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Abstract  A non-hydrostatic, moving grid finite-volume implicit numerical scheme is applied to three-dimensional 
steady free-surface flows over various crested bedform configurations featuring weirs and spillways. The Navier-Stokes 
equations are modified by exploiting the pseudo-compressibility technique to couple pressures with velocity components. 
The position of the free-surface is determined by applying a moving boundary condition through the inclusion of the 
two-dimensional depth-averaged mass continuity equation. To improve the stability and accuracy of the model a new tech-
nique is introduced based on the use of two nested iteration steps. All of the mentioned equations are transformed into 
non-orthogonal body-fitted coordinate system to enable accurate representation of irregular geometries. Calculated water 
surface elevations and bottom pressures are compared with available measurements of steady flows over curved and sharp 
crested weirs. The versatility of the model in properly capturing the non-hydrostatic nature of pressure distribution is em-
phasized. 

Keywords  Non-hydrostatic pressure, finite-volume scheme, implicit numerical scheme, non-orthogonal boundary fit-
ted coordinates, moving grid, steady flow, various crested weirs. 

1. Introduction 
Numerical modelling of irregular bedforms hydrodynamics is a challenging task. Since hydraulic models are used exten-

sively to visualize and understand the complexity of hydraulic phenomena, their application to water flow simulation over 
relevant hydraulic structures, like weirs and spillways, contribute significantly to the improvement of such structures design. 
Generally, on the crest the flow is critical changing quickly to supercritical downstream the crest. In addition, if the crest is 
followed by a steep, curved bottom, the rapidly developed non-uniform flow forms large streamline curvatures thus resulting 
into a non-hydrostatic pressure distribution over the bottom surface. From this aspect the use of a 3D model to simulate such 
flows seems to be a fundamental prerequisite. The evolution of computer technology in the last decade boosted the imple-
mentation of 3D models. Various 3D codes were applied to non-hydrostatic flows. Most of them are implemented on fixed 
grids employing the pressure-velocity decoupling or pressure-linked technique. 

Bhajantri and Eldho [1] developed a quasi-3D model based on the weakly compressible equations. The model was used to 
investigate the hydraulic characteristics of flow over spillway crest profile by simulating the velocity distribution, pressure 
distribution and discharge characteristics. The developed numerical model was applied to two different types of spillways. 
Ferrari [2] solved the 3D full weakly compressible Navier–Stokes equations with the equation of state for water. The nu-
merical method used consisted of a new meshless Smooth Particle Hydrodynamics (SPH) formulation that accurately tracks 
the free-surface profile and provides monotone pressure fields. The model was used to simulate free-surface flow over a 
sharp-crested weir. Two CFD codes, Flow-3D and SSIIM 2, have been used by Haun et al. [3] to calculate the water flow over 
a trapezoidal broad-crested weir. Both programs apply different algorithms for making the grid and computing the free water 
surface. Flow-3D uses the Volume of Fluid (VOF) method with a fixed grid, while SSIIM 2 uses an algorithm based on the 
continuity equation and the Marker-and-Cell method, together with an adaptive grid for the water surface. The results were 
compared with measurements from a physical model study, using different discharges. 
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The present research work constitutes a part of continuously developing algorithm at Democritus University of Thrace, 
Greece. The model incorporates an implicit scheme which was developed and properly adapted to track the free-surface. The 
Navier-Stokes equations are coupled with the depth-averaged continuity equation. As a result, the free-surface is treated as a 
vertically moving boundary. No pressure-velocity decoupling or pressure-linked or any other additional method is needed as 
the pressure value is calculated directly from the continuity equation, Chorin [4]. All equations are transformed in a 
non-orthogonal body-fitted coordinate system. During the grid construction, the model determines a fixed number of nodes 
along the vertical direction which are located equidistantly. As the iterations proceed, the grid moves vertically following the 
new free-surface position and the grid nodes are rearranged. To overcome the presence of dispersion errors due to rapid grid 
rearrangement, the model adopts an innovative procedure through which two nested iteration steps are used. All calculations 
take place within the inner iteration step but, as long as the iterations last, all values referring to the previous iteration remain 
unchanged. Upon convergence, the outer iteration step takes over to update the flow field. Following this procedure the 
model becomes highly stable and accurate. The model was used to analyse steady flows over curved and sharp crested weirs. 
Predicted water surface elevations and bottom pressures are compared with measurements. Emphasis is given to the ability of 
the model to capture non-hydrostatic pressure distribution.  

