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Abstract - In this paper a vision system for learning and recognition of image objects, with the ability to operate as a real-time 

industrial vision system for manufacturing and automation tasks is presented. A binary image representation, which is called 

Image Block Representation and represents the image as a set of nonoverlapping rectangular areas, is applied for the fast and 

efficient feature extraction on binary images. The block represented binary image is well suited for the fast implementation of 

various processing and analysis algorithms in a digital computing machine. Specifically, the real-time computation of moments 

and the efficient structural object description are achieved. The final classifier uses the Dempster-Shafer theory for the 

combination of the information from these different sources. 

 

I. INTRODUCTION 

 For the learning and recognition of the image objects binary images are usually used, since only the information 

of the shape is important for these tasks. The most common image representation format is a two-dimensional (2-D) 

array, each element of which has the brightness value of the corresponding pixel. For a binary image these values are 0 or 

1. In a serial machine, only one pixel is to be processed at a time, by using the 2-D array representation. However, many 

image processing and analysis operations, may be executed in parallel using a parallel machine. Many research efforts 

considered the problem of selecting an image representation suitable for concurrent processing in a serial machine. The 

need for such approaches arises from the fact that an image contains a great amount of information, thus rendering the 

processing a difficult and slow task. Existing approaches to image representation aim to provide machine perception of 

images in pieces larger than a pixel and are separated in two categories: Boundary based methods and region based 

methods. Such approaches include quadtree representations [1], chain code representations [2], contour control point 

models [3], autoregressive models [4], the interval coding representation [5] and block implementation techniques 

[6]-[8]. One common objective of the above methods is the representation of an image in a more suitable form for a 

specific operation. Recently a new advantageous representation for binary images, which is called image block 
representation (IBR) has been presented [9][10]. In the block representation process the whole binary image is 

decomposed in a set of rectangular areas with object level. The image block representation exploits the fact that many 

compact areas of a given binary image have the same value. This representation constitutes an efficient tool for image 

processing and analysis techniques. 

 Various sets of 2-D statistical moments constitute a well-known image analysis and pattern recognition tool. 

Moments have been used for various image processing and analysis tasks, including shape analysis, scene matching, 

image normalization, object and character recognition, and three-dimensional object recognition [11]-[20]. In pattern 

recognition applications, a small set of the lower order moments is used to discriminate among different patterns. The 

most common moments are the geometrical moments, the central moments, the normalized central moments and the 

moments invariants [17], [18]. Other sets of moments are the Zernike moments and the Legendre moments (which are 

based on the theory of orthogonal polynomials) [19], [21], and the complex moments [20]. 

 One main difficulty concerning the use of moments as features in image analysis applications is the implied high 

computational time. A number of approaches that reduce the computational time concerning calculation of moments have 

been appeared [3], [23]-[26]. In [23], [24] and [25], the problem has been reduced from two-dimensional to a 

one-dimensional one using Green's theorem; this approach reduces the complexity from O( N 2 ) to O(N), since only the 

boundary pixels are considered and the length P of the boundary is linearly related to A , where A is the object area. 

This approach results to a significant computational gain but it is inferior to the block based computation since it is 

dependent to the object boundary. In [3] control point models based on the least-square normalized B-splines, are used 

for the representation of the object boundary and the complexity of the moments computation is analogous to the shape 

model order and independent of the scale. In [26] the computation formula of its one central moment has been 

considered as an impulse response of a filter, which is then transformed to the z-domain and the transfer function of the 

corresponding digital filter is obtained. The computational complexity for the calculation of the 16 central moments up to 

the order (4,4) of an image with NxN points, is 4 N 2 +16N+80 additions and only 32 multiplications or power 

calculations. This approach is also inferior to the block based computation since is dependent on the image size. Using 

the block representation in binary images, real-time computation of 2-D statistical moments is achieved through 



analytical formulae for the moment computation of each block of the image. The computational complexity of the 

proposed technique is O( L2 ), where (L-1, L-1) is the order of the 2-D moments to be computed [9]. 

