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Abstract
In the field of image analysis, the discrete orthogonal moments have better image representation capability than the continu-
ous orthogonal moments and geometric moments. Krawtchouk moments are discrete orthogonal moments able to capture 
the local features of an image. The disadvantage of the Krawtchouk moments is the high computational cost which is 
increased as higher-order moments are involved in the computations. In this paper, we propose an effective approach for the 
computation of Krawtchouk moments. The gray image is decomposed in a set of binary images. The most significant binary 
images are represented using Image Block Representation and their moments are computed fast using block techniques. 
The least significant binary images are substituted by a constant ideal image called "half-intensity" image, which has known 
Krawtchouk moment values. The proposed method has low computational error, low computational complexity and under 
certain conditions, it is able to achieve real-time processing rates.
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Introduction

Moments and moments functions have been widely used 
as features in image analysis and scene analysis [1–4], in 
stereo image matching [5], in image retrieval [6], image and 
object recognition [7–10] and image watermarking [11–13] 
applications. Other research fields where the moments can 
be used are classification [14], pattern recognition and 3D 
image recognition and understanding [15–17].

The geometric moment of order (p,q) of a 2-D function 
g(u,v) is defined as:

The initially used image moments were based on geo-
metric moments and their variations which are the central, 
normalized central and moment invariants sets [18]. The 
problem with the geometric moments is the large variations 
on the dynamic range of values and their numerical errors 
due to the approximation of the integrals in (1) with sum-
mations for digital images [18].

The problem above is solved by the use of continuous 
orthogonal functions as a basis set of moments. In this way, 
an image can be represented with no redundancy or informa-
tion overlap between the moment values. Well-known con-
tinuous orthogonal moment sets are Zernike [19], Legendre 
[19], Fourier-Mellin [20]. However, some polynomials, such 
as the Zernike and Legandre polynomials, have some draw-
backs. In particular, the Zernike polynomials are defined 
over the unit circle, while the Legendre polynomials are 
valid in the range [− 1, 1], thus the continuous orthogonal 
moments suffer from geometrical errors due to the required 
domain transformation and also from numerical errors due 
to the quantization processes [21].

The discrete orthogonal moments, which are based on 
discrete orthogonal polynomials, do not have digitiza-
tion and coordinate space transformation errors, thus are 
capable of superior image representation. Well-known dis-
crete orthogonal moment sets are the Tchebichef [22], the 
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Krawtchouk [23], and the Hahn moments [24]. The Hahn 
moments are considered as a generalization of Tchebichef 
and Krawtchouk moments. TheTchebichef moments are 
able to capture the global features of an image, while the 
Krawtchouk moments capture local features [25]. The dis-
criminative power of the moments has as a result the recon-
struction of the image from a finite number of moment 
values [22, 23]. For this reason, moments have been used 
as features for image description and analysis. In fact, the 
Krawtchouk moments have a smaller reconstruction error 
than Zernike, Legendre and Tchebichef moments [26].

The order of the moments determines the type of image 
information that is described. The low-order moments 
represent the coarse features of the image; the high-order 
moments represent more detailed features, with increas-
ing moment order, the representation detail of the image 
increases too.

The computation of moment requires vast computational 
effort, especially as the moment order increases. Various 
approaches have been proposed for the reduction of the com-
putational effort. Some are based on the decomposition into 
rows and row segments on binary images [27–29]. Spiliotis 
and Mertzios [30] proposed a real-time method of geomet-
ric moment computation on binary images, which is based 
in an innovative image representation called Image Block 
Representation (IBR). Papakostas et al. [26], proposed the 
Image Slice Representation (ISR) for gray images which is 
used for the computation of discrete orthogonal moments. 
Spiliotis and Boutalis [30] proposed an extension of the IBR 
for gray images, which permits the real-time computation of 
geometric moments in gray images.

