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Abstract

A perennial challenge in MRI is reduction of the scan time. An obvious
way to achieve this goal is to simply acquire fewer samples in the k-space.
This strategy poses a problem to estimation (reconstruction) of the image
from the k-space data because the attendant system of equations has be-
come underdetermined. We solve the problem by imposing general prior
knowledge in a Bayesian setting.

1 Introduction

This work concerns reduction of the MRI scan time. A full scan usually involves
acquisition of 256 x 256 samples, arranged in a “raw” data matrix S(k;, ky). The
independent & space variables k, and k; are integers in the range —128, —127,.
+127. Reduction of scan time can be achleved by omitting a number of ky -values
(rows). The omitted k,’s can be chosen such that the loss of mformanon is
minimized [1]. See example in Figure 1. We call data matrices with empty rows,
Sparse.

If no samples at all are omitted, i.e. if the scan is full, mere 2D FFT of
S(ky, ky) suffices to generate an MR image I(z,y),  and y being integers in the
range —128, —127,..., +127. However, in the case of sparse sampling such as
in Figure 1, the attendant inverse problem is strongly underdetermined. Zero-
filling of omitted samples and subsequent application of FFT produces strong
artefacts, rendering the image useless, To overcome this problem, one may invoke
prior knowledge about the image. However, such prior knowledge ought to be
of general nature, so as to avoid bias. In the following, we describe our choice
of prior knowledge and its imposition by way of an iterative Bayesian procedure
that shuttles back and forth between measurement domain and image domain
using FFT and inverse FFT. As already mentioned in the caption of Figure 1,
k, values are not omitted because this yields no scan time reduction [2]. Hence,
estimation of missing data is not necessary in the kg -space, and 1D FET of
all rows of S(k;, ky) can be tacitly carried out prior to all processing described
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Figure 1. k, values (bars) of a sparse 2D sample distribution yielding 57% scan time
reduction. The positions of the used sample positions ky is such that the acquired
information is maximized [1]. The densely sampled central region |ky| < ncentra) = 16
or 32 is used for estimating a low-resolution version of the image. The omitted samples
are estimated with a Bayesian procedure that invokes prior knowledge. Omission of
sample positions in the k; space does not yield scan time reduction and is therefore

not done [2]

below. In keeping with this, the data matrix is henceforth written as S(z, k),
where z is an integer in the range —128, ~127,..., +127.

2 Prior knowledge of MR images

2.1 Preliminaries

In MR, both the data S(z, k,) and the image I(z,y) are complex-valued. In ab-

sence of noise and phase errors, the real part of the image, I'{(z,y) 4 Ret (z,y),
is nonnegative within the perimeter of the object O, and zero elsewhere. The

imaginary part of the image, I (2, y) T (z,v), is zero everywhere. In actual
practice, both I'(z,y) and I"(z,y) contain white Gaussian measurement noise
at all coordinates z,y. The 256 x 256 discrete pairs of these coordinates are
called pizels. In addition, phase errors appear unavoidable and result in mixing
of I'(z,y) and I"(z,y). These phase errors need to be estimated and taken into
account. The remainder of this section treats the various kinds of prior knowl-
edge used in the Bayesian estimation of the image from sparse (i.e., incomplete)
data, including the object perimeter and the phase correction.

2.2 The object prior

An important piece of general information is contained in the probability distri-
bution of differences of neighbouring pixel intensities within O: Fuderer found
empirically that this distribution possesses Lorentzian (Cauchy) shape [3], and
used it to reduce MR image estimation artefacts. This property was applied
later by Marseille et al. [4, 5], Lettington and Hong [6], and McNally [7].
Defining

Sy(a,y) & Fz,y) - I'(z,y - 1), (2.1)
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one can express the probability distribution of the §’s as T
1 oo

Sy(z,y)) = , 2.2 Lok

PO = e ) 22 -

where (z,y) € O, and 2a is the width of the distribution at half height. Because |
no k, samples were omitted, we do not consider intensity differences in the z

direction.
For later use, note that one can write for the case of an image column I},

comprising for example two separated pieces of object, labeled 1 and 2, .
0y(z) = DI, (2.3) ‘

where d, () is the column vector of all &, (z,y) with common z, and D is defined
by

(2.4)

In Equation (2.4), 0 and 0 represent rectangular and triangular zero matrices
of various sizes, respectively.

