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Abstract

In this work, we identify a neuroelectric system by using a stochastic model of Volterra type. The neuroelectric system
is called muscle spindle and plays a critical role in the initiation of movement and in the maintenance of posture. In order
to identify the stochastic model we use spectral analysis techniques of stationary point processes, which are based on
Welch's method. New asymptotic results for the gain, phase and impulse function of the system based on the Welch's
method are obtained. These results are used in examining the behaviour of the muscle spindle under two di!erent
experimental conditions: (a) when there is no input present and (b) when an input is present. The presence of the input
drastically modi"es the behaviour of the muscle spindle. It is shown from the estimates of the gain and phase that the
system behaves as a high-pass "lter with the input leading the output by about 30 ms. This result is also veri"ed from the
estimate of the impulse function which indicates that the system does not respond for about 30 ms. ( 2000 Elsevier
Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit identi"zieren wir ein neuroelektrisches System durch Verwendung eines stochastischen Volterramodells.
Das neuroelektrische System wird Muskelspindel genannt und spielt eine kritische Rolle bei der Einleitung einer Bewegung
und bei der Aufrechterhaltung der KoK rperhaltung. Um das stochastische Modell zu identi"zieren, verwenden wir
Methoden der Spektralanalyse fuK r stationaK re Punktprozesse, die auf der Welch-Methode beruhen. Es werden neue
Resultate fuK r die VerstaK rkungs-, Phasen- und Impulsfunktion des auf der Welch-Methode basierenden Systems erzielt.
Diese Ergebnisse werden bei der Untersuchung des Verhaltens der Muskelspindel unter zwei unterschiedlichen Versuch-
sbedingungen benutzt: (a) wenn kein Eingangssignal vorliegt und (b) wenn ein Eingangssignal vorliegt. Das Verhalten der
Muskelspindel wird durch die PraK senz eines Eingangssignals drastisch veraK ndert. Anhand der SchaK tzung der VerstaK rkung
und der Phase wird gezeigt, dass sich das System wie ein Hochpass"lter verhaK lt, wobei das Eingangssignal dem
Ausgangssignal um etwa 30 msec vorausgeht. Diese Ergebnis wird ebenfalls durch die SchaK tzung der Impulsfunktion
veri"ziert, die anzeigt, dass das System 30 ms lang nicht antwortet. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous identi"ons dans ce travail un système neuro-eH lectrique à l'aide d'un modèle stochastique de type Volterra. Le
système neuro-eH lectrique est appeleH le fuseau musculaire et joue un ro( le critique dans l'initiation du mouvement et la
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Nomenclature

p
k

mean intensity
p
kl

(u) second-order product density
q
kl

(u) cumulant density
f
kl

(j) spectral density function
DR

kl
(j)D2 coherence coe$cient

dK
k
(j, j) modi"ed Fourier}Stieltjes transform

IK
kl

(j, j) modi"ed periodogram
a(u) impulse response function
k mean rate of process
A(j) transfer function
log10 DA(j)D gain of transfer function
h(j) phase of transfer function

Fig. 1. A graphical representation of the neuroelectric system.

maintenance de la posture. Nous utilisons des techniques d'analyse spectrale de processus ponctuels stationnaires, baseH es
sur la meH thode de Welch, pour identi"er le modèle stochastique. Nous obtenons des reH sultats asymptotiques nouveaux
sur le gain, la phase et la reH ponse impulsionnelle du système sur la base de la meH thode de Welch. Ces reH sultats sont utiliseH s
pour examiner le comportement du fuseau musculaire dans deux conditions expeH rimentales di!eH rentes: (a) quand aucune
entreH e n'est preH sente et (b) quand une entreH e est preH sente. La preH sence d'une entreH e modi"e drastiquement le comporte-
ment du fuseau musculaire. Il est montreH à partir des estimeH es du gain et de la phase que le système se comporte comme
un "ltre passe-haut preH sentant un retard d'environ 30 ms. Ce reH sultat est eH galement veH ri"eH par le biais de l'estimeH e de la
reH pons impulsionnelle, qui indique que le système ne reH pond pas pendant environ 30 ms. ( 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this work, we present a neuroelectric system
and examine its behaviour under di!erent experi-
mental conditions. The system is considered as
a `black boxa where the incoming information (in-
put) modi"es its behaviour and produces a re-
sponse (output). The input and output processes
are stochastic signals, which are called point pro-
cesses [9,10,14,21] and denoted by N

1
and N

2
,

respectively (see Fig. 1).
The identi"cation of the neuroelectric system,

which is assumed to be stochastic and time invari-
ant, will be based on the information contained in
the input and output processes. Since our system is
stochastic, complete identi"cation is not possible
and the best we can hope for is to "nd estimates of

the parameters which characterise the statistical
properties of the system [7].