In this paper, we exploit the rationale introduced in 
[30] and propose an approach for the fast computation of 
Krawtchouk moments. These moments are discrete orthogo-
nal moments capable of capturing the local features of an 
image, but they require a high computational cost, espe-
cially when higher-order moments are involved in the com-
putations. The gray image is decomposed in a set of binary 
images; the most significant binary images are represented 
using Image Block Representation (IBR) and their moments 
are computed fast using block techniques. The moments of 
the remaining least significant binary images are replaced by 
surrogates that have been computed on a constant ideal image 
called “half-intensity” image, which has known Krawtchouk 
moment values. The proposed method has low computational 
error, low computational complexity and under certain condi-
tions, it is able to achieve real-time processing rates.

The rest of the paper is organized as follows. In the next sec-
tion, the image block representation for binary and gray images is 
reviewed. Next, the direct computation of Krawtchouk moments 
on binary images is reviewed, followed by their fast computa-
tion using block representation. After that, the computation of 
Krawtchouk moments on grayscale images is introduced using 

the Image Slice representation (ISR) method and the proposed 
method, which is based on the decomposition of the gray image 
in bitplanes. Experimental results follow that show off the supe-
riority of the proposed method in respect to computation time 
compared to both of the direct method and the state-of-the-art 
ISR. The last section is devoted to the conclusions.

Block Representation of Binary and Gray 
Images

Block Representation of Binary Images

In a binary image, the pixels with object level are represented 
by a set of non-overlapping rectangles. Their edges are parallel 
to the axes, in such a way that every object pixel belongs to 
only one rectangle. These formed rectangles are called blocks 
and this representation is called Image Block Representation 
(IBR). The following definitions clarify the IBR.

Definition 1  A block is called a rectangular area of the 
image with edges parallel to the axes of the image, contain-
ing pixels with value 1, i.e. object level luminance.

Definition 2  A binary image is represented by blocks if it 
is represented by a set of non-overlapping blocks, and each 
image pixel with value 1 belongs to one and only one block.

The IBR process as described in Algorithm 1, is a fast pro-
cess without numerical computations and requires one image 
scan and simple pixel checking operations.

Algorithm 1  Image Block Representation [30, 31].

Step 1: Consider each line y of the image f and find the 
object level intervals in line y.

Step 2: Compare intervals of line y with blocks of line y-1.
Step 3: If an interval does not match with any block, this is 

the beginning of a new block.
Step 4: If a block matches with an interval, the end of the 

block is in the line y.
A binary image represented by blocks described as 

f (x, y) =
{

bi ∶ i = 0, 1, ..., k − 1
}

 , where k is the number of 
the blocks and bi is the i-th block that is described by the coor-
dinates of two opposite diagonal angular points as:

Image Block Representation of Gray Images

Consider a gray image with intensity function g(x,y), dimen-
sions NxM and 2n gray levels. The gray image can be decom-
posed into n binary images; each binary image is a bitplane 

bi =
(

x1,bi , x2,bi , y1,bi , y2,bi

)
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of the original gray image. In other words, the pixel values 
of each binary image are derived from the bits of the same 
significance of the values of the corresponding pixel of 
the gray image. The first binary image is composed of the 
most significant bits (MSB) of the pixel values of the gray 
image g and is defined as pn-1, the second most important is 
defined as pn-2, while the bitplane with the least significant 
bits (LSB) is defined as p0. The relation between the gray 
image g(x,y) and the n binary images is:

In Fig. 1, a sample of test gray images is demonstrated. 
Figure 2 demonstrates the decomposition of the test gray 
image of Fig. 1e according to the above rationale [30]. The 
test image of Fig. 2a which has 256 Gy levels, is decom-
posed to the 8 corresponding binary images. It can be 
observed that lower-order binary images look quite noisy. 
This feature is exploited in the sequel for the reduction of 
the computational cost of moment calculations. The n binary 
images resulting from the decomposition of the gray image 
can be represented by blocks.