 In many computer vision systems which find application in manufacturing and automation processes, thinning 

constitutes a basic and significant step in the recognition process. The skeleton of an object provides useful information 

about the shape of the object. In addition this information may be considered as independent of the noise and of the 

width of the object. A thinned pattern is a line drawing representation of a usually elongated pattern. A number of 

approaches for thinning have been proposed in the past. The Medial Axis Transform (MAT) introduced by Blum [27] is 

a classical way to obtain skeleton. Thinning methodologies are described in [28]-[34]. Using image block 

representation, the structural description of the object using a fast estimation of the skeleton is achieved. The image 

block representation method results to a set of points and all the necessary information concerning the links among 

them; therefore a representation of the skeleton is obtained. Moreover the endpoints and the treepoints are provided by 

the above algorithm. These critical points are necessary for the structural description of the object; since a set of 

subpatterns is formed from these points. The extracted subpatterns are classified, using simple geometrical and statistical 

features. The structural description of the object is obtained by the classifier and is used for object learning and/or 

recognition.  

 The final classifier combines the information from these two different sources (moment invariants and the 

structural description) and makes a decision about the classification of the input object in a certain pattern class. The 

Dempster-Shafer theory of evidential reasoning is used in the final classifier. 

 

II. IMAGE BLOCK REPRESENTATION 

 A bilevel digital image is represented by a binary 2-D array. Without loss of generality, we suppose that the 

object pixels are assigned to level 1 and the background pixels to level 0. Due to this kind of representation, there are 

rectangular areas of object value 1, in each image. These rectangulars, which are called, have their edges parallel to the 

image axes and contain an integer number of image pixels. At the extreme case, the minimum rectangular area of the 

image is one pixel. 

 Consider a set that contains as members all the nonoverlapping blocks of a specific binary image, in such a way 

that no other block can be extracted from the image (or equivalently each pixel with object level belongs to only one 

block). It is always feasible to represent a binary image with a set of all the nonoverlapping blocks with object level and 

this representation is called Image Block Representation (IBR). According to the above discussion, two useful 

definitions concerning IBR are formulated: 

 

Definition 1 

 Block is called a rectangular area of the image, with edges parallel to the image axes, that contains pixels of the 

same value. 

� 

Definition 2 

 A binary image is called block represented, if it is represented as a set of blocks with object level, and if each 

pixel of the image with object value belongs to one and only one block.  

� 

 According to Definitions 1 and 2, it is concluded that the IBR is an information lossless representation. Given a 

specific binary image, different sets of different blocks can be formed. Actually, the nonunique block representation 

does not have any implications on the implementation of any operation on a block represented image. 

 The IBR concept leads to a simple and fast algorithm, which requires just one pass of the image and simple 

bookkeeping process. In fact, considering a N N1 2x binary image f(x,y), x=0,1, ... , N1 1− ,  y=0,1, ... , N 2 1− , the 

block extraction process requires a pass from each line y of the image. In this pass all object level intervals are extracted 

and compared with the previous extracted blocks. In the following, an IBR algorithm is given. 

 

Algorithm 1: Image Block Representation. 
Step 1: Consider each line y of the image f  and find the object level intervals in line y. 
Step 2: Compare intervals and blocks that have pixels in line y-1. 

Step 3: If an interval does not match with any block, this is the beginning of a new block. 

Step 4: If a block matches with an interval, the end of the block is in the line y. 

� 

 As a result of the application of the above algorithm, we obtain a set of all the rectangular areas with level 1 

that form the object. A block represented image is denoted as: 

 

f x y b i ki( , ) { , ,..., }= = − :  0 1 1  (1) 

 



where k is the number of the blocks. Each block is described by four integers, the coordinates of the upper left and down 

right corner in vertical and horizontal axes. The block extraction process is implemented easily with low computational 

complexity, since it is a pixel checking process without numerical operations. Fig. 1, illustrates the blocks that represent 

an image of the character d. 

 

 
Figure 1. Image of the character d and the blocks. 

 

III. COMPUTATION OF MOMENTS 

 Consider a binary digital image f(x,y), with N1 pixels in horizontal axis and N2 pixels in vertical axis. The 2-D 

geometrical moments of order (p,q) of the image are defined by the relation: 
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Since the background level is 0, only the pixels with level 1 are taken into account for the computation of the moments. 

Thus, the 2-D geometrical moments of order (p,q) of the image f(x,y) are defined by the relation: 
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 Specifically, if the image f x y( , )  is represented by k blocks, as it is described in (1), all the image pixels with 

level 1 belong to the k image blocks and therefore (3) may be rewritten as: 
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where x xb bi i1 2, ,,  and y yb bi i1 2, ,,  are the coordinates of the block bi  with respect to the horizontal axis and to the 

vertical axis, respectively.  

