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Abstract--In this work we examine the behaviour of a complex physiological system (muscle spin- 
dle) by using spectral analysis techniques of stationary point processes. In particular, we investigate 
the effect of a gamma motoneuron on the complex system when 

(a) there is no other stimulus present, and 

(b) there is an alpha motoneuron present. 

It is shown that the presence of an alpha motoneuron reduces the effect of the gamma motoneuron 
on the muscle spindle. 

Keywords--Stationary point processes, Spectral density function, Coherence function, Cross- 
intensity function, Muscle spindle. 

1. INTRODUCTION 

The mathematical problem presented in this paper is related with the neurophysiological system 

called muscle spindle and its behaviour to certain practical situations. As we shall see in the 

next section, the behaviour of the muscle spindle can be modified by the effect of the alpha 

and gamma motoneurons whose bodies lie inside the spinal cord and make synaptic contacts 

with interneurons and the axons from higher levels in central nervous system. When the muscle 

spindle is not affected by any stimulus, its response is quite regular (the distances between the 

nerve pulses recorded from the muscle spindle are almost the same). This regularity is destroyed 

completely by the effect of a gamma motoneuron (see [I]). Here, we shall investigate the effect of 

a gamma motoneuron on the muscle spindle when the effect of an alpha motoneuron is present 

as well. A technique of spectral analysis for a bivariate stationary point process is used in order 

to examine how the incoming information to the muscle spindle is correlated with the outgoing 

information directed towards the spinal cord by estimating certain parameters of the bivariate 
point process in the frequency domain. By getting the inverse Fourier transform, we are able to 

estimate certain parameters of the bivariate point process and develop its asymptotic properties in 

the time domain, and hence, to be in a position to obtain useful information about the behaviour 

of the muscle spindle which is in agreement with the results of the frequency domain. 

2. B R I E F  D E S C R I P T I O N  OF T H E  M U S C L E  S P I N D L E  

The muscle spindle is an element of the neuromuscular system and plays a critical role in the 
initiation of movement  and the maintenance of posture. I t  is also a transducer which responds 
to different stimuli applied on it. Most skeletal muscles contain a number of these transducers,  
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which lie in parallel with the fibers of the muscle (known as extrafnsal fibers). The fibers within 

a muscle spindle, known as intrafnsal fibers, are considerably shorter than the extrafusal fibers. 

There are three different types of intrafusal muscle fibers, the dynamical nuclear-bag (DNB), the 

static nuclear-bag (SNB) and the nuclear chain (NC). 

0a 

SPINAL CORD " Axons from higher levels in 
~Central Nervous System 

i q 

/ \ -h. 1/11~ 

: " " ° "  

i / f " ~  .::[.":XL/lhi ~ ~, af ferent  axon Spindle.. . .~.  

_ . , ' ' - ' - " "  

:;~;~:-.:'.'.,~ -~i a -motoneurone  axon 

: ,,, ]: 

• I U. . ~  a - m o t o n o u r o , e  

-~ >.-motoneurone 

Figure 1. Diagram showing the connections between a muscle spindle, its parent 
muscle and the spinal cord. 

The  effect of a stimulus on the muscle spindle is t ransmit ted  to the spinal cord by the terminal 
branches of the axons of sensory neurons which are wrapped round all of the intrafusal fibers. 
Figure 1 shows the muscle spindle, its parent muscle and how the response from the muscle 
spindle is t ransmit ted  to the spinal cord through the axon of a sensory neuron called Ia  afferent 
axon. We can also see how a gamma  motoneuron affects directly the muscle spindle by making 
synaptic contact with the intrafusal fibers and how an alpha motoneuron affects indirectly the 
muscle spindle by making synaptic contact with the extrafusal fibres. More details about  the 
muscle spindle are given in [2]. 

3. S P E C T R A L  A N A L Y S I S  O F  STATIONARY P O I N T  P R O C E S S E S  

The muscle spindle can be assumed as a stochastic system involving point processes. By this 
we mean tha t  the input to and the output  of the system are point processes. Mathematically,  a 
point process is defined as a random, nonnegative, integer-valued measure. 

Let  {Nl( t ) ,  N2(t)}, - o o  < t < oe, be a bivariate point process which is assumed to be station- 
ary, orderly and strong mixing. These assumptions are satisfied approximately in practice and 
discussed in detail by Brillinger [3] and Daley and Vere-Jones [4]. 

