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ABSTRACT 

A method is presented for estimating the cross-spectral density of a hybrid 
process involving a time series and a point process. The method is based on the 
generalized cross-periodogram statistic, which is smoothed by splitting the whole 
record of the data into a number of disjoint subrecords. Estimates of the coherence 
function and the cross-covariance function can also be obtained by using the 
estimate of the cross-spectral density. The distribution of the cross-covariance 
function between a time series and a point process is shown to be asymptotically 
normal. The theoretical results are used in the study of a complex physiological 
system. It is shown that the presence of a gamma motor neuron (gamma stimulation) 
modifies the effect of the length changes on the complex system at low frequencies 
(the length changes, and the response of the system become uncorrelated in the 
range 3-30 Hz) while the effect remains unchanged at higher frequencies. As a 
comparison it is shown that the presence of the length changes weakens the effect of 
the gamma stimulation on the complex system. 

1. I N T R O D U C T I O N  

In practical problems there are systems that involve a time series and 
a point process (see [1-5]). To be able to estimate certain parameters of 
such hybrid processes and thus to reach some useful conclusions we 
need to extend known results from the theory of point processes and 
time series. 

Our approach in this work to handle such a problem is based on a 
technique of spectral analysis for a hybrid process involving a time 
series and a point process. We generalize the definition of the cross- 
periodogram statistic for the case of a hybrid process, and by smoothing 
it we obtain an estimate of the cross-spectral density. The smoothing of 
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the cross-periodogram is done by dividing the whole record of the data 
into a number of disjoint subrecords. 

Once we have obtained an estimate of the cross-spectral density we 
can proceed to find estimates of certain parameters of the hybrid 
process in both the time and frequency domains. An estimate of the 
coherence function provides a measure of the linear time-invariant 
relationship between a time series and a point process in the frequency 
domain, while an estimate of the cross-covariance function shows the 
relation between a time series and a point process in the time domain. 
An estimate of the cross-covariance function is obtained by estimating 
the inverse Fourier transform of the cross-spectral density. Willie [5] 
discusses estimates of certain time domain parameters and develops 
their asymptotic properties. These estimates can also be obtained by 
using the estimate of the cross-covariance function. 

One field of research where this kind of problem arises is that of 
neurophysiology. A complex physiological system called the muscle 
spindle responds to length changes imposed on the parent muscle. In 
this case the muscle spindle is assumed to be a hybrid system involving a 
time series (changes in the length of the parent muscle) and a point 
process (response of the muscle spindle). By analyzing two data sets 
recorded from neurophysiological experiments we examine the behavior 
of the muscle spindle when it is affected by length changes imposed on 
the parent muscle and at the same time (A) there is no other stimulus 
present or (B) a gamma stimulation is present. It is shown that the 
presence of the gamma stimulation has an effect on the muscle spindle 
at low frequencies but at higher frequencies the effect remains un- 
changed. 

Finally, by estimating the cross-cumulant of a stationary bivariate 
point process we show that the presence of length changes on the 
parent muscle weakens the effect of gamma stimulation on the muscle 
spindle. 

2. AN ESTIMATE OF THE CROSS-SPECTRAL DENSITY AND 
ITS ASYMPTOTIC PROPERTIES 

An estimate of the cross-spectral density of a hybrid process can be 
obtained by generalizing the definition of the cross-periodogram statis- 
tic between a time series and a point process. Let {X(t), N(t)}, - ~  < 
t < + ~, be a hybrid process consisting of a time series and a point 
process. It will be assumed that the hybrid process satisfies the following 
assumptions: 

(1) It is stationary. This means that the probabilistic structure of the 
process does not change with time. 
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(2) It is strong mixing. This means that the increments of 
{N(A), Y(A)} well separated in time become independent, where N(A) = 
fa dN(t), Y(A) = fa X(t)  dt, and A = (s, t]. 

(3) The time series {X(t)} and the point process {N(t)} are jointly 
stationary processes. 

(4) The point process {N(t)} is orderly. This means that the probabil- 
ity of having two or more events in a small interval is negligible. 

More details about these assumptions can be found in Brillinger [6, 7], 
Daley and Vere-Jones [8], Willie [5], and Rigas [9]. 