 In (4), if the rectangular form appeared within the blocks is taken into account, then the geometrical moments 

of one block b, with coordinates x1b , x2b , y1b , y2b , are given by 
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 Using the rectangular form appeared within the block, the computational effort, which is characterized by the 

complexity O(N2) for the calculation of moments using (2), is reduced to O(N) for the calculation of moments using (5). 

For the computation of (5), it is adequate to calculate the following summations of the powers of x and y : 
 

S x S y x y p q Zx x
p

x x

x
p

y y
q

y y

y
q

b b
b

b

b b
b

b

1 2

1

2

1 2

1

2

, , , , ,= = ∈
= =

∑ ∑ ,       ,            
 

(6) 

 

Moreover, taking into account the known formulae: 
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and finally  
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Extending the above presented analytical method the real-time computation of the central moments, the normalized 

central moments and the moment invariants is also achieved [9]. 

 

IV. STRUCTURAL PATTERN RECOGNITION 

 An object normalization procedure is first executed in order to preserve rotation invariant descriptions of the 

objects. Specifically the maximal axis of the object is found and the whole object is rotated in such a way that the 

maximal axis has a vertical position and that the upper half of the image object contains the most of the object’s maze. 

 

A. Thinning 

 Thinning algorithms should preserve topological and geometrical properties, compress the image data and have 

high processing speed. One problem concerning the preservation of geometrical properties is that of locality: The small 

local neighborhoods that are used for simplicity in the various algorithms, are incapable to provide global information 

and in particular to distinguish between noise and end points. This also may lead to excessive erosion of the object. 

Finally, the measure of the quality of a given thinned pattern is subjective and dependent on the application.  

 In this paper a fast noniterative thinning method for block represented binary images is presented. The method 

has low computational complexity, extracts only critical points and to a degree appears to have immunity to the problem 

of locality. The thinning procedure is achieved by extracting a set of critical points of the object and properly connecting 

them. For the description of the thinning algorithm, the following Definitions are used [44]: 

 

Definition 3 

 Group is an ordered set of connected blocks, in such a way that all its intermediate blocks are connected with two 

other blocks, while the first and last blocks are connected with only one block. 

� 
Definition 4 

 Junction point is called a point that it is connected with two other points and it is an intermediate point of the 

thinned pattern. 

� 
Definition 5 

 End point is called a point that it is connected with only one other point and it is a point of termination of a 

thinned pattern. 

� 

Definition 6 

 Tree point is called the point that it is connected with more than two other points and it is a point where a 

thinned pattern is separated to three or more parts. 

� 

Definition 7 
 Critical point is called a junction or an end or a tree point. 

� 

 The locality problem is addressed in the algorithm. This is achieved by the use of a suitable neighborhood at each 

case. Specifically, groups of connected blocks are formed. Each group is terminated when an adjacent block does not 

exists for its continuation, or when two or more blocks exist for the continuation of the group.  

      



(a) (b) (c) (d) (e) (f) 

Figure 2. (a). Image of the character B. (b) The extracted blocks. (c) The groups of blocks. (d) The critical points. (e) 

The links among the critical points results to the thinned characters. (f) The resulted thinned characters using 

an iterative algorithm. 

 

Each group defines a local neighborhood and all the necessary processing takes place in this neighborhood. Using a few 

simple rules for the processing, the groups are checked and labeled to certain categories: 

• Vertical Elongated groups. The absolute value of the angle of these groups with the horizontal axis is usually 

greater than 30° . The width of each block of a vertical elongated group should not exceed a threshold value. The 

connections among the blocks result to junction points, which belong to the thinned line that results from the group. 

For each pair of connected blocks, one junction point (the central point of the common line segment of two 

connected blocks) is extracted. For each block we check if the distance among its junction points and its extremities 

(i.e. the central points of the edges of the small dimension) of the block, exceeds a threshold value. In such a case, 

in the corresponding extremity of the block, an end point of the skeleton is extracted, which belongs to the block. 

• Horizontal Elongated groups. The absolute value of the angle of these groups with the horizontal axis is smaller 

than 30° . The width of an horizontal elongated group is significantly greater than its height and also its height 

appears to have small variation. Due to the horizontal scanline of the IBR Algorithm, the connections among the 

blocks in these horizontal oriented groups result to junction points that belong to a small vertical line at the middle 

of the group, which obviously is not accepted as the thinning of the neighborhood. For the extraction of the junction 

points the algorithm starts from the left end of an horizontal elongated group and moves to the right with constant 

width steps. At each step a junction point is extracted at the middle of the height of the group at this vertical 

position. 