The estimation of the parameters of the system
will be based on attractive methods of spectral
analysis for point processes. Two important rea-
sons that make the use of spectral analysis tech-
niques in the analysis of point processes attractive
are:
(a) it is much easier to obtain asymptotic results

for the estimates of the parameters involved in
the time and frequency domains;

(b) the computation of the estimates becomes faster
with the use of the fast Fourier transform (FFT).

The importance of the second reason lies on the fact
that the estimates of the time domain parameters
can be rapidly obtained by "rst calculating the
corresponding parameters in the frequency domain
directly from the data and then inverting to the
time domain. For the estimation of the spectral
density functions, we shall use Welch's method
based on the modi"ed periodogram statistics. Since
the procedure of estimation is based on the compu-
tation of the modi"ed periodogram statistics, it is
de"ned as non-parametric.
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Two data sets from the "eld of Neurophysiology
will be used in order to examine the behaviour of
the neuroelectric system. The data sets describe the
cases where the system:
(a) is free from any input;
(b) is a!ected by the presence of an input (alpha

motoneuron).

2. Brief description of the neuroelectric system

The neuroelectric system that will be described is
called `muscle spindlea and is an element of the
peripheral neuromuscular system.

The muscle spindle is a receptor which is thought
to play an important role in the initiation of move-
ment and in the maintenance of posture. Muscle
spindles respond to external stimuli and consist of
parts of the `skeletalamuscles, which are concerned
with posture or movement. Most `skeletalamuscles
contain a number of these receptors, which lie in
parallel with the `extrafusal "bresa. They consist of
a number of specialised muscle "bres lying parallel
to each other and partially contained within
a #uid-"lled capsule of connective tissue [3]. The
"bres of the muscle spindle known as `intrafusal
"bresa are considerably shorter than the extrafusal
muscle "bres.

A group of neurons, the `alpha motoneuronsa,
whose bodies lie within the spinal cord, have long
axons which leave the spinal cord to innervate the
extrafusal muscle "bres forming the main mass of
muscles responsible for generating forces or cha-
nges of length. The axons of alpha motoneurons
normally conduct electric signals (nerve pulses)
from the cell body to the extrafusal muscle "bres.
When an electric signal reaches the junction be-
tween the axon and the muscle "bre, a sequence of
electro-chemical events occurs which leads to the
contraction of the extrafusal muscle "bres. The
alpha motoneuron together with all of the muscle
"bers that it innervates is called a &motor-unit'.
Skeletal muscles are thus, in part, made up of
groups of motor-units. The size of a motor-unit (the
number of muscle "bers innervated by a particular
alpha motoneuron), and the number of motor-units
within a muscle, depend on the function of that
muscle.

Motor-units may be related to the incremental
units of force that a muscle can develop. Muscles
concerned with the control of delicate movements
have small motor-units and can generate the small
increments of force required for these movements,
whereas muscle with large motor-units produce
large increments of force and may function simply
to maintain a "xed attitude or posture.

Our purpose in this work is to examine how the
e!ect of an alpha motoneuron on the extrafusal
"bres of a muscle a!ects the behaviour of a muscle
spindle lying within the muscle by recording
the response of the Ia sensory axon (the axon
that conducts the information from the muscle
spindle to the spinal cord). When the muscle is
not a!ected by a stimulus, the Ia sensory axon from
the muscle spindle generates electric signals at
a constant rate. By changing the length of the
muscle, we obtain a change in the rate of
discharge of the electric signals in the Ia sensory
axon [16].

