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Abstract: This paper describes a binary image representation schenie, called Image Block Representation and
presents an algorithm for the fast implementaiion of the Radon transform on bluck represented binary images. The
main purpose of the Imuge Block Representation is (o provide an efficient binary imuge representation that permits the

execution of operations on image areas instead of image points.
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1. INTRODUCTION

An advantageous representation for binary images, which is called lmage Block Representution (IBR) and
constitutes an efficient tool for image processing and analysis techniques, has been recently appeared i i {-[4]. The most
important characteristic of the image block representatic,. is that a perception ol image parts greater than a pixel, is
provided to the machine and therefore, all the operations on the pixels belonging to a block may be substituted by a
simple operation on the block. Taking this feature into account, the implementation of new algorithms for binary image
processing and analysis tasks, leads to substantial reduction of the required computational complexity. Using the block

represented binary images, the fast computation of the Radon transform [5] is achieved.
2. IMAGE BLOCK REPRESENTATION

A bilevel digital image is represented by a binary 2-D array. Due to this kind of representation, there are
rectangular areas of vbject value 1, in each image. These rectangulars, which are called dlocks, have their edges parallel
to the image axes and contain an integer number of image pixels. At the extreme case, the minimum rectangular area of
the image is one pixel.

Consider a set that contains as members all the nonoverlapping blocks of a specific binary image, in such a
way that no other blcck can be extracted from the image (or equivalently each pixel with object level belongs to only
one block). This set represents the image without loss of information. It is always feasible to represent a binary image
with a set of all the nonnverlapping blocks with object level. This representation is called lmage Block Representation

(IBR).
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The IBR concept leads to a simple and fast algorithm, which requires just one pass of the image and simple
sokkeeping process. In this pass all object level intervals are extracted and compared with the previous extracted

blocks. A block represented image is denoted as:

Fl =4 1 i=01..,n-1} (1)

where 1 is the number of the blocks. Each block is described by the cocrdinates of two corner points, i.e.:

by = (X, s Xay + Vi, V) (2)

where for simplicity it is assumed that: xy, Sy, and ¥y < )5, 38 siown in Fig. 1.
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Ficure 1. Each block & is described by the coordinates ol its two comer wints.
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3. THE RADON TRANSFORM

The Radon transform, g(s,0), of the image function f{x,y) is defined as (e projection (or the integral) of fx.y)

along the line
s=xcos+ysinl 3

oriented at angle 0 counterclockwise from the positive y axis a distance s from the origin. The cost of computing the

C . . . . . 2 . . . .
projections of an entire Nx/V image for a specific angle 0 is O(N*) additions plus an overhead to decide which pixels
hit the integration lines (3). In a lot of applications many such projections at different angles are required.

If f{x,y) is unity inside a region occupied by a shape and zero elsewhere, then the image projections are (he
shape projections. Thercfore in a block rerpesented image it is adequate to calculate the summations of the projections

of the blocks along the integration lines (3) at a specific angle 0, as de fined:

fo—1

5,0 =3 g, (5,0
g(s,0) ‘=Oéh|( ) N
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3.1. Computation of the projections of one block

Consider the block b with coordinates (X, X2, J, > ) Then the projections of the block b along the lines (3)
for a specific angle ¢ are shown in Fig. 2. For the computation of the projections the specific lines s where the four

corners of the block belong are first calculated:

5 =x cos0+y;sin0

5y =x,cosl + y;sin0
sy =2x,cosl + y sind (5)
5, = X5 cosf + y,sin ()

For each s from s, = Min{s;,55,55,54) 10 5,5 = MaX (87,97, 5,5, ) and from each and for each y [rom y; to
y, , the number of pixels that hit the line 5 is calculated and are added to the accumulator g(s,¢). For the calculation of

the number of pixels n it is enough to determine the values X, Xumay that correspond to the minimum and the

maximum value of x that belongs to the specific line s for the specific y. These calculations are defined by:

(=05~ ysin0)/cos0,

X £(5-05-ypsin0)/cos = x,

Xmin =1 X1s x; >{(s-05- ysind)/cosd)
X5, (s—05~-ysind)/cosl) > x,
(5+049 - psin0)/cos@, x; <(s+049- psind)/cost/ <x

1 } 2

Xinax Xy, X > (5+049 - ysind)/ cos0

Xy, (s+049 = ysin0)/cosl > x,
(6)
1= Xpax = X + I
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Figure 2. The projection lines that hit the block b for a specific angle @,
3.2. Computation of the projections of the whole image

The computation of the projections of the whole image for a specific angle 0 or for a set of angles {(/;} tlakes

place in terms of the computation of the projections of each block &, i=0,l,...,k=1. The computational time of the

proposed algorithim is much less in comparison with the computational time of the algorithm that determines for cach
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«el the corresponding line. Specifically the required time of the proposed algorithm is 3 times less for small images
ap to 100 times less for large 512x512 images in comparison with the algorithm that determines the corresponding line

for each pixel of the image,

4. CONCLUSION

The image block representation may be seen as a physical model for the representation of binary images. Each
block is represented by four integers, the coordinates of the upper left and lower right corner in vertical and horizontal
axes. The image block representation is an information lossless process and therefore, from an information theory
perspective, it is equivalent to the 2-D array image represcntation. Morcover, the image block representation is
advantageous for image modelling. Usually, a block represented binary image requires considerably less storage space
and therefore it is characterized by less entropy. The main advantage of the algorithm {or the fast implementation of the
Radon transform is that the complexity is independent of the image size, in contrast to implementations that are based

on the 2-D array image representation, in the sense that the number of blocks is unchanged under image magnification.
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