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Summary. In this chapter we describe the behavior of the muscle spindle by using a logistic
regression model. The system receives input from a motoneuron and fires through the Ia sensory
axon that transfers the information to the spinal cord and from there to the brain. Three functions
which are of special interest are included in the model: the threshold, the recovery and the
summation functions. The most favorable method of estimating the parameters of the muscle
spindle is the maximum likelihood approach. However, there are cases when this approach fails
to converge because some of the model’s parameters are considered to be perfect predictors.
In this case, the exact likelihood can be used, which succeeds in finding the estimates and the
exact confidence intervals for the unknown parameters. This method has a main drawback: it is
computationally very demanding, especially with large data sets. A good alternative in this case
is a specific application of the Monte Carlo technique.
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dle.

21.1 The Biological System

The system we examine is a complex biological system called the muscle spindle,
which is part of the skeletal muscles and is responsible for the initiation of move-
ment and the maintenance of muscle posture. The effects of the imposed stimuli on
the muscle spindle’s fibers are transmitted to the spinal cord by the axons of sensory
nerves closely associated with the muscle spindle. The discharge of the sensory axons
is also modified by action potentials carried by the axons of a group of cells called
motoneurons. The action potential is a localized voltage change that occurs across the
membrane surrounding the nerve cell and axon, with amplitude approximately 100
mV and duration 1 ms. In this chapter we are interested in the discharge that occurs in
the presence of an alpha motoneuron.

Let Yt describe the firing process of the system. By choosing the sampling interval
h, the observations of the output can be written as follows:
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yt =
{

1, when a spike occurs in (t, t + h]
0, otherwise,

where t = h, . . . , Nh and T = Nh is the time interval in which the process is ob-
served. We usually choose h = 1 ms. The input Xt imposed by the alpha motoneuron
on the system consists of the observations xt defined similarly.

21.2 System Modeling

In this section we present the logistic regression model that can be used for the identi-
fication of the system under the influence of an alpha motoneuron. This model extends
the work of [2] and [3] used for the identification of neuronal firing systems. The firing
of the system we study occurs when the potential of the membrane that surrounds the
sensory axon exceeds a critical level called the threshold. The membrane’s potential at
the trigger zone is influenced both by internal and external processes.

The internal processes are responsible for the spontaneous firing of the system.
This is an ability of the system to produce a series of nerve pulses on its own, by in-
creasing the resting potential to the level of the threshold. Let φt denote the threshold
potential level at the trigger zone at time t by φt = θ0 + εt , where εt is the unknown
noise process that includes contributions of unmeasured terms that influence the fir-
ing of the system and θ0 represents an unknown constant threshold. Other forms of
threshold can also be considered that allow the threshold to vary with time [7]. Let Vt
represent the recovery function which is described by a polynomial function of order
k given by

Vt =
k∑

i=1
θiγ

i
t ,

where γt is the time elapsed since the system last fired and θi are the unknown coeffi-
cients.

External processes are responsible for the firing of the system when it is affected by
external parameters such as the presence of a motoneuron. The function representing
the effect of an alpha motoneuron on the muscle spindle at any given time t is based on
a summation described by a set of coefficients {au}. The summation function is defined
by

SFt =
∑
u≤t

au xt−u,

where xt−u is the observation of the input at time t − u.
The logistic regression model that describes the effect of the covariates incorpo-

rated in the recovery and the summation function at any given time t is expressed as

log
( πt

1 − πt

)
=

∑
u≤t

au xt−u +
k∑

i=1
θiγ

i
t − θ0, (21.1)
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where πt denotes the probability of an output spike to occur. The unknown parameters
that have to be estimated are the coefficients {au}, the recovery function parameters θi
and the constant threshold θ0. More details about the logistic model given by (21.1)
and the covariates included are given in [6].

21.3 Methods

21.3.1 The Maximum Likelihood Approach

The likelihood function is defined as the joint probability of the random variables
whose realizations constitute the sample. For a sample of size n with observations
(y1, . . . , yn), the corresponding random variables are (Y1, . . . , Yn). The probability
density function of Yt describes the contribution to the likelihood function of every
single observation and is given by P{Yt = yt } = π

yt
t (1 − πt )

1−yt , yt = 0, 1. Since
the observations are assumed to be independent, the likelihood function is the joint
probability

L0 = P(Y1 = y1, Y2 = y2, . . . , Yn = yn) =
n∏

t=1
π

yt
t (1 − πt )

1−yt , (21.2)

where πt = π(x1t , x2t , . . . , x pt ) is the conditional probability that Yt equals 1, given
xt , where p is the number of covariates included in the model. It is however more
convenient to use the log of the likelihood function and therefore we have

l(yt , πt ) = log L0 =
n∑

t=1

[
yt log

(
πt

1 − πt

)
+ log(1 − πt )

]
. (21.3)

The probability πt is related with the unknown parameters of the model through (21.1)
and thus the likelihood function is considered as a function of the unknown parameters.