2. Mathematical and Numerical Formulation 
2.1. Governing Flow Equations 

The flow is assumed to be homogenous, incompressible, 3D and viscous, with negligible Coriolis and wind forces. The 
governing Navier-Stokes equations are modified by introducing a factor β in the space derivatives of mass continuity equa-
tion while the density in the time derivative is substituted by the pressure. This procedure refers to as the pseu-
do-compressibility technique, initially introduced by Chorin [4]. After applying this technique, the system of Navier-Stokes 
equations becomes:   
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where P is the pressure, β is the pseudo-compressibility factor, ρ is the water density while the contravariant indexes i, j of the 

velocity vector v vary along all three-dimensions. In addition, )( if  represents the viscous stresses and igi xhf  /ρg)(  

stands for the gravitational forces. The turbulent kinematic viscosity appearing in the term )( if  is determined with respect 

to the friction velocity u* on the channel bottom as: 
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h is the vertical distance between free-surface and channel bottom and Sfx and Sfy are the bottom friction slopes along the x- 
and y directions, respectively. Their values are determined with respect to the Manning’s roughness coefficient. The use of 
equations (2) is consistent with the types of flow developing in channels with smooth bed and walls as considered in the 
present work. According to Liu [5], in such flow types apart from the viscous sublayer where the flow is laminar, meas-
urements showed that also in the turbulent logarithmic layer the turbulent shear stress is constant and equal to the bottom 
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shear stress. Furthermore, by the modification of Prandtl’s mixing length assumption, the logarithmic velocity profile applies 
also both to the transitional layer and the turbulent outer layer. Measured and computed velocities showed reasonable 
agreement. Therefore, from engineering point of view, even at high Reynolds numbers, a turbulent layer with the logarithmic 
velocity profile can be adequately assumed that covers the transitional layer, the turbulent logarithmic layer and the turbulent 
outer layer. With respect to the above, the model adopts a linear distribution of the bottom shear stress, τb, over the flow depth 
taking its higher value at the channel bottom and a zero value on the free-surface.  

For the solution of equations (1), regarding the free-surface flow problems, the following boundary conditions are applied: 
 The pressure on the free-surface is zero. 
 The fluid velocities vx, vy, vz normal to bottom and solid boundaries are set equal to zero. 
 During the fluid motion the fluid particles on the free-surface remain on it. Therefore, in the present study, the 

free-surface is treated as a moving boundary. Its vertical position h, calculated from the channel bottom, is determined 
by introducing an additional partial differential equation; the depth-averaged continuity equation, Klonidis [6]: 
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The main advantage of equation (3) is that it includes the proper boundary conditions at the bottom and at the free-surface. 
This approach brings a simple and robust method of finding the free-surface location while automatically satisfying the mass 
conservation criterion. 

 

2.2. Transformation Procedure 
According to the proposed finite-volume scheme, hexahedra resulting from the grid construction of the physical domain 

are transformed to cubes in the computational domain, figure 1. This is accomplished through independent transformations 
from Cartesian x, y, z or global coordinates to local coordinate system ξ ,η ,ζ. Each cube in the computational domain com-
prises eight primary (hexahedra) elements of the physical domain. The secondary element centre is the point where the local 
coordinate system is initiated (ξ=0, η=0, ζ=0) with ξ, η and ζ ranging between  –1  ξ  1, –1  η  1 και –1  ζ 1. Detailed 
description of the transformation can be found in Klonidis [6].  
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Figure 1.  Hexahedra are transformed to cubes. Eight primary elements (hexahedra) shown on the left constitute a secondary element (right). 

 
Under the aforementioned transformation, equation (1) takes the form:  
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Ŵ

J

                                        (6) 

 
J is the determinant of the transformation matrix. Other terms have the usual meaning. Detailed description of the viscous 

terms 2vf , 2vg , 2vh  can be found in Klonidis [6]. 
In addition to the hydrodynamic equations, the depth-averaged continuity (global 2D), equation (3), also needs to be 

transformed in the local coordinate system. To solve this equation in the local coordinate system a new 2D computational grid 
is created. Thus, quadrilaterals in the physical domain are transformed to squares in the computational domain, Klonidis and 
Soulis [7]. Each square in the computational domain comprises four primary (quadrilaterals) elements of the physical domain. 
Following the aforementioned procedure the transformed depth-averaged continuity equation takes the form: 
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2.3. Numerical Solution 
For the numerical approach of equations (4) a second-order accurate, implicit, finite-difference scheme was developed. 

