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ABSTRACT 

We consider estimates of certain time-domain parameters of a bivariate stationary- 

point process based on modified periodogram statistics. These estimates are shown to be 

asymptotically normal under regularity conditions. In the computations of the estimates, 

the advantage of using the FFT algorithm is demonstrated. Three examples, obtained by 

analyzing two data sets from the field of neurophysiology, are illustrated. 

1. INTRODUCTION 

Let (N,(t), N2(t)}, --oo < t <m, be a bivariate stationary-point process. 
By N,(t) we denote the number of type-k events that occur in the time 
interval [0, t] (k = 1,2X 

Before we go on to define certain parameters of the bivariate point 
process, we make the following assumptions: 

(a) The process is strictly stationary. 
(b) The process is orderly. 
(c) The process satisfies a strong mixing condition. 

More details about these assumptions can be found in Brillinger [6] and 
Cox and Lewis [lo]. 

The first- and second-order properties of a bivariate point process in the 

time domain can be described by the mean intensities and the second-order 
product density functions. These functions are defined by 

pk = Fs Prob{ a k-type event occurs in ( t , t + h]] / h (1) 
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and 
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~kl(~)=hl~mLOProb{aZ-typeeventoccursin(t+u,~+u+h] 

and a k-type event occurs in ( t, t + h’]} /h/z’, (2) 

where k, 1 = 1,2. Relations (1) and (2) hold if assumptions (a) and (b) are 
valid. In relation to these functions we can define the cumulant densities as 

qk,(U) = PkdU) - PkPI, llzo. 

Assumption (c) ensures that 

In the frequency domain, the second-order properties of the bivariate 
point process are described by the spectra. These functions are defined by 

gkdA) = (2T)- ‘pkS(k-1)+(2~)-‘l_+_mqki(U)e~p(-ihU)du, 

- m<h<m, (3) 

provided that 

/+mlqkr(u)ldu <co, k,l=1,2. 
--m 

The function S{ } is the Kronecker delta given by 

k=l 
k +l. 

In practice, however, since the cumulant density qk&U) is calculated at 

intervals of length b, expression (1) is approximated by 

fk[(h)=(2*)-1Pks{k -1}+(2r)-lb ff 4kr(uj)exP(-ihuj), (4) 
j=-m 

where uj = bj, j = 0, f 1, + 2,. . . . The value of b is assumed to be small and 
is chosen in such a way that bT is constant, where T is the length of the 
interval in which the events of the bivariate point process are observed. For 
more details about this, refer to Brillinger [7] and Doss [ll]. 

Expression (3) generalizes the definition of the power spectrum of a 
univariate point process (k = I) and the definition of the cross-spectrum of 
a bivariate point process (k # 1). Details about these definitions are given 
in Bartlett [ll, Brillinger 151, and Cox and Lewis [lo]. 
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The inverse expressions of (3) and (4) are 
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qk,(U) = /_-2a( gk,(h) - g6{k - ll)exp(iAu) dA (5) 

and 

(fk,(h)-~~(k-l))ex~(iA~j)dh. (6) 

Using expressions (3)-(6), we obtain 

fkl(A)-~~{k-~}= E [g,,(A+T)-${k-1)]. (7) 
j---m 

The frequencies A + 2rj/ b, - A + 2rj/ b, j = 0, f 1, + 2,. . . , are called 
the aliases of the frequency A (see Tukey [17]). In the case that gkl(A) 

behaves as (pk /27r)?j{k - 1} for IAl > r/b, it follows from (7) that 

A function of interest is the second-order intensity function defined by 

m,,(u)=*cy,, uzo. (8) 

This is a conditional probability interpreted as 

lim Prob{l-type event in ( t, t + h] Ik-type event at t}. 
h10 

It is a common procedure for researchers in point processes to consider 
the square root of the second-order intensity function in order to stabilize 
the variance (see Brillinger [7]). 

We shall concentrate on estimating the function m,,(u) and its square 
root by using methods of the frequency domain. 

2. ESTIMATES OF TIME-DOMAIN PARAMETERS 

Before we go on to consider an estimate of the m,,(u), it is necessary to 
obtain an estimate of q&~). 

As we have mentioned previously, the estimate of qkl(u) will be based 
on the modified periodogram statistic. This statistic is defined by 

(9) 
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where &r’(A) is the finite Fourier-Stieltjes transform on the interval [0, T] 
given by 

(10) 

We denote the conjugate function of BIT)(A) by m and the estimate of 
the mean intensity of the point process Nk(t), k = 1,2), by ck = N,(T)/ T. 
These functions are considered by Tuan [16] and Rigas [14]. 