21.3.2 Drawbacks of the Maximum Likelihood Approach

The maximum likelihood approach is the most favorable method of estimation, but
unfortunately it can fail completely or produce poor results in terms of the unknown
parameters and their standard errors. These problems are caused by certain structures
in the data, which occur when we deal with data sets that are small, or data sets that are
large, but sparse. The most common numerical problem occurs when a collection of
covariates separates the outcome, so that there is no overlap in the distribution of the
covariates between the two possible outcome values. This phenomenon is called com-
plete or quasi-complete separation and in these cases the maximum likelihood estima-
tors do not exist as was demonstrated in [1] and [11]. The separation can be identified
by the existence of one or more empty cells in the corresponding contingency tables.
(An example of quasi-complete separation is described in Table 21.2. The empty cell
where Xt−13 = 1 and Y = 1 indicates quasi-complete separation.)
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21.3.3 The Exact Logistic Regression

An alternative solution is to obtain the exact estimates of the unknown parameters.
The idea of exact logistic regression (ELR) is to estimate some of the parameters of
the model by replacing the remaining parameters in the likelihood function by their
sufficient statistics. The likelihood function given by (21.2) can be written in the fol-
lowing form:

P(Y1 = y1, Y2 = y2, . . . , Yn = yn) = exp(
∑p

s=0 βsws)∏n
t=1(1 + exp(xtβ))

, (21.4)

where ws = ∑n
t=1 xts yt are the sufficient statistics, β is a vector of the unknown pa-

rameters and βT = (β0, β1, . . . , βp). In our case the vector β includes the coefficients
{au}, θi (i = 1, 2, . . . , k) and θ0. Suppose that we are interested in one of the regres-
sion parameters, regarding the remainder as a nuisance. Without loss of generality, we
choose the parameter of interest to be βp. It can be proved (see [8]) that the conditional
likelihood is given by

f (wp|βp) = c(w0, w1, . . . , wp) exp(βpwp)∑
u c(w0, w1, . . . , wp−1, u) exp(βpu)

, (21.5)

where the summation in the denominator is over all the values of u for which
c(w0, w1, . . . , wp−1, u) ≥ 1. The initial theory about ELR proposed by Cox in 1970
(see [4]) was considered computationally infeasible for many years and, despite the
availability of fast numerical algorithms developed later (see [5] and [12]), there are
cases where the data set is too large and the exact estimates cannot be obtained easily.
This case corresponds to our example presented later, where we shall see that the re-
quirements in computing time and memory are restrictive, because the data set is too
large (15870 observations). A good alternative in this case is to obtain estimates of the
exact results by using Monte Carlo techniques.

21.3.4 The Monte Carlo Approach

When it is not possible to store the exact permutational distribution, we could obtain
Monte Carlo samples from this distribution. One naive approach would be to follow
conventional Monte Carlo methods that lead to massive rejection of the samples that
do not satisfy the constraints of the conditional distribution. This approach is easy
to implement and does not require computer memory. However, it becomes inefficient
very quickly even for relatively small samples. In this case one can use a network-based
direct Monte Carlo sampling approach discussed in [10] which stores a network of
vectors that satisfy the constraints of the conditional distribution given by (21.5). The
samples are then drawn from this network and therefore this method is more efficient
than the conventional Monte Carlo sampling. There is however a disadvantage as far
as the memory is required for the construction and the storage of the network. The
memory required depends on the specifics of the problem such as the sample size, the
number of covariates in the model, the number of covariate groups and the proportion
of responses. This technique is available on LogXact (see [9]).
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Table 21.1. Table of the results.