The whole process involved the linearization of equations (4) by expanding to Taylor series the time derivatives initially and 
next the space derivatives. Forward differences were used for time derivatives and central differences for space derivatives. 
The above procedure yields: 
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δ denotes central difference, I is the identity matrix 4x4 and Q̂/F̂Â  , Q̂/ĜB̂  and Q̂/ĤĈ  are the Jacobian 

matrices resulting from the linearization procedure. In general, equation (8) is implemented in the following sequence: 
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The values of the unknown variables at every point of the field are obtained by solving a block tri-diagonal system. The 
scheme is second-order accurate in space since central differences are used for the space derivatives.  

To determine the position of free-surface, the depth-averaged continuity equation is coupled with the hydrodynamic 
equations and it is approximated by applying the same implicit scheme in 2D form, Klonidis and Soulis [7]. Since the new 
free-surface level position has been determined, the grid points, which are always located equidistantly along the vertical 
direction, are rearranged. The resulting curvilinear grid is transformed again into the local system before proceeding in the 
next iteration step. Extensive numerical experiments confirmed the presence of significant dispersion errors due to grid 
rearrangement. To overcome this problem a new effective technique was applied; instead of using a single iteration step, two 
nested ones are used. Let’s denote with “n” the basic or outer iteration step and with “k” the inner one. When the outer 
iteration starts all Q (P,u,v,w,h) values are initialized. The whole computational procedure, described by equations (9)-(12), 
takes place within the inner iteration step but as long as the “k” iterations last every Q value is calculated as, 
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the superscript k+i stands for the kth iteration step. The value nQ , which is referred to the outer iteration, is kept constant 
during the inner iterations. It should be noted that the grid is rearranged within the inner iterations. The inner iterations con-
tinue until the convergence criterion related to the average percentage velocity is satisfied. Next, the outer iteration step 
changes to the next one and the Q values are updated as follows,  
   

 ikjniknikn   QQ,...,QQ,QQ 21                (14) 

 
the superscript n+j stands for the nth iteration step. The outer iterations and consequently the whole computational procedure 
stops when two convergence criteria associated with the average percentage flow depth and the average percentage pressure 
are satisfied. Generally, the model starts with less than 15 inner iterations, which are decreased rapidly. As much as the outer 
convergence criterion is satisfied one or maximum two inner iterations are executed. 

3. Model Applications 
3.1. Free-Surface Flow over a Double Arc Weir 

Klonidis and Soulis [6] carried out a series of experiments to study the impacts of steady free-surface flow over a double 
arc weir model. Both experimental data and predictions are presented in the present report. Measurements were carried out in 
a 10.0 m long and 0.25 m wide flume with iron bed and plexiglass side walls at Democritus University of Thrace, Greece. A 
weir model with plexiglass bed consisting of two arcs of R1=0.71 m and R2=1.36 m radius, respectively, was mounted in the 
middle of the flume, as it is shown in figure 2. The crest is defined by two arcs with axial (longitudinal) distances of 0.56 m 
and 0.78 m, respectively. Thus the total length of the model was 1.34 m. The crest elevation was measured as 0.2691 m. The 
flume was long enough so that the flow approaching the spillway was fully developed. Holes were drilled on the bottom of 
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the downstream arc, R2=1.36 m, with iso-distanses of 0.05 m along the longitudinal direction and 0.03 m along the transverse 
direction. Thin tubes of an internal diameter 2.0 mm were mounted to measure the bottom static pressure. Appropriately 
calibrated pressure transducers were utilized. A perpendicular to the bottom surface solid upper wall, made of plexiglass, was 
placed at distance of 0.125 m from the lower wall on the downstream arc so as its leading edge coincided with the mid-point 
of the crest width. The upper wall was flared, in relation to the flume axial direction, so as its trailing edge touched the flume’s 
full width, figure. 2. Therefore, an expansion along the downstream arc was created. Also, the upper wall was straightfor-
wardly extended upstream and eventually it was properly curved to meet the full width of the flume. Thus, a relatively smooth 
water entrance was achieved. 
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Figure 2.  Double arc spillway geometry with static pressure measurements setup. All dimensions in meters. 