To improve the properties of our estimate, we insert data windows into 
the finite Fourier-Stieltjes transform as follows: 

~~~‘)(h)=~~~~~)(l)exp(iAf)(d.~~(~)-li,dt}, (11) 

where ak = @(O>/Zf~r)(O> . IS a modified estimate of the mean intensity of 
N,Jt), k = 1,2. The use of a data window in (11) reduces considerably the 
phenomenon of leakage (see Bloomfield [2, p. 801) and hence improves the 
characteristics of the estimate. The quantities &r)(O), HAT)(O) are given by 

d’kr’(0) = LThlr,( t>dN( t) 

and 

HiT'(0) = j;lTh’KT’( t) dt = Tk’h,( t) dt, 

where h,(t), 0 < t < 00, is a bounded function of bounded variation and 
vanishes for t > 1 (see Brillinger [8, p. 911). 

The modified periodogram statistic now takes the form 

&‘(A) = {2&1$;‘(0)) -‘&r)( A) a/“,(h), (12) 

where 

H#-'(0) = ju’h(k?( t)hiT’( t) dt = TLi,( t)h,( t) dt. (13) 

More details about data windows can be found in Brillinger [8]. 
In practice, the finite Fourier-Stieltjes transform can be approximated 

by 

T-l 

C&~)(A)= c h~?(t)exp(iAt)[{N,(t+l)-N,(t)}-$k]. (14) 
1=0 
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This approximation allows the use of the FFT algorithm in the computation 
of @(A). Such an approach has been introduced by Rigas [14] in the 
estimation of the power spectrum of a univariate stationary-point process. 
The sampling time interval is taken to be 1. This ensures that the sampled 
process is orderly, because the smallest distance between spikes is 1 ms. 

The estimate of q,Ju) is now given by 

Gkl(U) =,+T;,” (Q)(A) - gS(k - l})exp(ihu) dh, (15) _ 

and hence 

u # 0. (16) 

The properties of h,,(u) in the time domain have been examined by 
Brillinger [7] and Cox [9]. 

3. ASYMPTOTIC RESULTS 

In what follows we assume that higher-order joint cumulant densities of 
the bivariate stationary-point process can be written as 

cum{dR;,l(t + u,),..., dNk,_I(t+Uj-l);dNk,(t)} 

=qk ,,.__. k,(Ul,...,Uj-l )du,.. . duj_,dt, 

for k ,,..., k, = 1,2 and j = 1,2,3 ,... . The arguments u1,u2 ,..., Uj-, are 
distinct for j = 2,3,. . . . 

ASSUMPTION I 

The stationary point process (N,(t ), N2( t)), - ~0 < t < w, possesses mo- 
ments of all orders and is such that 

fork,,..., kj=1,2; 1=1,2 ,..., j-l, andj=2,3 ,.... 

This assumption has been considered in Brillinger [5] and is valid in the 
case that the bivariate process is strictly stationary. 
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THEOREM I 

Let {N,(t), N,(t)}, - m < t < w, be a bivariate point process satisfying As- 

sumption 1. Suppose that the estimate Gkt(u) is given by (15). Then 

E{q^,,(u)j = q,cr(u)+ O(T-‘), 

COV{Gk,l,( u> 7 q^k,,,( VI} 

H&i,(O) 
= 2rHjf,;(0)HL;L(O) / 

+=‘g (A)f/,k,(_A)exp{ih(u+v)}dh 
-r/b k1’2 

+ 
/ _~,:pf*,k,(h)f~~~~-h)ex~~ih(u-v)~d~ 

X exp( i( Au + FU)} dh du 1 
+ U(T-2), foru,v ZO, (17) 

where 

= Tj’h,~t)h,~t)h,i(t)h,~t)dt 
0 

Furthermore, Gkt(u) is asymptotically normal with the above first- and 

second-order moment structure. 

We are now in a position to develop the asymptotic properties of the 
estimate h&j. 

THEOREM 2 

Let {N,(t),N,(t)}, --oo< t Cm, be a bivariate stationary-point process 

satisfying Assumption 1. Suppose that the estimate &k&u) is given by (16). 

Then m,,(u) is asymptotically normal with first- and second-order moments 
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given by 
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/ 
+P’bfk,l,l,(A, - A)exp(iAu) dh 

-r/b 

Q&4 2~ff&$,(O) 
Pk2, Pk, 

Hi;‘(O)Hi;,i(O) ~_+~~~f~,~~ll(O’A)exp(ihu) dA 
I 

+& 
! 

2~H/&(O) 

* i 
/ +P/bfr,k2,?(0,A)exp(iA~) dA 

H,iT’(0)Hi:&O) -r/b 

G&4 2~HiT,‘z(O) 

Pk2, i 
HL;‘( 0) HfT)( 0) 2 I 

fk,l,(O) 

%&w 24T,;(O) _~ 
Pk2, l 

H,(IT’( 0) HAT)( 0) 2 1 
f@,(O) 

+ 

2774730) 

H,JT)( 0) Hj2’)( 0) f&(O) 

+ qk,l,(u)qk*&) 25-H@,(0) 

Pk2, P&z2 HiF’( 0) Hi;‘( 0) fk,k,(O) + o(T-2), 

forLl,ufO, (18) 

where co~{q^~,,,Cu>, G,+,(U)} is obtained from (17). 

We are also interested in finding the properties of the square root of 
Gz,Ju). This is done in the following corollary. 

COROLLARY I 

Let {N,(t),N,(t)}, --ar< t <m, be a bivariate stationary-point process 
satisfying Assumption 1. Suppose that [&u) = dm is an estimate of the 

square root of m,,(u). Then ik,(u) is asymptotically normal with the first- and 
