bars provide the estimated standard error limits around
its value. The theoretical probability is the smooth curve that corresponds to the logistic link function.

results in a very slow program. This would be the usual approach with a traditional program-
ming language like FORTRAN. This set of commands can be replaced by the construction
of the matrixdif and the command:

Jab [u]<− sum (abs (dif − u)< (h/2))

The expressionabs (dif − u)< (h/2) gives 0 when it is false or 1 if it is true. Therefore
sum (abs (dif−u)< (h/2)) counts the number of elements in the matrixdif which satisfy
the propertyabs (dif − u)< (h/2)). This is an operation on the object-matrixJab [u].
In practice this operation gives very fast results using S-PLUS. However, S-PLUS is not
as easy to learn as other statistical software, but the combination of high-quality graphics
and modern statistical procedures makes it very attractive for the research worker. The
computations involved in the estimation of the CPR could be performed equally well on
GENSTAT (seeBaird et al., 2002), because it provides all the directives required for the
computations, both in the time and in the frequency domain. Furthermore, the programs
developed by the users for complicated tasks can be formed as procedures and be included
in a GENSTAT library for later use. In fact GENSTAT is a powerful, extensible and very
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well-designed language for computing (seePayne, 2002). It provides good facilities for
generalized linear models and the major user group is statisticians working in biological
research. The graphics produced are not of the highest quality but they are acceptable. The
popular statistical package SPSS is menu-driven and cannot be used for the estimation of
the CPR, because the main menus do not include built-in tools for Fourier transforms.

The estimates of the unknown parameters in the logistic regression model were obtained
by GENSTAT. These results could also be obtained by using either S-PLUS or SPSS.
A friendly menu-driven user interface is available in all packages and allows the use of
logistic regression without having to learn the command language. The commands used by
the menus are retained in the session log of GENSTAT or in the syntax editor of SPSS so
that they are available for later use. A guide to the various statistical techniques available
with SPSS for regression models, including binary logistic regression (seeSPSS 12.0, 2004)
explains how to obtain the appropriate statistical analyses with the dialog box interface.

GENSTAT, S-PLUS or SPSS are general purpose statistical software that can perform
a large variety of tasks. A special software that can be used mainly for logistic regression
is LOGXACT, which has the advantage of using exact likelihood analysis and applying
Monte Carlo techniques. Both methods can be employed in the case that the asymptotic
maximum-likelihood method fails to converge (seeLogXact-5 for Windows, 2002). An
example is given byKotti and Rigas (2005)where all the other packages fail to calculate
the estimates of the logistic regression except the LOGXACT package.

Finally, the statistical package GLIM can be used for the analysis of the logistic regression
models, because it has been designed for analysing generalised linear models. However
GLIM has two disadvantages: (a) It uses a non-user-friendly interface, which requires
written directives given from the user and (b) It can handle up to 30 covariates. Details
about the GLIM package are given inChristensen (1997).

An attempt has been made in connection with MATLAB to improve the user-friendly abil-
ity of GLIM, through GLMLAB. This is a set of m-files for using MATLAB for analysing
generalised linear models. It is developed by Peter Dunn originally to replace GLIM in a
small way at University of Southern Queensland, Australia. Nowadays, it has grown and
contains quite a lot of the features found in GLIM. It enables models such as multiple
regression, probit models, logistic regression and log-linear models (among others) to be
fitted. GLMLAB is very useful especially for people who work with similar problems in
the field of engineering and can be obtained from the MathWorks user-contributed files see
(http://www.mathworks.com/support/ftp/statv4.shtml), (http://www.sci.usq.edu.au/staff/
dunn/glmlab/glmlab.html).

6. Summary and discussion of the results

In this work, two alternative methods were presented for the identification of a complex
neurophysiological system. A data set which describes the response of the muscle spindle
to the effect of a gamma motoneurone is used for the estimation of the parameters involved
in both cases. The first method is a non-parametric approach and the estimate of the CPR,
which corresponds to the OR between two binary time series, was obtained either as a
histogram-based estimate in the time domain or as a periodogram-based estimate in the
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frequency domain. The second method is a parametric approach and the estimates for the
parameters of the logistic regression model were obtained by using the maximum-likelihood
function.