• Angle groups. The angle groups are connected with two other groups that lie on the same vertical or horizontal side 

of the angle group. The width and the height of an angle group are usually small. An angle group should not be 

connected to a noisy group. If a group has labeled as angle group and it is connected with a noisy group, then the 

label "angle" is replaced by the horizontal elongated label or the vertical elongated label. Three junction points are 

extracted from an angle group. The two junction points are extracted due to the connections with the two groups 

and another one for the formulation of an angle. 

• Noisy groups. These are small and spurious branches of the object. The noisy groups have width and height less 

than a threshold and they are connected to only one group, which is not an angle group. In the most cases, the noisy 

groups are connected from the left or right side to vertical elongated groups or from the up or down side to 

horizontal elongated groups. In these cases the extraction of junction points from the noisy groups is not acceptable, 

according to human perception about thinning; otherwise a noisy end point would be created. The noisy groups are 

branches of the object that have small height and width and usually they do not contribute to the thinned pattern of 

the object. Junction points are extracted from the noisy groups, if and only if the noisy group is connected at the 

ends of an elongated group. 

 

 In the case where a block has more than two junction points or end points, appropriate junction points that are 

located near the middle of the critical points are selected as tree points. If such a central junction point does not exist, 

then the middle of the critical points is selected as the tree point of the block. The graphical link of the critical points 

belonging to the same block, forms the image of the skeleton of the object. In the case where a tree point exists in a 

block, each other critical point of the block is linked only with the tree point. 

 The above method is fast and is in congruence with the human perception about the thinned pattern of an 

elongated object. An extension of this method is the formulation of subpatterns that are used for a structural description 

of the object. A subpattern is defined between each pair of the end or tree points belonging to the same block or 

belonging to different blocks and are connected through junction points. 

 Another advantage of the proposed method is that it allows the structural description of elongated objects, as it is 

presented in the next subsection. 

 Fig. 2 demonstrates (a) an image of the character B, (b) the extracted blocks, (c) the groups of blocks, (d) the 

critical points and (e) the resulted thinned characters. Fig. 2 (f) illustrates the resulted thinned character using the 

algorithm found at [13], [22]. The proposed algorithm is 14 times faster for the 64x64 image of Fig. 12, in comparison 

with the iterative thinning (point removal) and specifically the algorithm found at [13], [22], as it results from 

simulations. For larger images the factor of time reduction is much greater. 

 

B. Structural Pattern Recognition 

 A structural pattern recognition system for elongated objects that operates in two stages is presented here. In the 

first stage the classification of the subpatterns that constitute the whole object takes place. In the second stage the 

description and the classification of the whole object is achieved. 



 A subpattern is a sequence of points in Z 2 . The task in the first stage is the classification of the subpatterns in a 

specified number of the classes. These classes are defined as [10]: 

1. L, for a straight line segment. 

2. S, for a semicircle. 

3. C, for a circle. 

 We use only these three classes in order to simplify the problem. Each subpattern is classified as one or more of 

the three basic classes. The classification of each subpattern is based on simple geometrical features. At first, the 

equation and the length ( L s ) of the Hypothetical Line (HL), which passes from the first P0  and the last PN −1  point of 

the subpattern is formed. Now the following hold: 

• If the deviation of the distances from the intermediate points Pi , i = 1,2,...,N-2 to the HL is small according to the 

length L s  of the HL, then the subpattern is classified as class L. 

• If the deviation of the distances from the intermediate points Pi , i = 1,2,...,N-2 to the center of the hypothetical 

circle, which is defined with center the centroid of the HL and with diameter equal to the length L s , is small 

according to the radius L s /2, and if the first and the last points of the subpattern are different, then the subpattern is 

classified as class S. 

• If the deviation of the distances from the intermediate points Pi , i = 1,2,...,N-2 to the center of the hypothetical 

circle, which is defined with center the centroid of the HL and with diameter equal to the length L s , is small 

according to the radius L s /2, and if the first and the last points of the subpattern are the same, then the subpattern is 

classified as class C. 

• In every other case, where a subpattern is not classified to any of the above three classes, then the algorithm searches 

for a suitable point which divides the subpattern to two new subpatterns. The separation may result to subpatterns 

which belong to any of the desired classes (L,S,C). 
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Figure 3. (a) The class-L, (b) the class-S and (c) the class-C. 