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where cov{&,,,l(~),I;l,~,z<u>} is obtained from (181. Relation (19) holds 

provided that .$k,l,(~) and [,,,$v> are different from zero for every u and L’. 

The proofs of the theorems and the corollary are discussed in the 

appendix of the paper. 

4. MUSCLE SPINDLES AND EXPERIMENTAL METHODS 

Muscle spindles are one particularly important class of muscle receptors 
that are thought to have an important role in the initiation of movement 
and the maintenance of posture. The muscle spindle is a transducer that 
responds to different stimuli. Muscle spindles consist of parts of the 
“skeletal” muscles that are concerned with posture or movement. Most 
“skeletal” muscles contain a number of these receptors, which lie in 
parallel with the extrafusal fibers. They consist of a number of specialized 
muscle fibers lying parallel to each other and partially contained within a 
fluid-filled capsule of connective tissue (see Boyd [3]1. The fibers within a 
muscle spindle, known as intrafusal fibers, are considerably shorter than 
the extrafusal muscle fibers. 

The effects of the imposed stimuli on the intrafusal muscle fibers are 
transmitted to the spinal cord by the axons of sensory nerves closely 
associated with the muscle spindle. The terminal branches of the sensory 
axons form spirals around the central region of the intrafusal muscle fibers. 

When a muscle is held at a fixed length, the sensory axons from the 
muscle spindle produce nerve impulses at a constant rate that depends 
upon the muscle length. The nerve impulse is a localized voltage change 
that occurs across the membrane surrounding the nerve cell and axon. Its 
amplitude is approximately 100 mV, and its duration 1 ms. Nerve impulses 
are known as “action potentials” or, because of their relatively short 
duration, “spikes.” 

In addition to sensory nerves associated with the muscle spindle, the 
intrafusal muscle fibers are innervated by the axons of a group of cells lying 
within the spinal cord. These cells are called gamma-motoneurons or 
fusimotor neurons and innervate only intrafusal muscle fibers. When a 
gamma-motoneuron affects the muscle spindle by transmitting nerve im- 
pulses to the intrafusal muscle fibers (gamma stimulation), the response of 
the muscle spindle sensory axons (called the Ia response) is modified. It has 
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been suggested that activity in the gamma-motoneuron axons may modify 
the mechanical properties of the intrafusal fibers or exert a direct effect on 
the mechanisms involved in the conversion of mechanical strain in the 
intrafusal fibers to discharge of nerve impulses in the sensory axon. For 
more details about the muscle spindle and its properties, refer to Boyd [4] 
and Matthews [13]. 

The tenuissimus muscle in anesthetized cats was used in the experi- 
ments, and the responses of single sensory axons in dorsal root filaments 
were recorded. The axons of fusimotor neurons (my,) were stimulated by 
sequences of pulses at twice threshold having an exponential distribution of 
intervals. By “threshold” we mean the critical value over which a nerve 
impulse will occur. Fifteen seconds of responses were recorded when (1) no 
stimulation was present and (2) a gamma stimulation was present, with the 
tenuissimus muscle held at a fixed length. The times of occurrence of the 
spikes of the sensory axons and the stimulus pulses were measured and 
stored in computer files. 

5. EXAMPLES 

In this section we present the estimates of the autointensity functions 
and the cross-intensity function obtained by analyzing the two data sets that 
are illustrated below. 

Figure 1 describes the Ia response of the muscle spindle when no 
stimulation is present. In Figure 1A the histogram of the intervals between 
spikes of the Ia response is shown. The value of h was taken to be 2 ms. 
Figure 1B shows the scatter diagram of adjacent intervals between spikes of 
the Ia response, whereas Figure 1C presents a sequence of nerve impulses 
of the Ia response. 

Figure 2 describes the Ia response of the muscle spindle when a gamma 
stimulation is present. The graphs shown in Figures 2A-C are similar with 
those discussed in Figures lA-C. 