Before we go on to define the cross-periodogram statistic between a 
time series and a point process it is necessary to present some parame- 
ters of the hybrid process in both the time and frequency domains. In 
the time domain we can define the moments and the covariance 
functions. 

The second-order moment between a time series and a point process 
is defined by 

tXNx( U ) du = E{ dN( t + u) X(  t ) } , (1) 

where dN(t) is the increment of the point process in the time interval 
(t, t + dt]. The third-order moments are defined as 

I~Nxx(U,V ) du = E( dN( t + u ) X (  t + v ) X (  t)} (2) 

and 

[ tXNNX(U,V) + IXNx(U)6(U -- U)] dudv 

= E{dN(t  + u) dN(t  + v ) X ( t ) } .  
(3) 

In a similar way we can define higher order moments of the hybrid 
process. 

The cross-covariance function between a time series and a point 
process is defined by 

CNx(U ) du = cov{ dN( t + u ) , X (  t )) .  (4) 

In the same way we can define higher order covariance functions. For 
example, the third-order covariance function CNxx(U, V) is given by 

CNxx(U,V ) du = cum{dN(t  + u ) , X ( t  + v ) , X ( t ) } .  (5) 
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In the frequency domain we define the cross-spectral density as 

f ux (  A ) = (2 rr )-1 f ~_~CNx( u)exp{ -- i au} du, - r e < a < + %  (6) 

provided that f+_~ ICNx(U)I du < +~. 
The third-order spectral density of {N, X} is defined by 

fNxx(  h ,# )  =(2rr)  -2 f +~ f +~ , , j_~ j_~ Cux~t U,V ) 

× e x p { -  i( au + #v)} dudu, 

(7) 

- ~ <  A,/x< + ~ ,  

provided that f +_ ~ f +_ ~ I CNxx (U, U)I du dv < + ~. In a similar way we can 
define spectral densities of higher order. 

We can proceed now to define the cross-periodogram statistic for a 
hybrid process. We assume that the process {X(t), N(t)} is observed on 
(0, R]. Then the cross-periodogram statistic is given by 

IN R)t A) 1--~--d(R)t h "~ x t  = 2 7 r R  N ~ jd(xR)('h), - ~ < a < + ~ ,  ( s )  

where d(xR)(A) is the conjugate function of d(xn)(h). We denote the finite 
Stieltjes-Fourier transform of the point process by d(NR)(A), and the 
finite Fourier transform of the time series by d(xR)()t) (see [7, 10]). In 
practice we use the modified cross-periodogram statistic to avoid sub- 
stantial bias near h = 0. The new statistic is given by 

[(N R)t h) 1 - ~ d ! R ) t  h~ d(R)(A) - ~ < h < + ~, (9) 
x t  = 27rR N I, ] 

where 

and 

&R)(a)  = d(~R)(a) - pNa(~) (a ) ,  

d^~")(a) = d~") (a )  - ;~x a ( ~ ) ( a ) ,  

A(R)(A) = f0Rexp{ --iAt} at. 

(10) 

(11) 

(12) 

We denote the estimates of the mean intensity of the point process and 
the mean value of the time series, respectively, by/~N and t2 x. 

The definition for the cross-periodogram statistic was suggested by 
Jenkins [11] in the discussion of Bartlett's paper on the spectral analysis 
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of point processes (see [12]). Higher order periodogram statistics can be 
defined in a similar way. For example, the third-order periodogram 
I~Sx~x(A/x) is defined by 

I(m t A,/x) 1 NXX~, (2.rr)2RdCNg)(A)d~xg)(A) d~xg)( A+ # ) ,  
(13) 

-oo< A,/,i, < +00. 

The method of estimating the cross-spectral density between {X(t)} and 
{N(t)} can be described as follows. We split the whole record of 
the data T into L disjoint subrecords each of length R so that T = LR. 
The cross-periodogram statistic is calculated in each subrecord, and the 
estimate of the cross-spectral density is then found by averaging the 
separate periodogram ordinates at each frequency. Mathematically this 
is expressed in the form 

1 t 
fNLxS)(A) = T Ef(R~tA'j)'NX' for A* O, (14) 

j=l 

where /(N~(A,j) is the modified periodogram statistic between {X(t)} 
and {N(t)} for the jth sample. This estimate can be further improved by 
applying a weighting scheme as follows: 

3lJNX tAk 1) d- ) + f k x  (/~k-1)], (15a) = J N X  I It  k 

fffxm( 0 ) = 1 [ fN(~m (0) + fN(LrR' ( A, ) ], ( 15b ) 

where 

27rk 
Ak= R and k = l , 2 , . . . , ( R - 1 ) / 2 .  