The tenuissimus muscle in anaesthetised cats was
used in the experiments, and the responses of single
sensory axons in dorsal root "laments were re-
corded. The axon of the alpha motoneuron was
stimulated by sequences of pulses at twice thre-
shold having approximately an exponential distri-
bution of intervals. By `thresholda, we refer to the
critical value over which a nerve impulse will occur.
Fifteen seconds of responses were recorded when:
(a) no stimulation was present and (b) an alpha
stimulation was present, with the tenuissimus
muscle held at a "xed length. The times of occur-
rence of the nerve impulses of the sensory axons
and the stimulus pulses were measured and stored
in computer "les.

3. Theory of stationary point processes

Mathematically a point process MN(t)N is de"ned
as a random, non-negative, integer-valued measure
[6]. Examples of point processes which are ob-
served at a certain time interval are the failures of
a computer, the beats of human heart, the action
potentials "red by a neuron, the earthquakes that
occur in a given region and many others.
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In our practical problem, we shall assume that
the point processes satisfy the following conditions:
(a) They are stationary.
(b) They are orderly.
(c) They are strong mixing.
These assumptions are discussed in detail in [7,10].

We now proceed to de"ne some parameters for
the point processes in both time and frequency
domains.

Let MN
1
(t),N

2
(t)N, !R(t(R, be a bivari-

ate point process. The mean intensity of component
N

k
(t) (k"1,2) is de"ned by

p
k
"lim

h?0

ProbMevent of

k-type occurs in (t, t#h]N/h. (1)

The condition of orderliness implies that

EMdN
k
(t)N"p

k
dt, (2)

where dN
k
(t)"N

k
(t, t#dt] is the di!erential in-

crement of N
k
(t), k"1,2.

The second-order product density of the bivari-
ate point process is de"ned by

p
kl

(u)" lim
h1,h2?0

ProbMevent of

k-type occurs in (t#u, t#u#h
1
]

and

event of l-type occurs in (t, t#h
2
]N/h

1
h
2
. (3)

In this case, the condition of orderliness implies
that

EMdN
k
(t#u) dNl (t)N

"[p
kl

(u)#p
k
d(u) dMk!lN] dudt, (4)

where d(.) is the dirac delta function and dM.N is the
Kronecker delta. Since the bivariate process is also
strong mixing, it follows that

lim
u?=

p
kl

(u)"p
k
pl . (5)

The covariance function between the increments
dN

k
(t#u) and dNl (t) is de"ned by

covMdN
k
(t#u),dNl (t)N

"[q
kl

(u)#p
k
d(u)dMk!lN] dudt, (6)

where q
kl

(u)"p
kl

(u)!p
k
pl is the cumulant den-

sity.

In the frequency domain, we de"ne the spectral
density function as follows:

f
kl

(j)"(2p)~1P
`=

~=

expM!ijuN

]covMdN
k
(t#u),dNl(t)N/dt (7)

provided that :`=
~=

Dq
kl

(u)Ddu(#R. This de"ni-
tion implies that

lim
j?=

f
kl

(j)"G
(2p)~1p

k
k"l,

0 kOl.
(8)

The de"nitions of the power spectrum and the
cross-spectrum for point processes follow from (7)
when we let k"l and kOl, respectively.

Another important function in the frequency do-
main is the coherence coe$cient de"ned by

DR
kl

(j)D2"
D f
kl

(j)D2
f
kk

(j) fll(j)
, (9)

where f
kl

(j) is the cross-spectrum and f
kk

(j), fll(j)
are the power spectral densities of components
N

k
and Nl of the bivariate process, respectively.

The coherence coe$cient takes values in the in-
terval [0,1] and provides a measure for the linear
relationship between the components of the bivari-
ate point process (more details about the para-
meters de"ned above can be found in [6,7,13]).

4. Estimates of the frequency domain parameters

In this section, we discuss estimates of the spec-
tral density functions and the coherence coe$cient.