We must  stress at this point tha t  our analysis will be based on methods of the frequency 
domain in order to obtain estimates of certain parameters  of the bivariate point process and 
extract  useful information about  the behaviour of the muscle spindle. The second-order spectral 
density of a s ta t ionary point process is defined by 

fab(A)=(27r)-l[qa~{a--b}+/:: exp{-iAu}qab(U) du], - o o < A < o o ,  (1) 
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where qa is the mean-intensity of the component a, qab(u) is the cumulant density and 5 {u} is 
the Kronecker delta (a, b = 1, 2). By getting the inverse Fourier transform of (1), we find 

qab(U) = f + 5  exp(iAu)[ lab(A)-  -~sqa {a - b}j ]dA.  (2) 

Higher order spectral and cumulant densities of stationary point processes can also be defined. 
For more details refer to [3]. 

Another useful function is the intensity function which is defined by 

mob(u) - qob(u__A) + qo, (a, b = 1, 2). (3) 
qb 

This function is a conditional probability and can be interpreted as 

Prob {event of a-type at (t + u, t + u + h]/event of b-type at t},  

where h is small. 

4. E S T I M A T I O N  O F  T H E  P A R A M E T E R S  

We consider that  the stationary bivariate point process is observed on the time interval (0, T]. 
In order to obtain an estimate of the second-order spectral density we split the whole record of the 
data  T into L disjoint subrecords each of length R, i.e., T -- LR.  In each subrecord, we compute 
the periodogram statistic and then we find an estimate of the spectral density by averaging the 
periodogram ordinates in every frequency. The periodogram of the jth subrecord is defined by 

(It) . (21rR)_1d(R)(A,j)d~R)(A,j)  A?t0 ,  j 0,1, 1 b 1, (4) I~b (A,3)=  for . . . .  , L -  (a, = 2), 

where d (R) (A, j )  is the finite Fourier-Stieltjes transform of the jth subrecord given by 

f 
(j+I)R 

= exp { - i M }  dNa(t), (a = 1, 2). (5) d (n) (A, j )  J jR 

By d~R)(A,j) we denote the conjugate function of d~R)(A,j) and by dNa(t) = Na( t , t  + dt] the 
number of events of a-type which occur in the interval (t, t + dt]. An estimate of the spectral 
density can now be obtained by 

L--1 
".b (A,J), fo rA~t0 ,  ( a , b = l , 2 ) .  (6) 

j=O 

We can further improve the properties of this estimate by applying the following weighting scheme 

a(LR)(Ak) = 1 P 27rk R - 1 
b , - 2p+-----1 E f(bLR)(Ak+~)' w h e r e A k =  ~ a n d k = l , 2 , . . . , - - ~ - -  (7) 

"r'~--p 

In order to test whether the components of the bivariate point process are correlated, we use the 
coherence function, an estimate of which is given by 

for # 0. (8) R21 ()k) 2 = ] ~ f R ) ( A ) ] ( L R ) ( ) 0 '  
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A 100a percent point of the estimate of the coherence function is obtained from the following 
relation 

z = 1 - (1 - a) 1/8-1 (9) 

where s = (2p + 1)L. Values of the est imate close or below z infer tha t  the components  of the 
bivariate process are uncorrelated. More details about  the estimation of the spectral  density and 
the coherence function can be found in [1,5]. 

We proceed now to obtain estimates of the cross-cumulant density and the cross-intensity 
function based on the est imate of the cross-spectral density. 

An est imate of the cross-cumulant density is given by 

2~r (̂LR) . Qi~ - 1 I~b (Ap) exp(zApu), = O, i, - -  (a # b). (i0) P " " '  2 ' 
P 

The  quant i ty  QR is chosen in such a way tha t  QR --+ oo as R --* oo. Thus, an est imate of the 
cross-intensity function can also be obtained from (3) as follows: 

4ab( ) 
~nab(U)= qb +qa, (11) 

where qa = (Na(t)) /T(a = 1,2) is the est imate of the mean intensity. We examine now the 
asymptot ic  properties of the est imate of the cross-intensity function. 

THEOREM 1. Let  {Nl( t ) ,  N2(t)}, - o o  < t < oo, be a stationary bivariate point process. We also 
assume that the process is orderly, mixing and its moments are finite. Then, ff QR ---+ oo and 
QRR -1 ~ 0 as R ~ oo, the est imate ~nab(U) is asymptotically normal with mean mab(U) and 
variance 

limQRVar[~ab(U)]= 2zc [ /  f ] R--.oo (2p + 1)Lq 2 faa(A)hb(A) dA + fab(A).fba(--A)exp(iA2u) dA . 