 
A series of flow discharges were applied. Current results refer to steady flow discharge, Q=0.0163 m3 s-1. The water sur-

face elevations above the crest as well as at the outlet of the downstream arc were measured from leveled bottom as 0.391 m 
and 0.047 m, respectively. Water surface elevations and bottom pressures were measured at each available tapping. The 
downstream arc of the spillway was simulated by applying the implicit finite-volume scheme. A fine structured grid con-
sisting of hexahedra with a total of 167000 nodes was created. On the crest, a vertical depth equal to 0.129 m (=0.391-0.2691 
m) was applied. A constant axial velocity component on the crest was calculated, having the transverse and vertical velocity 
components equal to zero. Finally, a constant hydrostatic pressure value (= ρghin) on the crest was calculated, where hin¸ 
stands for the water depth on the crest. The flow was critical on the crest turning rapidly to supercritical one at immediately 
downstream regions. Therefore, the applied boundary conditions corresponded to supercritical flow. A value of 1.0 was given 
to the pseudo-compressibility factor β determined after numerical experimentation. The Manning’s roughness coefficient n 
was set 0.01 s m-1/3 which is consistent with glass made walls and bed. The model captured the water surface elevation along 
the a) lower wall, b) mid-stream line and c) upper wall. Comparisons with measured data are very satisfactory as shown in 
figures 3a-3c.  

In figures 4a-4c calculated bottom static pressures are compared with the measured data along the, a) lower wall, b) 
mid-stream line and c) upper wall, respectively. Computed results satisfactorily agree with measurements. Results from the 
above figures reveal a gradual pressure drop within the first 0.5 m measured downstream to crest. From this position towards 
to the end of the arc, the pressure drop decelerates. It is also evident that both measured and predicted bottom static pressures 
significantly diverge from the hydrostatic ones. Finally, it becomes apparent that away from the crest the flow is accelerated. 
Henceforth, the differences between computed and hydrostatic pressures increase. 
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Figure 3.  Comparison between measured and computed free-surface elevation (m) along: (a) the lower wall of the downstream spillway arc, (b) the 
mid-stream line of the downstream spillway arc and (c) the upper wall of the downstream spillway arc at Q=0.0163 m3 s-1 

 

In figures 4a-4c calculated bottom static pressures are compared with the measured data along the, a) lower wall, b) 
mid-stream line and c) upper wall, respectively. Computed results satisfactorily agree with measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                          (b) 
Results from the above figures reveal a gradual pressure drop within the first 0.5 m measured downstream to crest. From this 
position towards to the end of the arc, the pressure drop decelerates. It is also evident that both measured and predicted bottom 
static pressures significantly diverge from the hydrostatic ones. 
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Figure 4.  Comparison between measured and computed bottom static pressures (Pa) along: (a) the lower wall of the downstream spillway arc, (b) the 

mid-stream line of the downstream spillway arc and (c) the upper wall of the downstream spillway arc Q=0.0163 m3 s-1 
 

Finally, it becomes apparent that away from the crest the flow is accelerated. Henceforth, the differences between com-
puted and hydrostatic pressures increase. 
3.2. Steady Flow over a Symmetric Weir 

Sivakumaran et al [8] performed a series of experiments for steady flows over symmetric and asymmetric bedforms. All 
experiments were carried out in a 9.15 m long, 0.65 m high and 0.3 m wide horizontal flume made of a steel frame with glass 
side walls. The 1.5 cm thick plywood bed was elevated 0.1 m above the base of the flume, to host plastic tubes connecting the 
piezometer tapings placed along the centerline of the curved-bed model, with piezometers. The symmetric profile of the 1.20 
m long weir is described with respect to normal distribution by the relation, 