The data sets consist of 538 nerve impulses that occurred irregularly in 
an interval of length T = 15,872 ms. In order to be able to use the FFI 
algorithm we work in the way described below. 

Three steps are taken in the computation of the modified discrete 
Fourier-Stieltjes transform. 

Step 1. The quantities [{Nk(t + 1) - NJt)} - bk], t = 0, 1,. . . , T - 1, are 
calculated, where fik is the estimate of the mean intensity of the point 
process N,(t), k = 1,2. 

Step 2. We multiply the quantities calculated in step 1 by a split bell 
cosine window (see Bloomfield [2]) with a 10% tapering at the beginning 
and end of the data. 
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FIG. 1. Ia response when no stimulation is present. (A) Histogram of the interspike 

intervals of the Ia response; (B) scatter diagram of adjacent intervals between spikes of 

the Ia response; (C) sequence of spikes of the Ia response. 

Step 3. We extend the record length from T = 15,872 to S = 16,384 by 
adding 512 zeroes to the end of the tapered data. By adding zeroes we get a 
power of 2, and thus we are able to use the Radix-2 FFT algorithm. 

The modified periodogram statistic can now be computed from Equation 
(12). Then the estimate A,,(U) is calculated by approximating (15) with the 
expression 

where Q = S/b. In our computations we take b = 1 and u = 0, f 1, f 2,. . . . 
In the case of a univariate point process N,(t) and under the assumption 

that this process is Poisson, the estimate &z(u) is approximately normal 
with mean p2 and variance 

(bT) - 
I lh4(t)dt 

(jh’(t)dt)” ‘+” 
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FIG. 2. Ia response when a gamma stimulation is present. (A) Histogram of interspike 

intervals of the Ia response; (B) scatter diagram of adjacent intervals between spikes of 

the Ia response; (0 sequence of spikes of the Ia response when a gamma stimulation (y,) 

is present. 

This result follows from Theorem 2, because the power spectrum of 
Nz(t) is equal to p,/27r. For a split bell cosine the quantity 
(lh4(t)dt)/(lh2(t)dt)2 is equal to 1.116 (see Bloomfield [2]). The asymp- 
totic variance of Gz~~(u), under the assumption that N2(t) is a Poisson point 
process, is in agreement with Brillinger’s result (see Brillinger [7]). 

Figure 3A shows the estimate of the autointensity function of the 
spontaneous Ia response of the muscle spindle. This is the case where no 
stimulation was applied to the muscle spindle. The number of events 
observed in this case was N,(T) = 416. The extreme regularity of the 
response is quite clear. The increments of the process become uncorrelated 
more than 0.5 s apart, because the process behaves in some sense as a 
Poisson process. The estimate is zero for the first 32 ms because no pulses 
occurred closer together than that interval. The estimate of the mean 
interval between pulses is l/j2 = 0.038 s and is exactly the point at which 
the first maximum occurs. The other maxima occur at multiples of this 
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FIG. 4. Square root of the estimate of the cross-intensity function when a gamma 

stimulation is imposed on the muscle spindle. 

value. The dashed line corresponds to b2, and the solid horizontal lines 
correspond to j?z 52.07(bT)- ‘/’ Values of the estimate outside the solid . 
horizontal lines indicate deviations from a Poisson process, which is a 
completely random process. 

Figure 3B shows the estimate of the autointensity function of the Ia 
response when a gamma stimulation is applied to the muscle spindle. It is 
clear that the presence of the stimulus destroys completely the regularity of 
the la response. Another characteristic of the estimate is the depression 
near the origin. After that the estimate becomes a constant, which implies 
that the Ia response behaves in some sense as a Poisson point process. The 
number of events observed in this case was N,(T) = 538. The dashed and 
horizontal lines are obtained in the same way as in Fig. 3A. We did not use 
the square root of the estimate of the autointensity function, because in 
both cases described above, the estimate was zero for some values of U. 

Figure 4 shows the square root of the estimate of the cross-intensity 
function of the Ia response when a gamma stimulation is present. The 