Fast Computation of Krawtchouk Moments 
on Binary Images

Direct 2‑D Computation of Krawtchouk Moments 
on Binary Images

The 2-D Krawtchouk moment of order pq of an image inten-
sity function f (x,y) with size NxM is defined as:

where Kp(x; s1, N) is the p-th order orthogonal Krawtchouk 
polynomial with respect to x axis, which is defined by the 
following recursive relation:

where

Also the parameters A and B are defined as:

g(x, y) = 2n−1pn−1(x, y) + ... + 21p1(x, y) + 20p0(x, y).

(4)Qpq =

N−1
∑

x=0

M−1
∑

y=0

Kp(x;s1,N)Kq(y;s2,M)f (x, y)

(5)

s1(N − x + 1)Kp(x;s1,N) = A(Ns1 − 2xs1 + 2s1 + x − 1 − p)

Kp(x − 1;s1,N) − B(x − 1)(1 − s1)Kp(x − 2;s1,N)

(6)
Kp(0;s1,N) =

√

s
p

1
(1 − s1)

N−pN!

p!(N − p)!

Kp(1;s1,N) = (Ns1 − p)

√

1

Ns1(1 − s1)
Kp(0;s1,N)
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The polynomial Kq(y; s2, M) of q-th order with respect to 
y axis is calculated in the same way.

The computational complexity of Krawtchouk polynomi-
als is reduced taking into account the symmetry property 
[32], which is demonstrated in Fig. 3 and defined as:

(7)

A =

√

(N − x + 1)s1

x(1 − s1)

B =
s1

1 − s1

√

(N − x + 1)(N − x + 2)

x(x − 1)

(8)Kp(x;s1,N) = (−1)pKp(N − x;s1,N)

The calculation of Krawtchouk polynomials from (6) 
for large values of N leads to extreme values that produce 
numerical instabilities, as proved in image reconstruction 
from its computed moment values. Using input images with 
dimensions up to 2048 × 2048, the Krawtchouk polynomials 
and the moments are calculated correctly.

In addition, the parameters s1 , s2 ∈ (0, 1) are decimals 
numbers and defined as two factors that determine the posi-
tion and displacement of the Krawtchouk polynomials in the 
image. In this way, certain image features can be extracted. 
If s1 < 0.5, then the polynomials are shifted to the left, if 
s1 > 0.5, then the polynomials are shifted to the right of the 
image. If s2 > 0.5, then the polynomials are shifted to the 
top of the image and if s2 < 0.5, then the polynomials are 

Fig. 2   Decomposition of a 
gray image Horses with size 
1024 × 1024 and 256 Gy levels 
into 8 binary images. a The 
original gray image. b–i The 
binary images p7 at b derived 
from the most significant bits, 
and p0 at i derived from the 
least significant bits
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shifted to the bottom of the image. If s1 = s2 = 0.5, then the 
polynomials are in the center of the image.

An image with size N × M can be reconstructed from a 
set of Krawtchouk moments up to the order P × Q, using the 
following relation:

where  x = 0, 1, 2, ...,N − 1 ,  y = 0, 1, 2, ...,M − 1 and 
P ≤ N,Q ≤ M . If the number of moments used for recon-
struction is equal to the number of image pixels, i.e., 
P = N,Q = M , then the reconstructed image is identical to 
the original image.

Fast Computation of Krawtchouk Moments on Block 
Represented Binary Images

In a binary image, assume that the brightness of the object 
is set to 1 and the brightness of the background is set to 
0. As a result, only the pixels that describe the object 
will take part in the calculation of the moments. Thus, 
the Krawtchouk moments of a block represented binary 
image can be defined as:

Since all the pixels of image f(x,y) with value 1 belong 
to the k blocks, the above Eq. (10) rewritten as:

(9)f (x, y) =

P−1
∑

p=0

Q−1
∑

q=0

QpqKp(x;s1,N)Kq(y;s2,M)

(10)Qpq =
∑

x

∑

y

Kp(x;s,N)Kq(y;s,M) ∀x, y ∶ f (x, y) = 1

Exploiting the rectangular form of the blocks with 
edges parallel to the image axes, the Krawtchouk moments 
of a block b are calculated as follows:

The double sum of Krawtchouk polynomials is rewritten 
as the product of two separate sums, each sum containing 
the polynomial terms for the horizontal and vertical axis of 
the block, respectively. Using (12), Eq. (11) is rewritten as:

Fast Computation of Krawtchouk Moments 
on Gray Images

In this section, we present two alternative approaches, which 
use the idea of IBR for the computation of Krawtchouk 
moments on gray images. The first one is based on Image 
Slice Representation of gray images and was developed 
by the authors in [26]. We present this approach for com-
parison reasons. The second one is the proposed in this 
paper approach, which is based on the idea of decomposing 
the gray image in a set of binary images using the image 
bitplanes.

ISR Method for Computation of Krawtchouk 
Moments on Gray Images

For the fast computation of Krawtchouk moments on the 
grayscale images, Papakostas et al. proposed the Image Slice 
Representation (ISR) method [26]. The main idea behind the 
ISR is that a grayscale image consists of pixels with differ-
ent intensities with values in the range of [0, 255], as it is 
shown in Fig. 4a.

Then, the gray image is decomposed into L binary 
image slices, where L is the maximum intensity value of 

(11)Qpq =

k−1
∑

i=0

x2,bi
∑

x=x1,bi

y2,bi
∑

y=y1,bi

Kp(xk;s,N)Kq(yk;s,M)

(12)

Qb
pq

=

x2,b
∑

x=x1,b

y2,b
∑

y=y1,b

Kp(x;s,N)Kq(y;s,M)

= Kp(x1,b;s,N)

y2,b
∑

y=y1,b

Kq(y;p,M) + ... + Kp(x2,b;s,N)

y2,b
∑

y=y1,b

Kq(y;s,M)

=

x2,b
∑

x=x1,b

Kp(x;s,N)

y2,b
∑

y=y1,b

Kq(y;s,M)

(13)Qpq =

k−1
∑

i=0

x2,bi
∑

xk=x1,bi

Kp(xk;p,N)

y2,bi
∑

yk=y1,bi

Kq(yk;q,M)

Fig. 3   Symmetric properties of Krawtchouk polynomials
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the image’s pixels, as it is depicted in Fig. 4b. For exam-
ple, if a grayscale image has 256 brightness levels, the 
number of slices that will be extracted is 256. Each image 
slice is unique and the pixels in it has only the values 0 or 
p ∈ [1, 255].

Having decomposed the grayscale image into L binary 
slices, the IBR method can be used on each of them. The 
Krawtchouk moments of a grayscale image f(x,y) are com-
puted by

where Tnm(i) is the (n + m)-th order Krawtchouk moment 
of the i-th binary slice and can be computed with the IBR.

Where fi(x,y) is

where bij is the j-th block of slice i and Ki is the number of 
image blocks having intensity fi. Each block is described by 
the coordinates of the upper left and down right corner in 
vertical and horizontal axes.

(14)

Tnm =

N−1
∑

x−0

N−1
∑

y=0

tn(x)tm(y)

L
∑

i=1

fi(x, y)

=

L
∑

i=1

N−1
∑

x=0

N−1
∑

y=0

tn(x)tm(y)fi(x, y)

=

L
∑

i=1

fiTnm(i)

(15)
f (x, y) = {fi(x, y), i = 1, 2, ..., L}

fi(x, y) = {bij, j = 0, 1, ...,Ki − 1}

The above procedure provides some speed up in the compu-
tation process, however, the acceleration in comparison with 
conventional 2D Krawtchouk moments calculation is not great.