An estimate of the spectral density, f
kl

(j), may be
based on Welch's method which uses the modi"ed
periodogram. A brief discussion of this method is as
follows:

Suppose that the number of disjoint sections is ¸,
each of length R, so that the total time interval is
¹"¸R. The modi"ed "nite Fourier}Stieltjes
transform of the increments dN

k
(t) (k"1,2) for

a section of length R is de"ned by

dK (R)
k

(j, j)"P
(j`1)R

jR

exp(!ijt)[dN
k
(t)!p(

k
dt],

j"0,1,2,¸!1, (10)

1886 A.G. Rigas, P. Liatsis / Signal Processing 80 (2000) 1883}1894



where p(
k

is the estimate of the mean intensity of
the k-component. By subtracting the estimate
of the mean intensity, we reduce the leakage near
the frequency j"0.

The modi"ed periodogram of a section of length
R is now given by

IK (R)
kl

(j, j)"(2pR)~1dK (R)
k

(j, j)dK (R)l (j, j)

for jO0 and j"0,1,2,¸!1, (11)

where dK (R)l (j, j) is the conjugate function of dK (R)l (j, j).
In practice, in order to be able to use the FFT

algorithm in the computation of the modi"ed peri-
odogram, we approximate (10) by the following
expression:

dK (R)
k

(j, j)

+

(j`1)R~1
+

t/jR

exp(!ijt)[N
k
(t#1)!N

k
(t)!p(

k
].

(12)

The estimate of the cross-spectrum f
kl

(j) over the
total time interval (¹"¸R) is now obtained by

f (LR)
kl

(j)"¸~1
L~1
+
j/0

IK (R)
kl

(j, j) for jO0. (13)

This estimate is asymptotically unbiased and its
variance tends to zero for large ¸ (more details
about this method can be found in [20]). If the
number of disjoint sections ¸ is not large enough,
we can improve the smoothness of the above esti-
mate by using a weighting scheme of the form

fK (LR)
kl

(j
m
)"

1

2p#1

p
+

r/~p

f (LR)
kl

(j
m`r

), (14)

where j
m
"2pm/R and m"1,2,2,(R!1)/2.

It is clear from (14) that the estimate for the
cross-spectrum is obtained when kOl, while
the estimate for the power spectrum when k"l
(in the case of ordinary time series these estimates
can be found in [1,8,17]).

We next turn to the estimation of the coherence
coe$cient. By substituting the estimates of the

cross-spectrum and the power spectra in (9) we get
an estimate of the coherence coe$cient given by

DRK
kl

(j)D2"
D fK (LR)

kl
(j)D2

fK (LR)
kk

(j) fK (LR)ll (j)
for jO0 (kOl).

(15)

Under the null hypothesis DR
kl

(j)D2"0, the distri-
bution of DRK

kl
(j)D2 is a beta distribution with 1 and

M!1 degrees of freedom, where M"(2p#1)¸
(see [8, p. 294]), p is a value that has to be chosen in
order to obtain a consistent estimate of the power
spectrum, i.e., one that has been satisfactory
smoothed. By using the arguments of Abramowitz
and Stegun [2, p. 944] we "nd

ProbMDRK
kl

(j)D2(zN"1!(1!z)M~1,

0(z(1. (16)

By setting a"ProbMDRK
kl

(j)D2(zN, we get from (16)
the following expression:

z"1!(1!a)1@(M~1). (17)

When the values of DRK
kl

(j)D2 are less than z, we
cannot reject the null hypothesis. In this case we say
that the components of the bivariate point process
are uncorrelated.

5. System identi5cation

In this section, we present a linear stochastic
model which is suitable for the identi"cation of the
neuroelectric system, the muscle spindle. It is as-
sumed that the muscle spindle is a time-invariant
system with input process N

1
and output process

N
2
. A basic element characterising such a system is

the conditional expected value EMdN
2
(t)/N

1
N inter-

preted as

ProbMthere is event of type-2

in (t, t#h]/an event of type-1 at tN.

The stochastic model which describes the linear
relationship between the input N

1
and the output

N
2

is given by

EMdN
2
(t)/N

1
N"Ck#P

t

~=

a(t!u) dN
1
(t)Ddt.

(18)
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This is a Volterra-type stochastic model for point
processes (such models are discussed in [5,15]). The
function a(u) is called the impulse response function
and is useful in predicting whether there will be an
event of type-2 u time units away from a type-1
event, while k is a constant representing the mean
rate of process N

2
, when N

1
is inactive.

