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Abstract: In this work we present two algorithms for the estimation of the phase of a neuroelectric 
system of point processes using the third-order spectral density function of the output. The 
neuroelectric system, which is called muscle spindle, plays an important role in the initiation of the 
movement and the maintenance of the posture. The system can be modelled with the help of a linear 
stochastic model. The phase of the transfer function is estimated with the help of the third-order 
spectral density function of the output. The estimate of the third-order spectral density function is 
obtained by smoothing the third-order modified periodogram statistic. As illustrative examples we 
examine the behavior of the muscle spindle under two different conditions: (a) when it is affected by a 
gamma motoneuron and (b) when it is affected by an alpha motoneuron. It is shown that in the first 
case there is a delay of the output by about 12 ms whereas in the second case the system is delayed 
for about 37 ms.  
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1   INTRODUCTION 
In this work, we present two algorithms for the 
estimation of the phase of a neuroelectric 
system of stationary point processes. The 
neuroelectric system is considered as a ‘black 
box’ where the incoming information (input) 
modifies its behaviour and produces a response 
(output). In this paper we shall consider that the 
output of the system is only known to us. The 
input and the output are stochastic signals 
called point processes, which are denoted by 
{M(t)} and {N(t)} respectively. In our example we 
shall assume that the two point processes are (i) 
stationary, (ii) orderly and (iii) strong mixing [1]. 
The point process ε(t) is assumed to be an 
additive Gaussian noise with stationary 
increments (see Figure 1) and the input is 
assumed to be a Poisson point process. 
 

 
 
Figure 1. A graphical representation of the 
neuroelectric system. 
 

The neuroelectric system that we examine is 
called muscle spindle and plays an important 
role in the initiation of the movement and the 
maintenance of the posture. The muscle spindle 
is considered as a stationary time-invariant and 
causal stochastic system. A stochastic model, 

which describes the linear relationship between 
the input and the output, is given by, 

t

0dN(t) [a a(t u)dM(u)]dt d (t)
−∞

= + − + ε∫ ,           (1) 

where {dN(t)=N(t,t+dt]} and {dM(t)=M(t,t+dt]} are 
the increments of the input and output process 
respectively. By a(u) we denote the impulse 
response of a system. The constant a0 
represents the mean rate of the system when 
there is no input. 
 
2   ESTIMATES OF THE FREQUENCY  
     DOMAIN PARAMETERS 
In this section we discuss the third-order 
spectral density function of a stationary point 
process and a method of estimating it. The 
estimate of the spectral density will be based on 
the modified third-order periodogram statistic, 
which is transformed properly in order to reduce 
its variance at constant value independent of the 
data stretch. 

The third-order spectral density function of 
{N(t)} is given by 

2
NN 1 2f ( , ) (2 ) exp{ i( u u )}

∞ ∞−
Ν −∞ −∞

λ µ = π − λ + µ∫ ∫  

             1 2cum{dN(t u ),dN(t u ),dN(t)} / dt× + +   
for  ,−∞ < λ µ < ∞                (2) 
where 

1 2cum{dN(t u ),dN(t u ),dN(t)}+ + =

NNN 1 2 1 2q (u ,u )du du dt  
is the third-order cumulant density of the output, 
for 1 2 1 2u u ,u 0,u 0≠ ≠ ≠ . 

The finite mean corrected Fourier-Stieltjes 
transform of the point process is defined as 



 
T(T)

N N0
ˆ ˆd ( ) h(t / T)exp( i t)[dN(t) p dt]λ = − λ −∫ ,   (3) 

where Np̂ N(T) / T= is the estimate of the mean 
intensity of the point process. The function 
h(u), u−∞ < < ∞  is called a data window or a 
taper and is bounded, of bounded variation and 
vanishes for u 1> . More details about these 
functions and their definitions are given in [2],[3]. 

The transformed third-order periodogram is 
given by 

(T) 1/ 2 2
NNNI ( , ) T (2π)− −λ µ =  

              (T) 1 (T) (T) (T)
3 N N N

ˆ ˆ ˆ(H (0)) d ( )d ( )d ( )−× λ µ −λ − µ     (4) 
where (T)

3H ( )λ is the finite discrete Fourier 
transform of the data window. 

In practice, in order to be able to use the FFT 
algorithm in the computation of the periodogram, 
we approximate (3) by the following expression: 

T 1
(T)
N N

t 0

ˆ ˆd ( ) h(t / T)exp( i t)[N(t 1) N(t) p ]
−

=
λ ≈ − λ + − −∑ (5) 

For more details on this approach refer to [4]. 
The estimate of the third-order spectral density 
function is now given by 

(T) 2
NNNf ( , ) (2m 1)−λ µ = +  

              
m m

(T)
NNN

j m k m
I ( 2πj / T, 2πk / T)

=− =−
× λ + µ +∑ ∑     (6) 

The properties of this estimate are discussed in 
[5]. Since NNNf ( , )λ µ is a complex function, its 
argument can also be estimated which is used 
for the recovery of the system’s true phase. This 
can be done by using two different algorithms. 
 