Fast Computation of Krawtchouk Moments on Gray 
Images Using Bitplane Decomposition

The pixel values of a gray image are in range [0, 2n-1] and 
the gray image consisted of n binary images. Substituting the 
Eq. (3) in Eq. (4), the following relation that connects the cal-
culation of the Krawtchouk moments of the gray image and 
the n binary images is obtained by:

(16)

Qpq =

N−1
∑

x=0

M−1
∑

y=0

Kp(x;s,N)Kq(y;s,M)g(x, y)

=

N−1
∑

x=0

M−1
∑

y=0

Kp(x;s,N)Kq(y;s,M)

[

2n−1pn−1(x, y) + ... + 21p1(x, y) + 20p0(x, y)
]

=

(

2n−1
N−1
∑

x=0

M−1
∑

y=0

Kp(x;s,N)Kq(y;s,M)pn−1(x, y) + ...

+20
N−1
∑

x=0

M−1
∑

y=0

Kp(x;s,N)Kq(y;s,M)p0(x, y)

)

=
(

2n−1Qp(n−1)pq + ... + 21Qp1pq + 20Qp0pq
)

=

n−1
∑

i=0

2iQpipq

Fig. 4   a Grayscale image with intensity [0,255] and b the ISR decomposition in 256 binary intensity slices
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where pn−1(x, y), ...., p1(x, y), p0(x, y) are the binary 
images that compose the gray image g(x,y) and 
Qp(n−1)pq, ...,Qp1pq,Qp0pq the Krawtchouk moments of these 
binary images which are calculated using IBR and Eq. (13).

The moments of the bitplanes pi do not contribute equally 
to the gray image moments due to the weight factors 2i, as it 
is observed from (16). Therefore, the less important binary 
images contribute less to the moments of the gray image. 
Moreover, the lower-order bitplanes look noisy with continu-
ous black-and-white transitions, and are similar to a chess-
board image or simply with an image with intensity 1/2.

Lemma 1  The moment values of an image with intensity ½ 
are the half of the moment values of an image with intensity 
1.

Proof  Exploiting the rectangular form of the images 
and according to (10), the Krawtchouk moment val-
ues of the "full intensity" image f = 1,∀x, y are 
Qf

pq
=
∑

∀x
Kp(x;s,N) ⋅

∑

∀y
Kq(y;s,M) and the moment val-

ues of the "half-intensity" image h = 1∕2,∀x, y are

The approximated Krawtchouk moments Qm,pq , by replac-
ing the m least significant biplanes with the half-intensity 
image h(x,y) is:

where Qhpq are the Krawtchouk moments of the half-
intensity image, which can be precalculated and used when 
required.

Qh
pq

=
1

2

∑

∀x
Kp(x;s,N) ⋅

∑

∀y
Kq(y;s,M) =

Qfpq

2

(17)

Qm,pq =

n−1
∑

i=m

2iQpipq +

m−1
∑

j=0

2jQhpq =

n−1
∑

i=m

2iQpipq + Qhpq

m−1
∑

j=0

2j

Representation Performance Evaluation on Gray 
Images

Replacing some lower-order bitplanes with the half-intensity 
image, then Eq. (17) leads to a reconstructed image ĝ which 
is similar to the input image g, with a small approximation 
error that we can measure with the MSE metric:

Experimental Results

To evaluate the performance of the proposed method, some 
experiments are carried out. The experiment evaluates the 
speedup of the Krawtchouk moments computation for gray 
images with the proposed method, in comparison to direct 
method (4) and to ISR method [26].

For the experimental evaluation, a computer with a total 
of 8 AMD Opteron cores at 2.2 GHz and 16 GB of memory 
was used. The operating system was Scientific Linux, all 
the programs implemented in C programming language, 
compiled with gcc for serial execution using one CPU core.

Experimental Results for Binary Images

In this section, we present the experimental results made by 
real measurements for the calculation of the Krawtchouk 
moments on binary images. It is noted that the Krawtchouk 
moment values computed using the proposed method in 
binary images are identical with the moment of the direct 
method without error.

MSE =

�∑

x

∑

y
[g(x, y) − ĝ(x, y)]2

∑

x

∑

y
g2(x, y)

�1∕2

.