In order to be able to solve model (18) with
respect to the unknown parameters k and a(u), we
need to use techniques of the frequency domain.
For this reason, we de"ne the one-sided Fourier
transform of a(u) as follows:

A(j)"P
=

0

a(u) exp(!iju) du, !R(j(R.

(19)

It follows from (18) after some calculations, that

p
2
"k#A(0)p

1
(20)

and

A(j)"f
21

(j)/f
11

(j) (21)

provided that f
11

(j)O0. For more details refer to
Brillinger [5]. By p

1
and p

2
, we denote the mean

intensities of N
1

and N
2
, respectively. The function

A(j) is a complex function and can be described by
the magnitude DA(j)D and the phase h(j).

The function a(u) can be determined by using the
inverse Fourier transform of (19), that is

a(u)"(2p)~1P
`=

~=

A(j) exp(iju) dj. (22)

The parameter k can also be determined from (20).
Estimates for the parameters DA(j)D, h(j), k and

a(u) are now obtained as follows:

DAK (j)D"D fK (LR)
21

(j)D/fK (LR)
11

(j), (23)

hK (j)"arg fK (LR)
21

(j), (24)

k("p(
2
!AK (0)p(

1
(25)

and

a( (u)"Q~1
R

+
k

=
R
(j

k
)AK (j

k
) exp(ij

k
u),

k"0,$1,$2,2,$(Q
R
!1)/2, (26)

where=
R
(j)"=(b

R
j) is a convergence factor and

j
k
"2pk/Q

R
. Q

R
is a quantity that satis"es the

condition b
R
Q

R
PR. By b

R
, we denote the band-

width which tends to zero as RPR (more details
about the convergence factors and their properties
can be found in [11]). Statistical methods concern-
ing the estimation of the parameters given by
(23)}(26) are discussed in [4]. Our approach here is
based on Welch's method which can be used to
develop some new asymptotic results for the esti-
mates log

10
DAK (j)D, hK (j) and a( (u).

Proposition 1. Let MN
1
(t),N

2
(t)N be a stationary

point process dexned on (0,¹]. Suppose that the point
process is strong mixing and its moments exist up to
the Jth order. Then, if f

11
(j)O0, the estimate

log
10

DAK (j)D is asymptotically unbiased and its vari-
ance is given by

VarMlog
10

DAK (j)DN

+
(log

10
e)2

2(2p#1)¸
f
22

(j) f~1
11

(j)[DR
21

(j)D~2!1],

jO0,

where e is the base of the natural logarithm.

Proposition 2. Suppose that the conditions of Prop-
osition 1 are satisxed. Then the estimate hK (j) is
asymptotically unbiased and its variance is given by

VarMhK (j)N+
[1!dM2jN]
2(2p#1)¸

[DR
21

(j)D~2!1].

Theorem 1. We suppose that the conditions of Prop-
osition 1 are satisxed and :DuD Da(u)Ddu(#R. Then,
if b

R
Q

R
PR as RPR, the distribution of a( (u) is

approximately normal with mean a(u) and variance
given by

VarMa( (u)N+
(2p)~1

(2p#1)¸Q
R

P=2
R
(j)f

22
(j)f~1

11
(j)[1!DR

21
(j)D2] dj.
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Fig. 2. Estimate of the logarithm to base 10 of the power
spectrum of the response of the neuroelectric system when it is
not a!ected by any stimulus (spontaneous activity).

Fig. 3. Estimate of the logarithm to base 10 of the power
spectrum of the response of the neuroelectric system when an
alpha motoneuron is present.

Proposition 1 and Theorem 1 are used to devel-
op the asymptotic properties of a( (u), from which we
can obtain its con"dence limits. Propositions 1 and
2 show that the variance of log

10
DAK (j)D and hK (j)

depends on DR
21

(j)D~2, respectively. This indicates
that the behaviour of log

10
DAK (j)D and hK (j) will be

very irregular when the estimate of DR
21

(j)D~2 is
close to zero. The proofs of the two propositions
and the theorem are included in the appendix.

The theoretical results for the estimated para-
meters of the Volterra-type model obtained from
the estimates of the spectral density functions will
help us to extract useful conclusions about the
behaviour of the muscle spindle in relation to the
information which is carried to spinal cord through
the Ia sensory axon of the muscle spindle.