number of events of the stimulus applied to the muscle spindle was 
N,(T) = 1010. The effect of gamma stimulation is clear when the distance 
between a Ia pulse and a gamma pulse is in the interval lo-30 ms. It 
follows from Corollary 1 that the estimate dmm is approximately 
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2i7 /h4(t)dt 

4Pff’,T (/h*(t) dt)* / +T’bf~h9f22(Q dh, u # 0. (21) 
-r/b 

This result holds under the assumption that the two processes are indepen- 
dent. 

Furthermore, if the two univariate point processes are Poisson, the 
asymptotic variance becomes 

(4bp1T) 

-1 lh4(t)dt 

(/h*(t) dt)* ’ 

This result follows from (21) because for Poisson point processes we have 

fir(A) = pl /2~ and f**(A) = p2 /2a. 
The dashed line in Figure 4 corresponds to a, and the solid horizon- 

tal lines correspond to 

This approximate confidence interval follows from (21). In our computa- 
tions we take b = 1 and Q = S. Values of the estimate outside the solid 
horizontal lines indicate deviations from independence between the two 
point processes. 

5. CONCLUSIONS 

The use of methods of the frequency domain in the estimation of certain 
time-domain parameters has been demonstrated in this work. This ap- 
proach has the advantage of employing the FFT algorithm in the computa- 
tion of the estimates. 

In Table 1, we compare the times required for the computation of the 
square root of the estimate of the cross-intensity function when a fre- 
quency-domain (FD) approach is used by taking advantage of the FFT 

TABLE 1 

N,(T) N,(T) FD TD 

538 1010 14 s 1s s 
7.50 1500 14 s 32 s 

1000 2ocHl 14 s 58 s 
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algorithm and when a direct time-domain (TD) approach based on relation 
(4) is used. 

The computations were carried out with a VAX/8350 computer. It is 
obvious that the FD approach becomes more efficient as the number of 
events of the input and output processes in the interval (O,T] increases. 
The gain in computing time will be greater when the computations of the 
estimate are carried out with a small personal computer. 

The reduction in computing time will become more obvious in the case 
of estimating higher-order parameters of the bivariate point process in both 
time and frequency domains. We hope that this approach will be applicable 
in other areas of research as well. 

I would like to thank Professor G. P. Moore and Dr. J. R. Rosenberg for 

proriding the data sets for this analysis. I also would like to thank Dr. J. R. 

Rosenberg for many helpful discussions and two anonymous referees for their 

constructice comments, which led to the presentation of this paper. 

APPENDIX: PROOFS OF THEOREMS 

PROOF OF THEOREM 1 

Following Theorem 4.1 of Brillinger [S], we get 

E{dp(h)ay’( - A)} = 27rHg"'(O) f/,[( A) + O( 1) 

and 

The required results for the first- and second-order moments follow from 
the above expressions and the fact that 

The asymptotic normality follows from the fact that 

TJ’2cum{~k,Il(u,),...,9”k,l,(uJ)) +O as T +m and J> 2, 



200 

since 

A. G. RIGAS 

A proof of this result can be found in Brillinger [8] in the case of ordinary 
time series. A similar proof holds for point processes. 

PROOF OF THEOREM 2 

From the results of Torres-Melo [15] and Lemma 3 of Mann and Wald 
[12], we have 

h,,(u) - m/Cl(U) = 

The first-order moment of 

EC&) = pk. 

hk,(u) follows from Theorem 1 and the fact that 

The second-order moment follows from Theorem 1 and the relations 

CoV{ik,,q^k,l,(U)) = 

2~faTk’,I,(O) 
/ 

+?T/bfklkZll(O, /\)exp( ihu) dh 
ff$T’(0)ffiT,‘(O) -v/b 2 2 

+ O(T_2), 

and 

Cov(hk,,&) = zq-‘( 0) Hp)( 0) fk,k,(O) + o(T-2)’ 

2 

Finally, the asymptotic normality follows from the fact that the expressions 

TJ’2COV{q^k,r,(~),~k,l,(~),...,q^k,[,(u)}, 

TJ’2COV{~k,,9^k,l,(U2),...,4”k,[,(l*J)), 

TJ” cov{ j&, , &,, . . . , dk,l,h)}r, TJ”COV(Bkl,Bk2,...,Bk,) 

tend to zero as T -+ 00 and J > 2. 
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PROOF OF COROLLARY 1 

Using again Lemma 3 of Mann and Wald [12], we find 

201 

n 

&d(U) - &d(U) = 25,,(u) ~{A&) - m!&(U)1 + o,(T-‘), 

provided that &JK) f 0 for every u. 
The rest of the proof follows from Theorem 2. 
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