ASSUMPTION 1 

The stationary hybrid process {X(t),N(t)}, -oo< t < +% processes 
moments of  all orders and satisfies the condition 

f . . - f ( 1  + lu,I)l c a . . . . . .  j ( U  1 . . . . .  Uj_l)ldUl...duj_l <o% 

where Cal . . . . .  a j ( U l  . . . . .  Uj_l) is the jth-order cumulant function of  
{X(t), N(t)} and a k, k = 1,2 .... ,j, being either X(t)  or N(t); l = 1,2,..., 
j - 1  and j = 2 , 3 , . . . .  
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THEOREM 1 

Let {X(t), N(t)}, - ~ < t < + % be a stationary hybrid process satisfying 
Assumption 1. Let [~NRx)( A) be given by (9). Then 

lim E[[~RO(A)I=f,~x(A) for a # 0  
R ---~ ~c 

and 

lim cov { f(u~)( ¢'{R, a), l#x( 
R "-* ~ 

= a { a -  

+ 6 { A + I ~ } f N x ( A ) f x N ( - A )  for A , / , # 0 .  

We suppose also that 2aj, A t + a k 4:0 for 1 <~ j < k <~ J. Then i ~ ( A j ) ,  
j = 1 . . . . .  J, are asymptotically independent W~ c (1, fNX ( )t j)). 

wlC(1,fNx(a))  denotes the complex Wishart distribution with one 
degree of freedom and dimension 1 (see [13]). This distribution suggests 
that the modified cross-periodogram statistic is a poor estimate for the 
cross-spectral density (see Brillinger [7], p. 238). We proceed now to 
examine the asymptotic properties of fN(~-R)(A). 

THEOREM 2 

Let {X(t), N(t)}, -oo < t < + % be a stationary hybrid process satisfying 
Assumption 1. Let f(NLxR)( A) be given by (14). Then 

lim E{fN(~cR)(A)} = f N x ( A )  for A4= 0 
R ---~ ~c 

and 

limcovtJNx t"J,JNX t 
R --o ~c 

= 6{A-  i,} fNN( A) f x x ( A )  
L 

+ 6{ a + W} fNx(  al/xN(--A) 
L for A,/x :/: O. 

Furthermore, we suppose that 2 ),j, Aj +_ A k 4= 0 for 1 <~ j < k <~ J. Then 
f(NCX n)( A i), j = 1 . . . . .  J, are asymptotically independent L 1 wlC (L, fNX ( A j)). 

The proofs of the theorems are discussed in the Appendix. 
Theorem 2 suggests that the distribution of fu(%m(A) is asymptotically 

a multiple of a complex Wishart with 3L degrees of freedom and 
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dimension 1. For large L the distribution of fN(%R)(A) will tend to a 
complex normal distribution. 

The estimate fu(LxR)(A) is a complex-valued function because the 
cross-covariance is an odd function and can be written in the form 

;(NLxR)(A) = Re/N~LR)(A) + i Im ;(NLR)(A). (16) 

A measure of the linear relationship between the time series {X(t)} 
and the point process {N(t)} is the coherence function, an estimate of 
which is given by 

^ 2 I L'%"'( x)l z 
In.x( )l = 

[Re fN~Lm (A)]2+ [Im fN~Lg)( A)] 2 

N \ 

(17) 

where fN(%m(A) and fx(~cR)(A) are the estimates of the power-spectral 
densities of {N(t)} and {X(t)}, respectively. These estimates are ob- 
tained in the same way as the estimate of the cross-spectral density by 
splitting the whole record of the data into L disjoint subrecords. For 
more details refer to [7] and [9]. 