The results obtained by using the non-parametric methods are restricted because they
provide information only about the relation between the input and the output of the system.
The advantage of using the logistic regression approach is the flexibility of the proposed
model, since it allows the incorporation of physiologically meaningful parameters which
are responsible for the firing of the system: the threshold, the recovery and the summation
function. The parametric approach therefore provides extra information and reveals more
characteristics about the system we examine. The threshold and the recovery function taken
together seem to describe the time course of the intrinsic membrane properties, whereas the
summation function reveals a direct relationship between the input and the output of the
system. Furthermore, alternative forms for the threshold and the summation function can
be used. An exponentially threshold model can be used instead of the constant threshold,
which seems to be more realistic from a physiological point of view (seeKotti and Rigas,
2003b). In the present model, the summation function takes into consideration all the pre-
vious input spikes. A summation function that takes into account only the input spikes that
have occurred after the time of the previous output spike can also be considered. In this
case, a carry over effect function can be incorporated into the model that describes the effect
on the membrane’s potential of the input spikes that have occurred before the time of the
previous output spike (seeKotti and Rigas, 2003a).

Furthermore, the estimated coefficientâu of the logistic regression model can be used
for the direct estimation of its OR,
= exp(âu), while the 100(1− �)% confidence interval
for 
 is given by the expression

exp[âu ± z�/2 × SE(âu)],
wherez�/2 denotes the standard normal deviate with a tail area of�/2. Thus, the estimated
coefficients allow the identification of the potential risk factors, since values of{âu} greater
than zero increase the odds of success, while values of{âu} less than zero decrease the
odds of success. This corresponds to estimated OR
<1 and
>1, respectively.Fig. 6
depicts the OR for the estimates of{âu} obtained by the logistic regression method, plotted
together with the estimate of the unsmoothed CPR obtained by the periodogram-based
method. Although the true OR for this data set is not known, the comparison between the
two estimates shows that the OR gives a stronger indication of the system’s excitatory
behaviour than the CPR. The higher values of the OR compared with the values of the CPR
emphasize on the importance of the internal processes of the system, which are described
by the extra parameters included in the logistic regression model.

However, there are cases where the method of logistic regression fails completely or
produces very poor results. This problem is caused by certain structures in the data, which
occur when we deal with data sets that are small or data sets that are large but sparse. In this
case the maximum-likelihood estimation fails because some of the covariates are considered
as perfect predictors and their estimates may then need to be infinite to maximize the
likelihood function. This problem can be identified by extreme estimates and standard errors
which are noticeable and indicate a problem in the maximum-likelihood estimation. The
problem in this case can be overcome by applying the alternative non-parametric approach,
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Fig. 6. Comparison between the OR of the estimates{âu} derived from the logistic regression model and the
estimate of CPR. The unsmoothed periodogram-based estimate for CPR is used.

by performing exact logistic regression (seeKotti and Rigas, 2005), or by an alternative
method that is based on penalized maximum likelihood (seeHeinze and Schemper, 2002).

The logistic regression approach is a highly flexible method that allows the incorpora-
tion of many biologically meaningful parameters, which comply with the physiological
phenomena and explain most of the underlying variability. The results obtained are then
supposed to be less biased and more precise. A goodness of fit test based on the successive
changes in deviance can be used for the selection of the best fitted model. Once the unknown
parameters have been estimated, derived quantities such as the OR can be estimated as well.
The implementation of the logistic regression is very simple and it is available on most of the
statistical packages. When the maximum likelihood estimation, which is employed in the
logistic regression, fails to converge it is worth considering the alternative non-parametric
approach.
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Appendix A. List of programs used in the analysis of the neurophysiological example

Program 1 in S-PLUS—computation of the square root of cross-product ratio in the time
domain

http://utopia.duth.gr/~rigas/
http://www.sciencedirect.com
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Program 2 in S-PLUS—computation of cross-product ratio in the frequency domain
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Program 3 in GENSTAT—computation of the parameters of the logistic model
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