 

 The above classification procedure is fast implemented. In every step only one feature is examined. In the case 

where a subpattern is classified as class L, then the other features are not calculated. Therefore, the feature extraction 

process is characterized by low computational complexity, since it is controlled by the classifier and only the necessary 

features are calculated. The classification of the subpatterns in the three classes L, S, C using the above described criteria 

is satisfied. 

 At the second stage, various classifiers may be used for the classification of the whole object. A matching like 

classifier is presented here. The subpatterns are positioned on a specified grid of dimension gxq over the image of the 

object. The choice of the magnitude of the grid (the g and q) depends on the considered application. Specifically, the 

grid should satisfy the requirement of local generalization, in order to avoid the small variations due to the noise and to 

reduce the complexity of the system. On the other hand, we should avoid very large grids, which result to low 

discrimination efficiency. 

 Each subpattern is described by its type, its position on the grid and its orientation. The information about the 

orientation is provided only for class L or class S subpatterns and is a number between 0 and 7. Information concerning 

the locations of the connections among the subpatterns is also provided. This is a complete description of the object, or 

equivalently the reconstruction of a thinned pattern of the object is feasible using this description. 

 The input object is classified to the class that has the same number and type of the subpatterns located at the 

same cells according to the gxq grid, and also the same number and location of connections among the subpatterns. 

 

V. THE FINAL CLASSIFIER 

A. Introduction to Dempster-Shafer theory 

 The mathematical theory of evidence, known as Dempster-Shafer theory, was first developed by Dempster in 

the 1960s [35]. Subsequently, it was extended by Shafer [36]. Recently, this method has become a promising method for 

dealing with problems arising in combining evidence and managing uncertainty and ignorance [37]-[41]. The theory 

deals with the familiar idea of assigning a degree of belief to certain propositions on the basis of combining the available 



evidence.  

 In [36] Shafer proposed to split the total amount of knowledge, into quantities assigned to some events for 

which evidence is available as to whether they are to occur. These elements are called focal elements. A mapping m is 

defined which allocates to each event a portion of the total knowledge: 

 

m( )∅ = 0   

(9) 
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where Ω is the space representing all the possible focal elements and is called frame of discernment. The mapping m is 

called basic probability assignment. It is important to notice that a basic probability can be assigned not only to a single 

element of Ω but also to a subset of Ω. The belief or the lower probability assignment of the event A is calculated on the 

basis of events whose occurrence imply that of A: 
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The plausibility or the upper probability assignment of the event A is calculated on the basis of the events B, which may 

occur simultaneously with A and is given by: 
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It can be proved that Bel Pl( ) ( )A A≤  and Bel Pl( ) ( )A A= −1 . As a reasoning theory, the Dempster’s rule of 

combination provides a method for change prior opinions in the light of new evidence. Suppose are obtained two bodies 

of evidence from two independent sources and they are expressed by the basic probability assignments m1  and m2 . 

Suppose that the basic probability assignment  m1  of the event B has the focal elements B i , i=1,...,n and the basic 

probability assignment m2  of the event C has the focal elements C j , j=1,...,m. The combined evidence A has the basic 

probability assignment: 
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 A basic difference with the Bayessian reasoning is that the belief is assigned to the focal elements only if some 

evidence occurs. Suppose that Ω consists from four focal elements A, B, C, D and that an evidence confirms the focal 

element A with belief µ. The remaining belief 1- µ is assigned to Ω. Thus m(A)= µ,  m(Ω)=1- µ,  m(B)=m(C)=m(D)=0. 

The idea behind the Dempster-Shafer method is that since no other evidence exists, except m(A)= µ the remaining m(Ω) 
represents ignorance and not disbelief to the elements B, C, D. Therefore the remaining m(Ω) is a belief mass free to be 

assigned to anyone of the focal elements upon the knowledge of new evidences. Also Bel(A)= m(A)= µ and Pl(A)= 
m(A)+ m(Ω)=1, which means that Bel and Pl correspond to upper and lower probability of A. In this situation Bayessian 

reasoning should assign the remaining belief to the negation of A, the focal elements B, C, D.  

 Consider now another situation, where there is no evidence for preference of any subset of Ω. Bayessian 

reasoning will assign 0.25 to each focal element in order to represent ignorance. The Dempster-Shafer theory assigns 1 

to Ω and 0 to every other focal element. The risk with Bayessian reasoning is that there is no difference in representing a 

situation where each focal element has a belief of degree 0.25. 