To test whether the coherence function is zero, we need to compute 
a 100a percent point of  [/~(NLR)(~)[ 2. This can be done by extending the 
formula of Abramovitz and Stegun [14, pp. 944-945] in the case of a 
hybrid process so that 

Prob{ll~Nx(A)12<z}=l-(1-z) '-l, 0 < z < l ,  (18) 

where s = 3L. It follows from (18) that 

z = 1 - ( 1 -  Of) l / s - 1 .  (19) 

When [/~xm(A)l 2 is less than z, we infer that the coherence function is 
zero, which implies that the point process {N(t)} and the time series 
{X(t)} are uncorrelated at all lags. 

In the next section we concentrate on the estimate of the cross- 
covariance and examine its asymptotic distribution. 



204 A.G.  RIGAS 

3. THE ESTIMATE OF THE CROSS-COVARIANCE 
FUNCTION AND ITS ASYMPTOTIC DISTRIBUTION 

An estimate of the cross-covariance function can be obtained by 
taking the inverse Fourier transform of (6) and by inserting an estimate 
of the cross-spectral density in it. This is expressed as 

2q7" ~Nx(U) = -OTEfkLxR'(Xj)exp{iaju}, j = + l , + 2 _  - . . . .  ' -+ QR-12 (20) 
J 

By using (16) in (20) we have 

( Q R  - 1)/2 
4"n" E [Re f~NLXR)(Aj) cos Aju CNx(U) = Q; j=l (21) 

- I m  fiCNLXR' (Aj) sin Aju]. 

This relation will be used in the computation of CNx(U), a s  we shall see 
later. 

We examine now the asymptotic distribution of the estimate of the 
cross-covariance function. 

THEOREM 3 

Let {X(t), N(t)}, - ~ < t < + % be a stationary hybridproeess satisfying 
Assumption 1. Let ~Nx(U) be given by (20) and M = 3L. Then ~Nx(U) is 
asymptotically normal with first- and second-order moments given by 

E{~NX (U)} = CNX (U) + O(Q R 'M- 'R- ' ) ,  

2, [f = ~ fNN(A)fxx(A)exp{iA(u - v)} dA 

+ f fNx(  A)fXN(-a) exp{iA(u + v)} da]  

+ O(M-1QR 2) + O ( M - ' R - ' )  + O(M-1QRZR - ') .  

Theorem 3 suggests the construction of an approximate 95% confi- 
dence interval for ~Nx(U) under the hypothesis of independence be- 
tween the time series {X(t)} and the point process {N(t)}. Under the 
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hypothesis of independence the distribution of ~Nx(U) is asymptotically 
normal with mean 0 and variance given by 

2rr fIN (a)Yx.(a)d*, Var{ONX(U)} -- MQR 

and hence the confidence limits of the 95% interval are 

2~r dA] 1/2. 
± 1.96[ ~ f fNN ( A ) f x x  (A)  (22) 

In practical problems these limits are calculated by substituting the 
power-spectral densities fNN(A) and f x x ( A ) w i t h  their estimates. 

Before we go on to discuss some practical examples we present an 
estimate for the cross-cumulant density of a stationary bivariate point 
process. The definitions of the second and higher order cumulant 
densities are given in [10, 15]. 

An estimate of the cross-cumulant can be obtained in the same way 
as the estimate of the cross-covariance function, that is, 

2'77" 
4NM(U) ~ Ef fu~n ' (Aj)exp{iAju} ,  j = + 1, + 2, + QR - 1 

= - - ' " -  2 ' 
J 

(23) 

g~LR)tAj) is the estimate of the cross-spectral density, which is where J N M  x 

obtained from (15) if we substitute the component X with M (see [15]). 
The asymptotic 95% confidence limits for ~Nu(U) under the hypothesis 
of independence between N and M are given by 

2rr dA] 1/2. 
± 1-96[ R ffNN( A)fMM (A) 

4. EXAMPLES 

In this section we analyze three data sets from the field of neurophys- 
iology in order to extract useful information about the complex physio- 
logical system called the muscle spindle. This control system is a 
receptor that plays an important role in the initiation of movement and 
the maintenance of posture. 