Fig. 5   Set of binary images with size 1024 × 1024 pixels and the number of blocks k a Shapes with k = 1672 b Text Page with k = 18,753 c 
Chessboard with 10 × 10 pixel squares and k = 5304
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The test binary images of Fig. 5 in different sizes have 
been used. For the size of 1024 × 1024, the number of blocks 
k is 1672 for the image “Shapes”, 18,753 for the image 

“Page” and 5304 for the image “chessboard” with a black-
and-white transition every 10 pixels.

Τhe execution times and the speedup values using the 
direct method of Eq. (4) and the proposed method of Eq. (13) 
for the Krawtchouk moment computation from order 0 × 0 
up to the different maximum order are presented in Table 1. 
The execution time of the proposed method includes the 
time for the IBR and the time for moments computation. As 
it has already mentioned, test images’ dimensions are up to 
2048 × 2048.

In Fig. 6, the speedup values achieved using the pro-
posed are demonstrated. The execution time of the proposed 
method depends on the number k of the blocks of the image 
and the maximum moment order. It is observed that the 
achieved speedup values are very significant, ranging from 
60 to 750.

Quality of Gray Image Reconstruction Using 
the Proposed IBR Moment Calculations

In this subsection, both subjective (optical) and objective 
evaluations of the reconstruction quality are provided, when 
the proposed IBR moment calculation is applied. In Figs. 7, 
8 and 9, the reconstruction of images from the moments 
of (8-m) high-order bitplanes and the moments of m half-
intensity planes are demonstrated. Figure 7a shows the input 
gray image g, while in Fig. 7b–h, the images ĝm represented 
from the (8-m) most significant image bitplanes and m half-
intensity planes of the input image. The image ĝ0 is identical 
to g and is not demonstrated. 

The replacement of the 4 or 5 least significant bitplanes 
with half-intensity images, results in the reconstructed 
images ĝm the human vision system does not distinguish 
particular differences between ĝm and the original input 
image g. Thus, it is expected that an identification system 
that uses the moments as features will classify patterns from 
the two images in the same class and this is a strong qualita-
tive indication for the acceptance of the proposed method. 
So, for the computation of the moments, we can use only 
the first three or four bitplanes and replace the others with 
half-intensity images.

For the quantitative assessment of the quality loss, 
the MSE error values calculated using the metric of (18) 
between the image g and the images ĝm are demonstrated in 
Table 3; it is observed that for m = 4 or 5, the error values 
are small and this substantiates the validity of the proposed 
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Fig. 6   Speedup values achieved using the proposed method for the 
Krawtchouk moment computation from order 0 × 0 up to order P × Q, 
for the test binary images of Fig. 7 for sizes a 1K × 1K, b 1920 × 1080 
and c 2K × 2K pixels
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Fig. 7   a Original test image Horses with size 1024 × 1024 and b–h the reconstructed images from the (8-m) most significant image bitplanes and 
m half-intensity planes, where b m = 7, c m = 6, e.t.c. (h) m = 1. The case of m = 0 results in reconstructed image identical to (a)

Fig. 8   a Original test image Baboon with size 512 × 512 and b–h the reconstructed images from the (8-m) most significant image bitplanes and 
m half-intensity planes, where b m = 7, c m = 6, e.t.c. h m = 1. The case of m = 0 results in reconstructed image identical to (a)
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Fig. 9   a Original test image Boat with size 256 × 256 and b–h the reconstructed images from the (8-m) most significant image bitplanes and m 
half-intensity planes, where b m = 7, c m = 6, e.t.c. h m = 1. The case of m = 0 results in reconstructed image identical to (a)

Table 2   The number of blocks at each bitplane for some of the test images

As p7 is defined the most important bitplane while p0 the less important bitplane