The size of a can be found by least squares fitting the model of Equation (2.2)
to the experimental distribution. However, this distribution is strongly affected
by the intentional omission of samples. Rather than fitting the model, our ap- ‘
proach is as follows [5]. First we produce an image by zero-filling the omitted f
samples and applying mere 2D FFT and phase correction. Note that this image '
is distorted by Gibbs ringing. Next, a is estimated from R

MR s
z,Y)€ I
a = 5 ———y——o~_—l——, (25) L

where Vo is the number of pixels belonging to the object. In words, a is de- i
termined by the standard deviation of the intensity differences of the Gibbs T
ring-distorted image. The size of a is not altered in any stage of the remaining
reconstruction process, experiments indicating that such alterations have only

marginal effect.
For the sake of simplicity, we assume that the Lorentz distribution applies also ‘f
B

to individual columns I of I, and that a is the same for each column.

2.3 The background prior

In the real part of a phase-corrected image, one distinguishes the object O and !
the background B. Both O and B contain white Gaussian measurement noise o
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with zero mean and standard deviation . Thus the probability distribution for
a background pixel can be expressed as

! 2
p(f’(%@/)) = U\}% eXp(—I (;E(’If) ), with (z,y) € B. (2.6) |

The imaginary part of a phase-corrected image contains only white Gaussian
measurement noise, with zero mean and the same standard deviation ¢ and can
therefore be called background everywhere. Hence, the probability distribution
of a pixel at any position in the field of view (FOV) can be expressed as

' 1 I"(z,y)?

p(I"(z,y)) = o exp(— 53 ), with (z,y) € FOV. (2.7

2.4 The object perimeter

The perimeter of an object can be estimated from a histogram of pixel infensities
[8]. Figure 2 shows an example for a full (i.e. 256 x 256) scan of a slice
of a human head. The histogram shows two distinct peaks, the left-hand one
originating from the noise, the right-hand one from the object. In the transition
region between the two peaks it is difficult to classify the pixel values. One way
to classify is to assign all pixel values between zero and the left-most minimum in
the transition region as belonging to the noise. In Figure 2 this criterion appears
easily applicable. However, for other objects, such as a spine with lungs, the
classification can be problematic [5].

As in Section 2.2, an additional complication is that our scans are sparse. In
order to avoid hampering the pixel classification by Gibbs ringing, we estimate
the object perimeter from only the fully sampled central part of the data matrix
S(z, ky), |ky| < Ncentrat [5, 8], Ncentral usually being 16 or 32. The procedure is
as follows. 1

1. Zero-filling of the samples ky > Ncentral. This removes ringing due to the
irregular sampling shown in the right half of Figure 1.

2. Row-wise weighting of the central samples (|ky| < 7icentral) by @ Hanning
window. This removes ringing due the fact that the signal has not nearly
died out at |ky| = ncentral-

3. FFT of each column.

The resulting image has been freed from ringing, but now the resolution is low
so that classification of pixels remains problematic.

To cope with these complications, we devised an alternative classification
method based on the probability density function for measurement noise in a
background pixel of the magnitude image |I(z,y)| [9]

b1, )l ) = L ey @2 (28)
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Figure 2. (a) 256 x 256 real-world MR. image of an axial slice of a human. brain, and
(b) histogram of pixel intensities I'(z,y) corresponding to (a). Pixel values are scaled
between 0 and 1. Two peaks can be distinguished in (b). The left-hand peak, near
zero, originates from the noise in the backgrond; the right-hand peak, around 0.45,
originates from the object

Note that the distribution of Equation (2.8) peaks at |I(z,y)| = 0. Hence, fitting
Equation (2.8) to the left-hand peak of the pixel intensity histogram derived from
the low-resolution magnitude image, immediately yields . Figure 3 shows the
result of this fit for the same object as in Figure 2 and ncentra) = 32. Empirically,
assigning all pixels with [I(z,y)| > 50 to the object appeared a good criterion for
automatic perimeter estimation. It turned out that the remaining classification
errors have no significant consequences so long as they amount to assigning a
background pixel to the object. However, the reverse error, i.e. assigning an
object pixel to the background, can lead to unacceptable image distortion.