The muscle spindle is a transducer that responds to different stimuli. 
Muscle spindles are parts of the skeletal muscles, which are concerned 
with posture or movement. Most skeletal muscles contain a number of 
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these receptors, which lie parallel to extrafusal fibers. They consist of a 
number of specialized fibers lying parallel to each other and partially 
contained within a fluid-filled capsule of connective tissue. The fibers 
within a muscle spindle, known as intrafusal fibers, are considerably 
shorter than the extrafusal muscle fibers. 

The effects of imposed stimuli on the intrafusal muscle fibers are 
transmitted to the spinal cord by the axons of sensory nerves closely 
associated with the muscle spindle. The (fine) terminal branches of the 
sensory axons form spirals around the central region of the intrafusal 
muscle fibers. 

Detailed discussions of the structure of the muscle spindle and its 
functional role can be found in Boyd [16] and Matthews [17]. In what 
follows we consider that the muscle spindle is an element of a muscle 
known as the parent muscle. 

When a muscle is held at a fixed length, the sensory axons from the 
muscle spindle generate action potentials at a constant rate, which 
depends upon the muscle length [9, 18]. The action potential is a 
localized voltage change that occurs across the membrane surrounding 
the nerve cell and axon, with amplitude approximately 100 mV and 
duration 1 ms. An increase in muscle length will increase the rate of 
discharge of action potentials in the sensory endings. The deformation 
of the intrafusal muscle fibers caused by length changes imposed on the 
parent muscle distorts the fine terminals of the sensory axons, and thus 
the rate of discharge of these axons is modified. The discharge of the 
fine terminals of the sensory axons is also modified by action potentials 
carried by the axons of a group of cells called gamma motor neurons. 
The bodies of these cells lie inside the spinal cord, while their long 
axons innervate the intrafusal fibers of the muscle spindles. 

As we have already mentioned, the muscle spindle is considered to 
be a hybrid system involving a time series and a point process. Length 
changes imposed on the parent muscle are considered a realization of a 
time series, while the discharge of the sensory axons from the muscle 
spindle (known as the Ia response), which consists of a sequence of 
nerve pulses, is considered a realization of a point process. The aim of 
this work is to examine the behavior of the muscle spindle when it is 
affected by length changes imposed on the parent muscle and at the 
same time (A) no other stimulus is present or (B) a gamma stimulation 
is present. 

In the experiments the tenuissimus muscle in anesthetized cats was 
used, and the responses of single sensory axons in dorsal root filaments 
were recorded. Length changes, with a normal distribution of ampli- 
tudes, and a fiat power spectrum from 0 to 120 Hz at rms amplitudes of 
20-40 t~m were applied to the tenuissimus muscle by a servo-controlled 
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muscle stretcher. Gamma motor neuron axons isolated in ventral root 
filaments were stimulated by sequences of pulses at twice threshold. 
The distribution of intervals between pulses was approximately expo- 
nential. Fifteen-second sequences of the Ia response were recorded in 
the cases A and B defined above. 

Figure 1 describes the Ia response of the muscle spindle when length 
changes are present. In Figure 1A the histogram of the intervals 
between pulses of the Ia response is shown. The value of h was taken to 
be 2 ms. The histogram gives an idea of the distribution of the intervals. 
Figure 1B presents the scatter diagram of adjacent intervals between 
pulses of the Ia response. The scatter diagram shows whether adjacent 
intervals between events are correlated. Figure 1C presents the loga- 
rithm to base 10 of the proportion of the intervals between pulses 
longer than t. This quantity is the logarithm of the empirical survivor 
function (see [19]), and if it is a straight line then it indicates that the 
intervals between pulses follow an exponential distribution. Figure 1D 
illustrates a sequence of nerve impulses of the Ia response in the 
presence of length changes. 
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FIG. 1. Ia response when length changes are present. (A) Histogram of the 
intervals between pulses of the Ia response; (B) scatter diagram of adjacent intervals 
between pulses of the Ia response; (C) the logarithm of the proportion of the 
intervals between pulses longer than t; (D) sequence of nerve impulses of the Ia 
response• 
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Figure 2 describes the Ia response of  the muscle spindle when length 
changes and a gamma stimulation (Ys) are both present. The results in 
Figures 2 A - C  are similar to those discussed in Figures 1A-C.  Figure 
2D illustrates a sequence of  nerve impulses of  the Ia response in the 
presence of  length changes and a gamma stimulation (Ys). 