3   PHASE RECOVERY 
In this section we present two algorithms for the 
recovery of the phase φ(λ) of the neuroelectric 
system. The phase here corresponds to the 
argument of the transfer function of the system. 
The transfer function, which is the one-sided 
Fourier transform of a(u), is given by 

 
0

A( ) a(u)exp( i u)du,
∞

λ = − λ − ∞ < λ < ∞∫  (7) 

Theorem: Suppose that the neuroelectric 
system can be described by the stochastic 
model given in (1), where the input, the output 
and the noise process satisfy the assumptions 
discussed above. Then the third-order cumulant 
density and the third-order spectral density are 
given by 

NNN 1 2 YYY 1 2q (u ,u ) q (u ,u )=  

    M 1 20
p a(t)a(t u )a(t u )dt

∞
= + +∫  

for 1 2 1 2u u ,u 0,u 0≠ ≠ ≠                                    (8) 
and 

 M
NNN 2

pf ( , ) ( ) ( ) ( )
(2 )

λ µ = Α λ Α µ Α λ + µ
π

                (9) 

where Mp dt E{dM(t)}= is the mean intensity of 
the Poisson process. 
 If ( ) ( ) exp{i ( )}Α λ = Α λ φ λ  and 

NNN NNNf ( , ) f ( , ) exp{i ( , )}λ µ = λ µ θ λ µ , then  

 M
NNN 2

pf ( , ) ( ) ( ) ( )
(2 )

λ µ = Α λ Α µ Α λ + µ
π

 (10) 

and  
 ( , ) ( ) ( ) ( )θ λ µ = φ λ + φ µ − φ λ + µ  (11) 
 
Algorithm 1.  
Let µ = ∆λ . Then  

0

( , )lim
∆λ→

θ λ ∆λ
∆λ

0

[ ( ) (0)] [ ( ) ( )]lim

( ) (0)
∆λ→

φ ∆λ − φ − φ λ + ∆λ − φ λ=
∆λ

′ ′= −φ λ + φ
 

Since 
0

( ( ) (0))d ( ) (0)
λ

′ ′ ′φ λ − φ λ = φ λ − λφ∫ , we have 

0 0
( ) lim { ( , ) / }d c

λ

∆λ→
φ λ = − θ λ ∆λ ∆λ λ + λ∫  

where c (0)′= φ is an unknown constant defined 
as 

0 0
c { ( ) lim { ( , ) / }d } /

π

∆λ→
= φ π + θ λ ∆λ ∆λ λ π∫  

and (π) πφ = κ , κ∈  . 
If we set λ=κΔλ and φ΄(0)=φ(Δλ)/Δλ for Δλ 0→ , 
it can be shown that 

1

j 1
( ) (0) ( j , )

κ−

=

′φ λ − λφ ≅ − θ ∆λ ∆λ∑  

which leads us to use 

 
1

( ) (T)
NNN

j 1
G ( ) arg(f ( j , ))

κ−
Τ

=
λ = − ∆λ ∆λ∑  (12) 

as an estimate of ( ) (0)′φ λ − λφ . 
 
Algorithm 2.  
We set ω = λ + µ  in (11). Then 

( , ) [ ( ) ( ) ( )]
ω ω

θ λ µ = φ λ + φ µ − φ λ + µ∑ ∑  

0 0
( , ) [ ( ) ( ) ( )]

ω ω

λ= λ=
⇒ θ λ ω− λ = φ λ + φ ω− λ − φ ω∑ ∑  

We now assume that Δλ=1, λ= i and ω = n. 
Thus the above expression becomes 

n n 1

i 0 i 0
(i,n i) 2 (i) (n 1) (n)

−

= =

θ − = φ − − φ∑ ∑
 

By letting 
n

i 0
S(n) (i,n i)

=

= θ −∑
 

we obtain the phase 

φ(n) as follows 
n 1

i 0
(n) 2 (i) S(n) (n 1)

−

=

 φ = φ − −  
∑  , n 2,3, ,N=  (13) 

where the initial condition 

    

N

n 2
(1) [S(n) S(n 1)] n(n 1) ( ) /

=

φ = − − − + φ Ν Ν∑
 



is satisfied with ( ) πφ Ν = κ , κ∈ . 
In both algorithms the integer κ is chosen to 

ensure the continuity of the estimates 
(neighbouring values are as close to each other 
as possible). Detailed discussions of the two 
algorithms can be found in [6],[7].  
 
4   EXAMPLES 
In this section we present the estimate of the 
phase of the neuroelectric system under two 
different conditions: (a) when it is affected by a 
gamma motoneuron and (b) when it is affected 
by an alpha motoneuron. In both cases the 
phase of the system is recovered using both 
algorithms presented above. In the first case the 
estimate of the phase starts from 0 and is a 
straight line with decreasing values. This means 
that there is a delay of the output by about 12 
ms. In the second case the estimate starts from 
–3.14 and is a straight line with increasing 
values. It is now clear that the system is delayed 
for about 37 ms, since it is known from 
neurophysiology that the alpha motoneuron 
blocks the response of the muscle spindle, 
which implies that the impulse response function 
is negative (the behavior of the system is 
inhibitory). These results are in agreement with 
previous work (see [8], [9]), where both the input 
and the output point processes were used. As a 
conclusion we can say that the algorithm 2 is 
superior and gives more accurate results than 
the algorithm 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
5   CONCLUSIONS 
In this paper we presented two algorithms for 
the estimation of the phase of a neuroelectric 
system involving stationary point processes. The 
estimate of the third-order spectral density 
function of the output was only used for the 
estimation of the phase. A quick way of 
estimating the spectral density is based on the 
third-order periodogram statistic. The results 
obtained by applying the algorithms to the two 
examples from the field of neurophysiology, 
showed that the algorithm 2 is superior and 
gives more accurate results than the algorithm1.  
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