Image Size p7 p6 IBR ISR

p5 p4 p3 p2 p1 p0 Total number 
of blocks

Total 
number of 
pixels

Boat 256 × 256 2102 4152 6276 9800 12,917 14,754 14,968 14,931 57,291 65,536
Elephant 384 × 256 1922 5701 9997 16,264 20,123 21,762 22,203 22,443 87,667 98,304
Baboon 512 × 512 17,241 31,882 44,577 55,208 59,715 60,079 60,049 59,619 247,619 262,144
Horses 1024 × 1024 3896 11,814 27,430 52,806 86,740 122,731 165,026 184,534 570,666 1,048,576

Table 3   The MSE (%) between the original test image and the corresponding reconstructed images from (8-m) most significant image bitplanes 
and m half-intensity planes

Image Size m = 7 m = 6 m = 5 m = 4 m = 3 m = 2 m = 1

Boat 256 × 256 27.57 13.75 6.88 3.53 1.76 0.92 0.53
Baboon 512 × 512 23.90 12.96 6.20 3.09 1.56 0.82 0.47
Horses 1024 × 1024 19.05 9.92 5.53 2.65 1.30 0.73 0.41
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Table 4   Time complexities (sec) and speedup values for the computation of Krawtchouk moments for grayscale images from order (0,0) up to 
different orders, using the proposed IBR, the ISR and the direct method

The proposed method used for (8-m) most significant bitplanes and m half-intensity images, m = 4 amd m = 5. The time for IBR of the bitplanes 
included in the execution times of the proposed method

Images with size 256 × 256

Order of moments Direct Method ISR method Proposed IBR method for m = 4 Proposed IBR method 
for m = 4

Time Time Speedup Time Speedup Time Speedup

4 × 4 0.0293 0.299 0.10 0.040 0.73 0.025 1.17
16 × 16 0.469 1.112 0.42 0.253 1.85 0.138 3.40
64 × 64 7.533 12.469 0.60 2.724 2.77 1.529 4.93
128 × 128 29.934 31.057 0.96 10.482 2.86 5.839 5.13
256 × 256 118.433 106.338 1.11 40.875 2.90 22.812 5.19

Images with size 512 × 512

Order of moments Direct method ISR method Proposed IBR method for m = 4 Proposed IBR method 
for m = 4

Time Time Speedup Time Speedup Time Speedup

4 × 4 0.116 1.344 0.09 0.205 0.57 0.135 0.86
16 × 16 1.877 5.021 0.37 1.524 1.23 0.977 1.92
64 × 64 29.909 39.847 0.75 18.495 1.62 11.523 2.60
256 × 256 477.344 447.297 1.07 281.759 1.69 174.825 2.73
512 × 512 1900.884 1727.689 1.10 1133.146 1.68 694.422 2.74

Images with size 384 × 256

Order of moments Direct Method ISR method Proposed IBR method for m = 4 Proposed IBR method 
for m = 4

Time Time Speedup Time Speedup Time Speedup

4 × 4 0.0654 0.4525 0.14 0.0759 0.86 0.043 1.52
16 × 16 0.703 1.2677 0.55 0.473 1.49 0.301 2.34
64 × 64 11.208 17.791 0.63 4.64 2.42 2.355 4.76
128 × 128 44.806 45.907 0.98 16.848 2.66 8.854 5.06
256 × 256 179.525 156.098 1.15 65.667 2.73 33.833 5.31

Images with size 1024 × 1024

Order of moments Direct method ISR method Proposed IBR method for m = 4 Proposed IBR method 
for m = 4

Time Time Speedup Time Speedup Time Speedup

4 × 4 0.469 4.731 0.10 0.277 1.69 0.167 2.81
16 × 16 7.556 13.359 0.57 1.409 5.36 0.731 10.34
64 × 64 119.498 76.531 1.56 13.26 9.01 6.234 19.17
256 × 256 1908.848 1050.847 1.82 187.03 10.21 85.032 22.45
512 × 512 7639.013 4070.947 1.88 707.243 10.80 323.254 23.63
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method. Similar results have been obtained for all of the test 
gray images used in the experiments.