Figure 3 describes the second-order properties of  the length changes. 
Figure 3A shows the estimate of  the autocovariance function obtained 
from the inverse Fourier transform of the estimated power spectral 
density. Figure 3B shows the estimate of  the power spectral density 
obtained by splitting the whole  record of  the data T = 15872 ms into 
L = 31 disjoint subrecords, each of  length R = 512 ms. 

Figure 4 shows the estimates of  the coherence function. The esti- 
mates of  the cross-spectral density and the power-spectral densities 
needed for the estimation of  the coherence function were obtained by 
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FIG. 2. Ia response when a gamma stimulation and length changes are present. 
(A) Histogram of the intervals between pulses of the Ia response; (B) scatter diagram 
of adjacent intervals between pulses of the Ia response; (C) the logarithm of the 
proportion of the intervals between pulses longer than t; (D) sequence of nerve 
impulses of the Ia response when a gamma stimulation (%) and length changes are 
present. 



ANALYSIS OF A HYBRID PROCESS 209 

CA) C=) 

0 . 6  9 0  

0.2 ~ so 

~ o - ~ 7o 

<~ 0 . 2  ~ ×  6 0  

0 . 6  5 0  

1.0 4 0  
0 20  4 0  6 0  80  1 O0 0 ° 

u (msec) 

I * i l l i . . ]  I I l l l i . l  I 
10 ~ 10 2 

Frequency (cps) 

FIG. 3. Second-order properties of the length changes. (A) Estimate of the 
autocovariance function; (B) estimate of the power-spectral density. 

splitting the whole record of the data into 31 disjoint subrecords each of 
length 512 ms. Figures 4A and B present the estimates of the coherence 
function when the muscle spindle is affected (A) by the presence of 
length changes only and (B) by the presence of length changes and a 
gamma motor neuron simultaneously. The dashed line in each figure 
corresponds to the 95% point of the coherence function obtained from 
Equation (19) when we set s = 93. The presence of the gamma stimula- 
tion reduces the value of the coherence function in the range 3-30 Hz, 
which implies that the length changes and the Ia response of the muscle 
spindle become uncorrelated. At higher frequencies the two figures 
remain almost the same. 

Figure 5 presents the estimates of the cross-covariance function for 
the two cases A and B as described in Figure 4. These estimates are 
computed by using Equation (21) with QR = 200 and M = 3L = 93. The 
dashed line in the figures corresponds to zero, and the solid lines are 
the 95% confidence limits computed as 

q---~-R-- j = l  J N N  ~ , " ~ ' j ] J X X  t • 

The dashed line is the mean value of the estimate of the cross- 
covariance function, which, under the hypothesis of independence be- 
tween N and X, is approximately zero. From Figures 5A and B we can 
see that the length changes and Ia response of the muscle spindle are 
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FIG. 4. Estimates of the coherence function (A) when length changes affect the 
muscle spindle; (B) when length changes and a gamma stimulation affect the muscle 
spindle simultaneously. 

related for small lags in the range 0-10 ms. In the case where the 
gamma stimulation is present, the relation between the length changes 
and the Ia response seems to change somehow and to last for a few 
milliseconds longer. The positive values of the estimates indicate that 
the change in the length of the muscle, on average, corresponds to an 
increase, whereas the negative values correspond to a decrease. 

Figure 6 presents the estimates of the cross-cumulant density 
obtained by using (23). Figure 6A shows the estimate of the cross- 
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FIG. 5. Estimates of the cross-covariance function (A) when length changes affect 
the muscle spindle; (B) when length changes and a gamma stimulation affect the 
muscle spindle simultaneously. 
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FIG. 6. Estimates of the cross-cumulant density (A) when a gamma stimulation 
affects the muscle spindle; (B) when a gamma stimulation and length changes affect 
the muscle spindle simultaneously. 

cumulant density when the muscle spindle is affected only by a 
gamma stimulation, whereas Figure 6B shows the estimate of  the 
cross-cumulant density when the muscle spindle is affected by a gamma 
stimulation and length changes simultaneously. The dashed line corre- 
sponds to zero, and the solid lines correspond to the 95% confidence 
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limits computed by 
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1.96 [4-z- 
+- QR [ M  

( Q R  - 1)/2 ]1/2 
~LR~ ~LR~ )] Y'~ f t  N (a j ) f~  M (Aj . 

j= l  

The dashed line is the mean value of the estimate of the cross-cumulant 
density, which, under the hypothesis of independence between N and 
M, is approximately zero. The relation between the gamma stimulation 
and the Ia response of the muscle spindle becomes weaker when the 
length changes are present. 