2.5 The phase correction

The phase correction is estimated from the low-resolution image described above,
prior to taking the absolute value. The phase of each pixel follows simply from
the arctan of the ratio of the real and imaginary parts. A typical result for a slice
of a human head scanned with the low phase-distortion “spin-echo” technique
[5] is shown in Figure 4. It can be seen that the phase varies smoothly over the
low-resolution image. There appeared no need to improve the phase estimate at
a later stage in the iterative Bayesian reconstruction in which omitted samples
are approaching their true values and need not be zero-filled per se to avoid
strong Gibbs ringing. However, when using the high phase-distortion (but faster)
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Figure 3. (a) Fit of the model function Equation (2.8) to the noise-peak of the
histogram of the low-resolution magnitude image of the object shown in Figure 2(a).
The standard deviation of the noise o is equated to the position of the top of the model
function, and (b} resulting object perimeter estimate by setting the threshold at 5o

“gradient-echo” technique, it appeared advantageous to update the phase after
each iteration of the reconstruction procedure.

2.6 The prior knowledge combined

The prior knowledge about pixel intensities and pixel intensity differences will
now be combined. We do this for each column I, of the phase-corrected im-
age I' separately, ignoring correlation between columns. According to [10], the
probability that events {41, Ag,..., 4, } occur simultaneously can be written as

p(Al,A% s ,An) = p(Al) p(A2‘A1) p(ASIAZaAl)a o 7p(An(ATl—17 oo )Al)'

If event A,, is independent, then p(Am|Am—1,...,41) = p(An). However,
if event A,, depends on event A,,—; but is independent of all others, then
p{AnlAm—1,..., A1) = p(A;m]Am—1). Application of these results to the real
part of a phase-corrected image column I/, with elements {I(1), I} (2) (n)},
and comprising for example a single object with perimeters and m, ylelds

p(lz) = pL(1)p(2)) ... p(I(1) X

p(L (1 + DI D) pUL (1 + L (1 +1)) ... p(Iy(m — DT (m — 2)) X
(L (m)) p(I;(m + 1)) ... p(I;(n)). (2.10)
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Figure 4. (a) Low-resolution (ncentrat = 32) phase estimate (proportional to grey
value) of a slice of a human brain scanned with the “spin-echo” technique. Within the
object, the phase varies gradually between —x (black) and « (white), and (b) phase (in
radians) of one image, row. The dotted and solid line are the phase of the full-resolution
image and low-resolution image respectively

Noting that terms of the form p(I,(l + r)|I,(I +r — 1)) are governed by the
Lorentzian probability distribution treated in Section 2.2, one can finally write

1 1 , 9
p(1z) WGXP[_F_;LOZI (z,9)°]
1 1 1 2
X me}{p[—ﬁgl (l‘,’y)]
< ] ! — (2.11)
L5 an(L+ 8, (0,07 a)

with z = =128, -127,...,127, b, is the number of background pixels (i.e., out-
side Oy), n = 256. .

We mention that additional knowledge is often available when measuring a
series of MR scans of an object that varies with time. This pertains to the fact
that each scan of the series can benefit from information gained from previous
scans [11]. The latter is beyond the scope of this contribution.
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3 Bayesian image reconstruction

3.1 Strategy for underdetermined systems

Bayesian estimation lends itself well to accommodation of prior knowledge
[12, 13, 14]. For the present problem, the well-known Bayes formula can be

written as (SalLu) p(L)
Plog|iz) Plis

p(L:S:) oGy (3.1)
in which I, is a column of the image I and S; is the related column of the sparse
raw data matrix S(z, ky). Furthermore, the posterior p(I;]S;) is the probability
density function of I, after collecting the data, the likelihood p(Sy|l;) is the
probability density function of the noise superimposed on the data, the prior
knowledge p(I;) has been treated above, and the evidence p(S;) is just a scaling
factor. The task is to find for each z the image column I, that maximizes the
posterior p(I;|S;). In the standard Bayesian procedure, the resulting image is
a trade-off between the measured data and the invoked prior knowledge. The
present approach differs from this in the following sense. Since S, is sparse, our
system is underdetermined. We maximize the posterior by adjusting the omit-
ted samples subject to the available prior knowledge and leaving the measured
samples untouched. Note that not touching the data amounts to treating them
as ideal which in turn implies that the likelihood p(S;|I;) becomes a constant
factor.