 

B. Object Learning and Classification 

 The final classifier of the vision system uses the Dempster’s rule in order to combine the evidences from two 

different sources of information. In the proposed system the kind of information is statistical as provided by the moment 

invariants and structural since it is provided by the subpatterns approach. 

 During the learning process a set of input objects are presented to the system, they analyzed according to the 

different methods and their class is given as input to the system by a human. 

 In the following it is explained how the basic probability assignments are acquired for both methods.  

 



Classification based on the moment invariants. 
 The logarithms of the moment invariants are considered as features for the recognition in order to reduce the 

dynamic range. In the following the similarity measures among the feature vector fI of the input object and the feature 

vectors fi  i=1,2,...,N of the known patterns that have been stored in a database, are performed. The measures of 

similarity are given by: 
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In the following these distances dIi  are divided by the max{ dIi }, therefore they are normalized to the range [0,1] and a 

possibility distribution [42] is obtained π i , i=1,2,...,N. These possibility measures are reordered in such a way that the 

ordered set of their focal elements to be a consonant set, i.e.: 

 

π π π1         ≥ ≥ ≥ ⇔ ⊆ ⊆ ⊆2 1 2K KN NA A A  

 

where the set A1  contains the pattern with the maximum similarity measure, the set A2  contains the elements of the set 

A1  and the next pattern with the second largest similarity measure, e.t.a. Therefore, as it has been stated in [42], the 

relations among basic probability assignments and the possibility measures are obtained by: 

 

m Ai i i( ) = − +π π 1  

 

for all i, where π N + =1 0 . 

 

Classification based on the structural information 
 The input object is presented to the structural pattern recognition system and analyzed as described in Section 

IV. The structural and qualitative nature of the object description does not implies any exact and accurate measurements. 

Therefore, the procedure of acquiring the basic probability assignments lacks a strong theoretical background and is 

based on intuitive and experimental criteria. 

 The procedure of assigning the basic probabilities should satisfy the following requirements: 

• To assign the highest basic probability to a specific pattern, if the structural description of the input object is the 

same with the description of the pattern. 

• To assign a high value basic probability to a pattern that has a quite similar description with the input object. 

• To assign a low value basic probability to a pattern that has an important different description with the input object. 

 

A procedure that satisfies the above constraints is the following: 

 The half of the initial maximum basic probability (i.e. 0.5) is assigned to a pattern that has exactly the same 

type and location of end and tree points as the input object. Each difference at the location and the type of the end and 

tree points decreases the amount of the initial basic probability that is assigned to the pattern by a certain penalty value. 

Suppose that the input object has N I  end and tree points, that the i-th pattern has N i  end and tree points and that M of 

these points are identical to location and type among the input object and the i-th pattern. That means that in both 

descriptions N NI i+  discrete end and tree points exist and that N N MI i+ − 2  of them are different between the two 

descriptions. The penalty value is 0.5/( N NI i+ ) for each difference; therefore for two identical descriptions the 

assignment is 0.5 and for two completely different descriptions the assignment is 0. 

 The other half of the initial maximum basic probability assignment (i.e. 0.5) is assigned to a pattern that has 

exactly the same type, locations and orientations of subpatterns as the input object. Each difference at the location of the 

subpatterns decreases the amount of the initial basic probability assignment by a certain penalty value. Each difference 

at the type and the orientation of the subpatterns decreases the initial basic probability assignment by a smaller penalty 

value, in the case of the same subpatterns location. Following the analysis of the end and tree points, the penalty value is 

0.5/( N NI i+ ) for each difference at the locations of the subpatterns. The penalty value is smaller for differences at the 

type and the orientation of subpatterns that have the same location, in order to increase the immunity of the system 

against noise that does not alter the topological description but influence to a subpattern characterization only. Therefore 

the penalty value in this case is 0.2/( N NI i+ ). 

 The initial basic probability assignment of a pattern is the summation of the initial basic probability resulted 

from the end and tree points and of the initial basic probability assignment resulted from the subpatterns. Each basic 

probability assignment results from the division of each initial basic probability assignment by the sum of the initial 

basic probability assignments in order to satisfy (10). 



 

Classification of the object. 
 The Dempster’s rule of combination (13) is used for the calculation of the basic probability assignments and 

the classification of the object to a certain class. The structural information is critical and invaluable to the whole 

learning and recognition process, because of its ability to discriminate among similar patterns that differ in small holes 

or connected components. From another point of view the statistical information provided by the moments is also 

important for the discrimination of different patterns with similar structure. 
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