 )]
24
1(

2
1exp[20 2xy                 (15) 

x, y are the horizontal and vertical coordinates, respectively. The leading edge of the weir was placed 3.66 m downstream the 
flume’s inlet. The leading edge water depth was measured as 0.3356 m and was used as an upstream boundary condition for 
the model. In the present work experimental data for a symmetric bedform are tested against current model predictions for a 
steady unit flow rate q=0.036 m3 s-1 m-1. A structured grid consisting of hexahedra with a total of 41580 nodes was created. 
The flow was subcritical upstream the weir turning rapidly to supercritical at immediately downstream the crest. Therefore, 
boundary conditions with respect to transcritical flow were applied. A value of 1.0 was given to the pseudo-compressibility 
factor β while the Manning’s roughness coefficient n was set 0.01 s m-1/3 which is consistent with glass made walls and 
plywood bed. Figures 5a and 5b depict a comparison between measured and computed centreline water surface elevation and 
bottom pressure respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                           (b) 
Figure 5.  Comparison between measured and computed (a) water surface elevation (m) and (b) bottom  static pressure (m) along the centreline of the 
symmetric weir after Sivakumaran et al, q=0.036 m3 s-1 m-1 
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Both comparisons show a very good agreement between measured and computed results. Also, figure 5b shows that the 
bottom pressure drops below the hydrostatic within a distance of 0.24 m downstream the crest.  
3.3. Steady Flow over a Triangular Sharp Crested Sill 

This section demonstrates the model’s capability to capture water surface profiles during steady flow over a triangular 
shaped bottom sill with sharp crest. The experimental investigation was conducted by Farsirotou et al. [9] in a smooth, hor-
izontal prismatic channel with rectangular cross-section of 6.0 m long, 0.076 m wide and 0.25 m high. The channel walls 
were made of 10.0 mm thick plexiglass. A triangular shaped sill of 0.38 m base length was placed on the bottom of the flume, 
at a distance of 1.90 m from the channel inlet, in a region of fully developed incoming flow. The construction was made of 
waterproof wood. The maximum sill height was equal to 0.051 m at an axial distance of 0.087m from its leading edge. Water 
surface profile measurements over the bottom sill, under equilibrium flow conditions, were obtained along the centerline of 
the model at different flow discharges. In the present test case three flow discharges were used; Q1=0.93 l s-1, Q2=0.7 l s-1, and 
Q3=0.5 l s-1. A relatively coarse grid consisting of 11700 nodes was adequate to simulate the developed flow accurately. Since 
the flow was subcritical upstream the sill turning rapidly to supercritical at immediately downstream the crest, boundary 
conditions with respect to transcritical flow type were applied. The pseudo-compressibility factor β was set equal to 1.0 while 
the value of 0.01 s m-1/3 was given to Manning’s roughness coefficient. In figure 6 measured water surface profiles are 
compared with the current model predicted ones, for the three aforementioned flow discharges respectively. The comparisons 
show a remarkable agreement between measurements and computed results. 
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Figure 6.  Comparison between measured, Farsirotou et al)and computed water surface  
profiles over the triangular shaped bottom sill, for Q=0.93 l/s, 0.7 l/s and 0.5 l/s 

4. Conclusion  
In the present study the development of a non-hydrostatic, 3D, implicit, finite-volume scheme, capable of simulating 

rapidly varied flows over irregular bedforms featuring weirs and spillways has been presented. By utilizing the pseu-
do-compressibility technique the modified Navier-Stokes equations were transformed in a non-orthogonal, body fitted local 
coordinate system and solved using a second order implicit scheme resulted from the linearization of the governing equations. 
Furthermore, the use of the two-dimensional depth-averaged mass continuity equation as a simplified aspect of determining 
the free-surface location was proved to be adequate enough for the simulation of various problems where rapid changes in the 
free-surface occur. To deal with significant numerical instabilities resulting from dispersion errors appearing during the fast 
grid reconstruction along the vertical direction, the use of a dual iteration step as a new idea was presented analytically. All 
calculations take place within the inner step while the outer step updates the calculated variables preparing thus for the next 
inner iteration step. The value of turbulent kinematic viscosity was determined empirically with respect to bottom friction 
velocity, assuming a linear distribution of bottom shear stress over the depth. The model was used to analyse steady flows 
over curved and sharp crested weirs. Predicted water surface elevations and bottom pressures were compared with meas-
urements. Emphasis was given in the ability of the model to accurately simulate problems where non-hydrostatic pressure 
distribution occurs.  
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