6. Examples

In this section, we analyse the response of the
neuroelectric system when : (a) it is not a!ected by
any stimulus (spontaneous activity) and (b) it is
a!ected by an alpha motoneuron.

Fig. 2 shows the logarithm to base 10 of the
estimate of the power spectrum (log

10
Mpower spec-

trumN) of the response of the neuroelectric system
in the case (a) computed from (14) by setting k"l,
number of disjoint sections ¸"5, each of length
R"2048 and p"15. It is obvious from the "gure
that the behaviour of the response is periodic which
suggests that the distances between the events of
the response are almost equal. It is also apparent
that the true value of log

10
Mpower spectrumN tends

to the constant value log
10

M(2p)~1p
k
N as j (angular

frequency) becomes larger according to (8). The
dashed line in the middle corresponds to the esti-
mate log

10
M(2p)~1p(

k
N, where p(

k
is the estimate of

the mean intensity of the response. The solid lines
above and below the dashed line correspond to the
95% con"dence limits, the computation of which is
discussed in Rigas [18]. Values of the estimated
log

10
Mpower spectrumN inside the 95% con"dence

limits indicate a completely random point process
(i.e., a Poisson process).

Fig. 3 shows the logarithm to base 10 of the
estimate of the power spectrum of the response
when the muscle spindle is a!ected by the presence
of an alpha motoneuron (case (b)), which is com-
puted in the same way as discussed above. In this
case, the estimate p(

k
corresponds to the mean inten-

sity of the response of the neuroelectric system in
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Fig. 4. Estimate of the coherence coe$cient in the case where
the neuroelectric system is a!ected by an alpha motoneuron.

Fig. 5. Estimate of the gain of the neuroelectric system when it is
a!ected by an alpha motoneuron.

the presence of an alpha motoneuron. The
log

10
Mpower spectrumN is low almost in the whole

range of frequencies 0}50 Hz and high (higher than
a completely random process) in the range 50}70
Hz. A peak at about 26 Hz and its multiple at 55 Hz
suggest the presence of spontaneous activity.
Hence, we may say that the system behaves as
a high-pass "lter, since it permits mostly high-
frequency components to pass through in the range
of frequencies 0}70 Hz.

Fig. 4 illustrates the estimate of the coherence
coe$cient between the e!ect of the alpha moto-
neuron and the response of the neuroelectric sys-
tem. The dashed line indicates the 95% point of the
estimate of the coherence coe$cient computed
from (17) for M"155. The two processes are more
strongly related at low frequencies with a weaker
relation until 100 Hz.

Fig. 5 shows the estimate of the gain or
log

10
DAK (j)D and is plotted until 25 Hz, since

the estimate of the coherence coe$cient becomes
relatively small at around this frequency. The
shape of the graph shows an increase in the gain
with a maximum between 15 and 20 Hz. After
that there is clearly a decrease in the gain. From
this result we may conclude that the system

behaves as a band-pass "lter in the range of
frequencies 1}25 Hz.

Fig. 6 provides the estimate of the phase. The
phase characteristic is compatible with a linear
phase lead feature in the system (see [12, p. 23]).
This is also supported by the initial gain increase
from 0 to 8 Hz. The phase starts at about !3.14
and is a straight line with increasing values. This
indicates that the system is delayed for about 30 ms.
This value is obtained from the formula j

c
"p/u

(see [8, p. 303]), with j
c
"2pf

c
and f

c
"15.4 Hz is

the frequency which corresponds to the point
where the estimate of the phase meets the axis that
passes from zero and is parallel to the axis of the
frequencies. From the above formula, we calculate
the delay u to be approximately 32.5 ms.

Fig. 7 depicts the estimate of the impulse re-
sponse function. The impulse response function for
our stochastic system can be interpreted as a best
linear predictor showing whether there will be an
event of type-2 u time units away from an event of
type-1. The dashed line in the middle corresponds
to the hypothesis that the two processes (input and
output) are independent and the solid lines give the
95% con"dence limits for the estimate of the
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Fig. 6. Estimate of the phase when the neuroelectric system is
a!ected by an alpha motoneuron.