Estimates 95% Confidence Interval

Asymptotic(s.e.) Exact Monte Carlo Exact Monte Carlo

θ0 −3.4186 (0.1317) −3.4493 −3.4475 (−3.9435, −2.9905) (−3.9551, −2.9655)

θ1 0.0967 (0.0105) 0.0986 0.1002 ( 0.0629, 0.1351) ( 0.0632, 0.1364)

a1 0.2168 (0.2447) 0.2134 0.2142 (−0.7897, 1.0618) (−0.7827, 1.1123)

a7 1.7565 (0.1722) 1.7414 1.7534 ( 1.0975, 2.3617) ( 1.1006, 2.4187)

a13 −7.7503 (6.6326) −2.2142 −2.2736 (−∞ , −0.4818) (−∞ , −0.4877)

a19 −7.8191 (6.7208) −2.2480 −2.4730 (−∞ , −0.5272) (−∞ , −0.4757)

a25 −8.1085 (6.6810) −2.5503 −2.3280 (−∞ , −0.8199) (−∞ , −0.6439)

a31 −8.1542 (6.7425) −2.5838 −2.5827 (−∞ , −0.8594) (−∞ , −0.8981)

a37 −8.2998 (6.6745) −2.7224 −2.7851 (−∞ , −0.9879) (−∞ , −0.7965)

a43 −2.7278 (0.7167) −2.4404 −2.4465 (−∞ , −0.6608) (−∞ , −0.6909)

a49 −0.3193 (0.2464) −0.3413 −0.3395 (−1.3670, 0.5291) (−1.3919, 0.5245)

21.4 Results

In this section we provide a neurophysiological example which causes a breakdown
in the maximum likelihood estimation. The data set includes two time series which
consist of 259 input and 356 output spikes, recorded in a time interval of 15870 ms.
The input is imposed to the muscle spindle by an alpha motoneuron and the output
contains the discharge of the muscle spindle’s sensory axon.

The attempt to fit the logistic regression model given by (21.1) using the maxi-
mum likelihood approach results in misleading conclusions, which are shown in Ta-
ble 21.1. It is obvious that the estimates and the standard errors of the coefficients
a13, a19, a25, a31, and a37 are very large compared with the other estimates, denot-
ing a problematic area on the summation function. This occurs because of the quasi-
complete separation, as illustrated in Table 21.2. This situation causes problems to the
maximum likelihood estimation, which considers that the covariate Xt−13 is a perfect
predictor. The same situation applies for all the covariates of the problematic area
and it causes the maximum likelihood method to diverge. A solution in this case is
to perform exact estimation. The exact results and the confidence intervals are also
shown in Table 21.1. The lower confidence bound for the estimates of the problematic

Table 21.2. 2 × 2 contingency table between Y and Xt−13.

Y = 0 Y = 1

Xt−13 = 0 4677 356

Xt−13 = 1 257 0
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Fig. 21.1. (a) Monte Carlo estimates of the threshold and the recovery function. The dotted lines
correspond to 95% confidence intervals. The recovery function does not cross the threshold,
but the increase may be indicative of possible spontaneous firing. (b) Monte Carlo estimates
of the summation function. The vertical bars represent the 95% confidence intervals of the au
coefficients. The summation function accelerates for a very short period during the first 10 ms,
and afterwards decelerates. This inhibitory behavior blocks the response of the system for about
40 ms.

area is −∞, indicating that the data set contains observations at the extreme points of
the sample space for these coefficients. An alternative solution is to perform Monte
Carlo estimation by sampling 10,000 times from the appropriate conditional distribu-
tion. The estimates and their confidence intervals obtained by performing Monte Carlo
estimation are shown in Table 21.1 and a graphical presentation is given in Fig. 21.1.
All computations were performed on a Pentium, 1000 MHz PC. For consistency all
the results are displayed to four decimal digits. The maximum likelihood estimates are
compared with those of the ELR and the Monte Carlo respectively. The Monte Carlo
estimation required 1/4 of the exact estimation computing time and 1/10 of the exact
estimation memory requirements.

21.5 Discussion

In this chapter we have used a logistic regression model in order to describe the behav-
ior of the muscle spindle when it is affected by an alpha motoneuron. The estimated
coefficients of the summation function are positive for a very short period in the begin-
ning, indicating an acceleration of the system’s firing. However in the interval between
11–50 ms the system is blocked by the presence of the alpha motoneuron and its be-
havior is inhibitory. This becomes obvious from the negative values of the estimated
coefficients. The recovery function is modelled by a first-order polynomial. The graph-
ical presentation of the recovery function shows an increase, which tends to cross the
threshold level. This fact indicates a tendency for possible activity of the system.
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