By comparing Figures 5 and 6 we see that the length changes have an 
effect on the muscle spindle at small lags, whereas the gamma stimula- 
tion has an effect at large ones. This further suggests that the response 
of the muscle spindle to length changes takes place very quickly, 
whereas the response to the gamma stimulation is slower. A work is in 
preparation in which it will be shown that the information transmitted 
by the muscle spindle to the spinal cord can be separated into two 
parts, one at low frequencies (corresponding to gamma stimulation) and 
another at higher frequencies (corresponding to length changes) by 
applying a formal statistical test. 

5. CONCLUSIONS 

We have proposed an estimate for the cross-spectral density of a 
stationary hybrid process involving a time series and a point process in 
order to study a complex physiological system called the muscle spindle. 
The estimate of the cross-spectral density is obtained by splitting the 
whole record of the data into a number of disjoint subrecords. Esti- 
mates of the coherence function and the cross-covariance function can 
also be obtained by using the estimate of cross-spectral density. These 
estimates provide useful information for the properties of the muscle 
spindle in both the time and frequency domains. It is shown that the 
presence of a gamma stimulation reduces the effect of the length 
changes on the muscle spindle at low frequencies, whereas at higher 
frequencies it produces only a shift. 

The methods presented here can be extended to estimate higher 
order spectral densities and higher order covariance densities, which 
will facilitate the study of the nonlinear behavior of the muscle spindle. 
This kind of work will be published in the near future. 

I am most grateful to Professor G. P. Moore and Dr. J. R. Rosenbergfor 
providing the data sets. I also thank Mr. D. S. Tsitsis for his invaluable help 
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in the preparation of this paper. Final(y, I wish to express my gratitude to the 
two anonymous referees for their constructive and helpful comments, which 
led to the presentation of this paper. 

APPENDIX: PROOFS OF THEOREMS 

PROOF OF THEOREM 1 

It follows from the properties of complex random variables that 

= E{d(~R)(a), d(xR)( -a)}- pNJ*x[ A(~)(a) 12+ o( R -l ) 

=cov{d~R)(a),d(xR)(A)}+O(R-' ) for A# O. 

For the covariance of d(NR)(A) and d(ff)(A), we have 

cov{ d(~")( ,), d(~" ,( ,)} 

=£Rfogexp{- iAt}exp{ias}cov{dN(t ) ,X(s)}  ds 

=£R£Rexp{-- iA( t - -s )}CNx( t - -s )d tds  

= fR_R( R -lul)cNx (u) exp{ - i  Au} du, 

and using (9) we get 

= (2 r r ) - '  f_RRCNX(U)exp{-iAu} du + O ( R - ' )  for A#O. 
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Hence 

l i m E { [ ~ ( h ) } = f N x ( h  ) for h4: 0. 
R ---~ :c 

Applying now the properties of cumulants we find 

cov{£R,(,)d(~",(-,),d~")( ~,)4"'(- ~)} 
= cum{d~m( h)d(xg'(--X),d~R)( - U)d(xg'( tz)} 

= cum{d~")(X), d~")(-*), d~"'(-~), d~")( ~)} 
+ cum{d(uR)(X), d(Ng'( --/Z)} cum{d(xS'(-*), d(xm( tz)} 

+ cum{dy)(A), dV)( ~)} cum{d(xn'(-h), dy)(  - /z )}  

+ {aR)( ,  + ~) + a ~ ) ( ,  - ~) + a(~)( - ,  + ~) 

+ an)(  -X - /~ )  + 1}O(1) for A,/z 4:0 

= (27r)ZRfNxux( A , - h , - / ~ )  + O(1) 

+ (2~r)21A(R)(  x - ~)[z fUN ( a) f xx (A)  + O(1) 
2 

+(27r)21A(g)(a+ /Z) I fUX(A)fXN(-- A) + O(1) 

+ {a(~)(, + ~) + a(~)( , -  ~) + a(~)( - ,  + ~) 

+ ag)(--A-- ~z) + 1}O(1) for ;t,t~ 4: 0. 