Fig. 7. Estimate of the impulse response function of the neur-
oelectric system.

impulse function. Values of the estimate outside
the con"dence limits indicate deviations from the
hypothesis that the two processes are independent.
The solid lines are obtained from the expression

$2Js, where

s"
1

MQ2
R

+
k

=2
R
(j

k
) fK

22
(j

k
) fK

11
(j

k
)[1!DRK

21
(j

k
)D2],

k"0,$1,$2,2,$(QR~1)@2.

A Parzen convergence factor =
R
(j) was used to

smooth the estimate of the impulse response, with
b~1
R

"30 and Q
R
"256.

The impulse response function can be positive,
negative or zero, depending on whether the re-
sponse of the system accelerates, slows or remains
unchanged, respectively. From Fig. 7, it becomes
clear that the system responds (accelerates) for
a short time period of 1}2 ms, then slows (its re-
sponse is in a way blocked) for about 30 ms and
after that the response does not change.

7. Conclusions

In this paper, we have studied the behaviour of
the neuroelectric system called `muscle spindlea,
under the in#uence of an alpha motoneuron using
a stochastic model of Volterra-type for stationary
point processes. The estimates for the parameters of
the stochastic model are obtained from the esti-
mates of the spectral density functions which are
based on Welch's method.

Two main results were found:
(A) The e!ect of the alpha motoneuron modi"es

completely the behaviour of the system which
acts almost as a high-pass "lter, according to
the estimate of the power spectrum of the re-
sponse.

(B) The system accelerates for 1}2 ms very shortly
after the e!ect of the alpha motoneuron, slows
down (the response is in a way blocked) for
about 30 ms and after that does not change
according to the estimate of the impulse re-
sponse function.

The e!ect of the alpha motoneuron makes the
muscle to contract and this in a way blocks the
transmission of the information from the muscle
spindle to the spinal cord through the Ia sensory
axon. This result is considerably di!erent, when
compared to the e!ect of a gamma motoneuron
[19]. The e!ect of a gamma motoneuron makes the
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system only to accelerate for about 5}10 ms after
a delay in the response of about 15 ms. Future
research will consider the combined e!ect of an
alpha and a gamma motoneuron on the muscle
spindle using Volterra-type stochastic models.
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Appendix. Proofs of asymptotic results

Proof of Proposition 1. We start by examining the
asymptotic "rst- and second- order properties of
A(j).

Using the results of Brillinger [5], we can write
the estimate of the transfer function obtained from
(21) in the following form:

AK (j)"A(j)#
[ fK (LR)

21
(j)!f

21
(j)]

f
11

(j)

!

A(j)

f
11

(j)
[ fK (LR)

11
(j)!f

11
(j)]#O

1
M(MR)~1@2N,

where O
1
M(MR)~1@2N indicates probability of order

OM(MR)~1@2N [8, p. 423].
From this relation and the properties of the esti-

mates fK (LR)
kl

(j) [20], we obtain

lim
R?=

EMAK (j)N"A(j)

and

lim
R?=

covMAK (j),AK (k)N

"

dMj!kN
(2p#1)¸C

f
22

j
f
11

j
!

f
21

(j) f
21

(!k)

f2
11

(k) D (jOk).

These asymptotic results will be extensively used in
the proofs below.

In order to "nd the properties of log
10

DAK (j)D we
use the following "rst-order Taylor expansion

lnDd#eD"lnDdD#
1

2A
e
d
#

e6
dM B!2,

where e is assumed to be small and e6 denotes the
conjugate of e. By setting d"A(j) and d#e"AK (j)
we get

lnDAK (j)D"lnDA(j)D#
1

2

[AK (j)!A(j)]

A(j)

#

1

2

[AK (!j)!A(!j)]

A(!j)
!2,

where A(j)"A(!j) since A(j) is a complex func-
tion. This relation leads to the asymptotic results

lim
R?=

EMlnDAK (j)DN"lnDA(j)D,

lim
R?=

covMlnDAK (j)D,lnDAK (k)DN

"

dMj!kN
2(2p#1)¸

1

A(j)A(!k)

]C
f
22

(j)

f
11

(j)
!

f
21

(j) f
21

(!k)

f
11

2(k) D (jOk).