Speedup Gain Using the Proposed Method 
in Grayscale Images

In this subsection, we are testing the speedup gain of the 
proposed IBR method in comparison with the direct and 
the ISR based methods for Krawtchouk moments calcula-
tion. Table 2 demonstrates the total number of the pixels in 
the grayscale images of Fig. 1 and compares them with the 
number of blocks exported to each bitplane and the total 
number of blocks that extracted using the IBR and the ISR 
method, respectively.

It is observed that in IBR, the number of blocks increases 
as the significance of the bitplane decreases; since the 4 or 
5 lower-order bitplanes are substituted by half-intensity bit-
planes, the total number of blocks of 3 or 4 higher biplanes 
is significantly reduced. In ISR, the total number of blocks 
that are extracted is comparable with the number of pixels. 
Moreover, in ISR, the number L of binary images is 256, 

while in the proposed method, the number of bitplanes used 
n is 3 or 4.

Table 4 represents the computation time of Krawtchouk 
moments with the use of IBR and ISR methods for a number 
of test images with different sizes and the achieved speedup 
in relation with the 2D direct method. It is observed that the 
proposed method achieves better performance than the ISR 
method [26], due to the fact of substitution of lower-order 
bitplanes with half-intensity bitplanes.

In pattern recognition and image analysis applications, 
images with small size are usually used, where a small num-
ber of moments are utilized as features. From Table 4, it can 
be seen that under these conditions, the proposed method 
operates fast in rates that are real time or near to real time, 
where real time is defined by a video rate of 24 frames/sec.

Figure  10 demonstrates the computational time of 
Krawtchouk moments using these methods, for different 
gray images. The execution time of the proposed method and 
the other comparable ISR method include the time for the 
block representation of the binary images and the time for 
the computation of moments. In our method, the moments 
of the half-intensity image are calculated considering the 
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Fig. 10   The speedup values achieved for the computation of 
Krawtchouk moments from order 4 × 4 up to order P × Q, using the 
proposed method for a number of gray test images of different sizes 

and for using (8-m) bitplanes and m half-intensity images, (m = 5) and 
(m = 4) and ISR method
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whole image as one block as described in Lemma 1, with 
negligible computational load. According to the analysis of 
the error that was discussed in the previous subsection, it is 
qualitatively acceptable to use the images g5, g4 with 3 and 4 
real bitplanes and 5 and 4 half-intensity images, respectively. 
For these images, it is observed that the proposed method 
is superior.

In general, the speedup value using the proposed method 
depends on a number of parameters, as: i) The image content 
and the number of blocks required for the representation of 
the higher-order bitplanes. The execution time of the proposed 
method increases with the number of blocks. ii) The num-
ber of the higher-order bitplanes that are used. iii) The image 
size, since the number of blocks does not vary significantly 
for similar images with different sizes. iv) The total number 
of moment values required, since the time for the execution of 
the block representation of the bitplanes is divided among a 
greater number of moments.

Conclusion

In this paper, a fast computation method of Krawtchouk 
moments in grayscale images and a brief description of 
fast calculation of Krawtchouk moments in binary images 
are presented. The method is based on the decomposi-
tion of the input gray image, with 8 bit/pixel, to the cor-
responding bitplanes which are represented using image 
blocks. The lower-order bitplanes look similar to an ideal 
image called half-intensity image with moment values 
equal to the half of full intensity image. Thus, it is ade-
quate to compute only the moments of the higher-order 
bitplanes and replace the least significant bitplanes with 
half-intensity images. This results in significant accelera-
tion while the error between the original image and the 
new reconstructed is acceptable.

Experimental results for gray images with 8 bit/pixel, 
show that the substitution of the lower 5 bitplanes with 
the half-intensity image, results in small error values in 
the reconstructed images and a significant acceleration of 
the computation of moments.

Moreover, under certain conditions usually met in pat-
tern recognition applications requiring a moderate number 
of moment calculations in images of small size, the proposed 
method operates very fast, achieving real-time performance.
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