This leads to 
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lim cov{[(~)( A),[(N%)( ~)} 
R --) c¢ 

= 6{ A - I~}fNN( A)fxx (A) + 6{ A + I~}fNX ( A)fNx (--A), 
A,~4: 0, 

since [A(R)(A)Ie/R 2 = 6{A} as R -)0% where 6{A} is the Kronecker delta. 
It can be proved [6] that {d(n)(A),d(xn)(A)}, j = 1,. . . ,J,  are asymptoti- 
cally independent NlC(0, 2~RfNx(#~)) variates. Hence, by using a lemma 
of Brillinger [7], we prove that [ ~ ( A ) ,  j = 1 . . . . .  J, are asymptotically 
independent wC(1, f ux (A) )  variates. 

PROOF OF THEOREM 2 

It follows from Theorem 1 that 

E { [ c u ~ ( A , j ) } = f N x ( A ) + O ( R - '  ) for A4: 0; j =  1 . . . . .  L. 
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Hence 

lim E{ftNLR)( A)} = fNX (A).  
R --+ cc 

A. G. RIGAS 

For the covariance of fffxR)(A) and f~R)(be), we have 

Cov{fCNLxR'(A), f~LR)( p.)} = cum{fN~LR)(A), f~LxR)( - be)} 

1 L ~= ^ "" [(m[ 
E Nx, /z,k)} 

j = 1 k 1 c u m  

1 L 
= - -  A , j ) , I ~ x  ( - be,j)} L 2 E cum{/~R'( " ~'(g) 

j = l  

since the jth and kth subrecords are disjoint. The last relation leads to 
the required result, because 

cum{ [(NRx'( A, j ) , f(NRX'( --be, j ) } 

= 8 { * -  be} fNN(a) fxx(A)  + a{a+ be) fNx(A) fNX(-A)  + O ( R - ' ) .  

The final result follows from the fact that the estimate fk~)(a) is the 
average of the asymptotically independent variates [Nx( Aj), j = 1 . . . . .  L. 

PROOF OF THEOREM 3 

It follows from Theorem 2 that 

E{eNx( U) } = CNx( U ) + O( M -  ' R -  ' QR' ) 

and 

COV{eNX (U), eNX (V) } 

= ~ f N N ( A ) f x x ( A ) e x p { i A ( u  -- v)} dh 

+ f f N x (  h)fxN(-A) exp{/A(u + v)} dA] 

+ O ( M  1R-l) + O ( M - ' Q R 2 ) +  O ( M - 1 R - ' Q R 2 ) .  



ANALYSIS OF A HYBRID PROCESS 217 

The asymptotic result for the covariance holds if QR--+ % Qn R- ~ ~ 0 
as R ---, oo. The asymptotic normality follows from the fact that 

cum{eNx(U,) . . . . .  eNx(Us)) 

= E E "'" E cum{/k~R)(/~1) . . . . .  [N(LR)( •J)} 

× exp{i(Xlu 1 + ... + XsUs) }. 

Moreover, 

~(LR) ~(LR) 
cum{fkx (A,) . . . . .  f }x  (as)} 

1 ^ 
- M '  Ecum{l~Rx'(&'J)  L(R,,A i~/ , ' " ,  N X \  J~J]J"  

J 

From these relations we have 

since 

cum{eNX (u , )  . . . . .  eNx(Uj)} = O(M-,+ 1Q~J+ 1), 

• , f(R) I" ..,/(NR)(Aj,j)} cum{f(N~)(~'l,J), NX~. A2,J),- 

= O ( 1 )  for aj=~ 0; j =  1,2 . . . . .  J. 

The last relation can be proved similarly to the case of ordinary time 
series [7, p. 418]. Hence 

O~/2 cum{~Nx(ul),~Nx(U: ) ..... ~Nx(Us)} --, 0 as R ~ and J > 2. 

This gives the required result because the cumulants of order higher 
than 2 are asymptotically zero. 
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