In order to improve the properties of 7~ab(U), we insert a convergence factor in the estimate of 
the cross-cumulant density as follows: 

2r 
4ob( ) = ( 1 2 )  

P 

where WR(A) = W(bRA) is the convergence factor. The quantity bR is the bandwidth which is 
chosen in such a way that  bR ~ 0 as R ~ oo. For more deta/Is about convergence factors, refer 
to [6]. 

The asymptotic properties of the new estimate of the cross-intensity function, rhab(U), are 
examined in the next  corollary. 

COROLLARY 1. We suppose that the bivariate point process satisfies the assumptions of Theo- 
rem 1. Then, if bRQR ~ oo as R --+ oo, the estimate ~nab(U) is asymptotically normal  with mean 
qa and variance 

[ W2(A) dA. (13) lim bnQRVar[~hab(U)] = (2p + 1)Lab 
R---~oo J 

The Theorem and the Corollary are extensions of the results developed in [5] and their proofs 
can be obtained in a similar way. 

I t  follows from Corollary 1 tha t  a 95% approximate confidence interval for ~nab(U) will be given 
by 

[ (2r)-14abR1 f W2(A) dA] 1/2 c~a 4- 1.96 [ ( 2 ~ ~ R  I j (14) 
J 
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Figure 2. Estimates of the coherence function when the muscle spindle is affected 
by a gamma motoneuron and simultaneously (a) there is no other stimulus present, 
(b) there is an alpha motoneuron present. 

5.  E X A M P L E S  

We apply now the results of  the analysis described previously to investigate the behaviour of 
the muscle spindle when it is affected by a gamma motoneuron and at the same t ime 

(a) there is no other stimulus present, and 
(b) the effect of  an alpha motoneuron is present. 

For the est imation of the spectral density function the whole record of the data T -- 10240 msec 
was divided into L -- 5 disjoint subrecords of length R -- 2048 msec each. In order to improve 
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fu r the r  th i s  e s t i m a t e  we have used p = 9 in (7). T h e  n u m b e r  of  events  recorded in t he  t ime  

in terva l  T = 10240 msec for t he  i npu t  to  and  the  o u t p u t  of  t he  muscle  sp indle  were as follows: 

(a) N z ( T )  = 661, N2(T)  = 357, and  

(b) N I ( T )  --  617, N2(T)  --  357. 
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Figure 3. Estimates of the cross-intensity function for the cases (a) and (b) described 
in Figure 2 when the muscle spindle is affected by a gamma motoneuron. 

F i g u r e  2 shows the  e s t ima te s  of  the  coherence funct ion for the  two cases (a) and  (b).  T h e  

d o t t e d  l ines in t he  figures ind ica te  the  95% confidence l imi ts  ob t a ined  from (9) where  a - -  0.95 

and  s --  (2p + 1)L = 95. I t  is obvious  from F igure  2b t h a t  t he  values of  t he  e s t i m a t e d  coherence  
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function have been reduced considerably compared with those of Figure 2a. Also the range of 
frequencies in which the two point process are correlated has been reduced from (0-80)Hz to 
(0-40) Hz. These results suggest tha t  the presence of the alpha motoneuron reduces considerably 
the effect of the g a m m a  motoneuron on the muscle spindle. 

Figure 3 presents the estimates of the cross-intensity function for the two cases (a) and (b). The 
dot ted lines in the middle of the figures correspond to the mean values of the est imates and the 
solid lines correspond to the 95% confidence limits of the estimates obtained from expression (14) 
by setting QR = 256, bR -= 30 and using a Tukey convergence factor. From Figure 2b becomes 
clear tha t  the values of the estimate of the conditional probabili ty (interpretation of the cross- 
intensity function) have been reduced considerably compared to those of the est imate of Figure 2a. 
This result again suggests tha t  the presence of the alpha motoneuron reduces considerably the 
effect of the g a m m a  motoneuron on the muscle spindle. 

6. C O N C L U S I O N S  

We have developed a technique of spectral analysis for s tat ionary point processes in order to 
s tudy the behaviour of the neurophysiological system muscle spindle. Est imates of the coherence 
function and the cross-intensity function are based on the estimate of the spectral density function. 
These est imates axe obtained by analysing two data  sets which correspond to the cases where the 
muscle spindle is affected by a gamma  motoneuron and simultaneously, 

(a) no other stimulus is present, and 
(b) an alpha motoneuron is present. 

I t  is shown tha t  the presence of an alpha motoneuron reduces considerably the effect of the 
g a m m a  motoneuron on the muscle spindle. 
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