In the previous relation, if we set j"k and use
the fact that lnDAK (j)D"log

10
DAK (j)D/log

10
e, we get

VarMlog
10

DAK (j)DN

+
(log

10
e)2

2(2p#1)¸
f
22

(j) f~1
11

(j)[DR
21

(j)D~2!1],

jO0.

This completes the proof of the proposition. h

Proof of Proposition 2. In order to prove the
asymptotic results of the estimate of the phase,
the following "rst-order Taylor expansion may be
used:

argMd#eN"arg d#argGA1#
e
dBH

"arg d#
1

2iA
e
d
!

e6
dM B!2.
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By setting d#e"fK (LR)
21

(j) and d"f
21

(j) we obtain

arg fK (LR)
21

(j)"arg f
21

(j)#
1

2iC
fK (LR)
21

(j)!f
21

(j)

f
21

(j) D
!

1

2iC
fK (LR)
21

(!j)!f
21

(!j)

f
21

(!j) D!2,

where f
21

(j)"f
21

(!j), since f
21

(j) is a complex
function.

Now it can be shown that hK (j) is asymptotically
unbiased and its variance is given by

VarM0K (j)N+
[1!dM2jN]
2(2p#1)¸

[DR
21

(j)D~2!1].

This indicates a simple way of proving the results
of the proposition. For further details, refer to
Priestley [17, p. 703].

Proof of Theorem 1. If we take the expected value
in (26) we have

EMa( (u)N"Q~1
R

+
k

=
R
(j

k
)EMAK (j

k
)N expMij

k
uN

"Q~1
R

+
k

=
R
(j

k
)A(j

k
) expMij

k
uN

#OM(MR)~1N

"(2p)~1P=(b
R
j)A(j) expMijuNdj

#OMQ~1
R

N#OM(MR)~1N

and

lim
R?=

EMa( (u)N"2pPA(j) expMijuNdj"a(u),

since, as RPR, Q
R
PR and b

R
P0. In the

above expression, =
R
(j)"=(b

R
j) is a conver-

gence factor, Q
R

satis"es b
R
Q

R
PR and b

R
is the

bandwidth. This implies that =(b
R
j)P=(0)"1.

For the covariance of a( (u) and a( (v) we have

covMa( (u),a( (v)N

"Q~2
R

+
k

+
l

=
R
(j

k
)=

R
(kl)

covMAK (j
k
),AK (kl)N expMi(j

k
u!klv)N

"Q~2
R

+
k

+
l

=
R
(j

k
)=(kl )

dMj
k
!klN

(2p#1)¸ C
f
22

(j
k
)

f
11

(j
k
)

!

f
21

(j
k
) f

21
(!kl)

f 2
11

(kl ) DexpMi(j
k
u!klv)N

"

Q~2
R

(2p#1)¸
+
k

=2
R
(j

k
) f

22
(j

k
) f~1

11
(j

k
)

][1!DR
21

(j
k
)D2] expMij

k
(u!v)N

#O(Q~1
R

M~1R~1)

"

(2p)~1

(2p#1)¸Q
R
P=2

R
(j) f

22
(j)f~1

11
(j)

][1!DR
21

(j)D2] expMij(u!v)Ndj

#O(M~1Q~2
R

)#O(M~1Q~1
R

R~1).

By setting u"v, we obtain the following result for
the variance of a( (u):

VarMa( (u)N+
(2p)~1

(2p#1)¸Q
R

]P=2
R
(j) f

22
(j) f~1

11
(j)[1!DR

21
(j)D2] dj.

Higher-order cumulants are given by

cumMa( (u
1
), a( (u

2
),2, a( (u

J
)N"O(M~J`1Q~J`1

R
).

This result follows from the properties of the cumu-
lants of the periodogram [8, p. 437].

Hence, the normalised cumulants can be written
in the form

(MQ
R
)JcumMa( (u

1
),a( (u

2
),2,a( (u

J
)N

"O(M~J@2`1Q~J@2`1
R

).

This further implies that

(MQ
R
)JcumMa(

1
(u

1
),a(

2
(u

2
),2,a( (u

J
)NP0

as RPR for J'2.

From the last result we obtain that the distribution
of a( (u) is asymptotically normal (see [8, p. 403]).
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