3.2 Maximization of the posterior
Maximizing the posterior is equivalent to minimizing minus its natural logarithm.
Dropping constant terms, the natural logarithm of the posterior becomes

£y def —Inp(l|S;) =

(3.2)
5oz 'BI, + 3 [l + 6(y)?/a?] + 52 VT 1L,
yeO

where B is an n x n diagonal matrix with diagonal entries

s ={ 3 1020 s

The quantity £, defined in Equation (3.2) is to be minimized as a function of
the omitted samples, subject to the conditions

1) I, = W™i5,, (3.4)
2) measured data remain unchanged, '

where W is the DFT matrix

w = exp(2mi/n),
W(u,v) =w" with ¢ u=-n/2,...,n/2 -1, (3.5)
v=-n/2,...,n/2—-1.




Bayesian Image Estimation 271

Figure 5. Spin-echo scan time reduction by 57% for a slice of a human head by
sparse sampling. (a) Magnitude of the sparse data matrix, |S(ks, ky)|, on a logarithmic
scale. The black rectangle and black lines represent omitted data, (b) same as (a), but
now the omitted samples have been estimated with the iterative Bayesian procedure
described in this paper, (c) 2D FFT of the phase-corrected reconstructed data matrix
S(kz, ky), and (d) difference between (c) and the 2D FFT of the full scan
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Although £; is not convex we found empirically that a gradient search for
its minimum does not critically depend on the choice of starting values of the
omitted samples [5]. Hence, starting with zeros is adequate. For minimization,
we use the iterative conjugate gradients method [15]). The search direction, dS’;J ),
in iteration j is given by

VeSO oy

VLS9~ e °

The columns S, comprise measured data and omitted data. As mentioned
earlier, the former are left untouched whereas the latter are updated in each
iteration. The gradient of £, with respect to the omitted data is [5]

dSYW = —ve, (59 + (3.6)

Vi, (S,) = MW(gf_m )E, (3.7)
in which M is a diagonal matrix with diagonal entries
_J 0 if S;(ky,) has been measured,
M(ky, ky) = { 1 if Sy(ky) has been omitted, (3:8)
and
oly Ol .0l :
0ly 0y 0ty 06y(z) 1, v, 0y pop
— = = (=% D (——~ .
ol o, Va6, o - (ol D (G5 s ) (3.10)
04, 1
5[4/ = (FI;I)T B (3.11)
0L, 26y(z,y)
* = 2y 3.12
96y (z,y) a? + 6, (z,y)? (3.12)

where ¢ = +/—1. Finally, the linear search parameter A; of the omitted data
update in iteration j is the smallest possible positive number that minimizes

£y( () +A; asy) ) [5]. The iterations are pursued until the changes of the omitted

samples become insignificant. Note that in each iteration the agreement between

the inverse FFT of the image and the measured samples is exact.
Summarizing, the iterative Bayesian image estimation from sparse raw data

runs as follows.
L. FFT in k, space of measured rows of S(ks, ky), resulting in S(z, k).
2. Zero-filling of omitted rows of S(z, ky). |
3. Estimation of a starting image by FFT in k, ‘space.

4. Estimation of a low-resolution image from the fully sampled region
|ky| < nicentrar (see Figure 1), ncentral =16 or 32, —128 < k, < +127.
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5. Estimation of the object perimeter and phase error map from the low-
resolution image, to be used as prior knowledge.

6. Correction of phase errors in the current image.

7. Computation of an image update from prior knowledge. This can be done
for each column separately.

8. Undoing of the phase correction.

9. Conversion of the image update to the k, space by IFFT. Measured data
are left intact.

10. If the changes of omitted samples are sufficiently small, then the current
image becomes the final image. Else, go to 6 preceded by a better phase
error estimate in the case of gradient-echo scanning.

Reconstruction (estimation) of an image column from real-world raw data usu-
ally converges in ten to fifteen iterations. Using a SUN SPARCstation 5 and
Fortran77, this takes 0.2 seconds. For a complete image, this is to be repeated
for up to 256 columns. Figure 5 shows a successful application to a spin-echo
scan of a slice of a human head yielding 57% scan time reduction. With gradient
echoes, the scan time reduction is less because of the phase errors incurred.

4 Conclusions

e Sparse irregular sampling combined with Baysian image estimation and
prior knowledge yields substantial scan time reduction.

e Additonal prior knowledge is sought, especially for “dynamic” scans.

e The computation time is presently too long for on-line use.
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