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Abstract 

 

Most of the currently known option pricing techniques utilize the underlying 

asset price and strike price, its volatility and time to maturity, as well as the risk free-

rate. However, both the volatility and the risk-free rate are anticipated via the price 

move of the underlying asset. Looking at the same time at the Brownian motion, on 

which we base the modeling of the underlying asset price-move so as to value an 

option, we realize that its volatility is captured by the time to maturity. Moreover, the 

value of an option increases both as the volatility and time to maturity increase.  

These observations make us believe that we could find simplified option 

pricing formulas depending on the underlying asset (price and strike price) and the 

time to maturity only. The advantage of the approach is that less simplifying 

assumptions are needed and much simpler methods are produced.  

In this paper we provide alternative formulas for pricing European and 

American type options. We test our formulas against the Greek stock and derivatives 

market by applying the appropriate hypothesis testing. 

 

Keywords: option pricing, time to maturity, call and put option, volatility, hypothesis 

testing 

 

 

1 Introduction 

 

The most well known option pricing approach for a European call or put option in 

continuous time is the Black-Scholes formula. This states that for a European call 

option c, maturing at time T, with strike price k, written on a non-dividend paying 

stock S, with volatility σ, when the risk-free rate is r, the value of the option is given 

by: 
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The value of a put option can be derived via the put-call parity: 
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The value of an American call is identical to the value of a European call, provided no 

dividend is paid during the life of the option, as early exercise in never preferable to 



retaining the option until maturity. However, with this approach not much can be said 

about the value of an American put option. Black-Scholes formula cannot be used and 

one has to rely on other methods such as binomial trees. 

In this paper we provide alternative methods for pricing European and American call 

and put options. Our contribution lies in the simplification attempted in the models 

developed. Such simplification is feasible due to our observation that the value of the 

option can be derived as a function of the underlying stock price, the strike price and 

time to maturity. This route is supported by the fact that both the risk-free rate and the 

volatility of the stock are captured by the move of the underlying stock price. 

Moreover, looking at the properties of the Brownian motion, widely used to map the 

move of the stock price, we realize that volatility is well depicted by time. Last but 

not least, the value of an option is an increasing function both of time and volatility. 

 

As a matter of fact, without doubting the success and beauty of the Black-Scholes 

pricing formula, one should not ignore that it uses some quite strong assumptions; if 

lifted it is not secured that the output will still hold true.  

 

Following the above rationale we feel that by properly inserting time we can derive 

“nice and easy” option pricing techniques. 

 

Literature review needs to be inserted to explain that the approach recommended is a 

prototype… 

 

 

2 Models and formulas 

 

We first focus at European call options. Would we find the value of a European call 

option with any model, the value of the respective European put option is given via 

the put-call parity. Hence, we will not make any specific mention to the latter. 

 

We consider several alternative models. We will test their output vs. observed option 

prices. All our models use as input the particulars of the option with the maximum 

time to maturity, denoted by Tmax.  

• We assume that the market price of the option that matures in Tmax is known and 

even more we accept the market prices it properly for each time instance Tt ≤≤0 . 

This is denoted by max

tc . 

• Depending on the formula we investigate, we could restrict the assumption to max

0c , 

i.e. the price of the option for t=0. 

 

Looking at the boundary conditions at t=0 and t=T, we conclude that the alternative 

formulas considered should incorporate the value of the option with the maximum 

time to maturity, as well as the payoff of the option under investigation at maturity. 

Namely, the value of any European call option at maturity, denoted by E

Tc , satisfies 

the condition 
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On top, we recall that when a call option is written usually the intrinsic value is zero 

(0), as the stock price is less than the strike price ( kS ≤0 ). As a consequence, it is the 

time value that matters. 

 

We also, do not forget that the price of an option is nonnegative and should not 

exceed the price of the underlying stock, i.e. 

t

E
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2.1 Formula introducing the time and the stock price 

 

This is the simplest first cut and it is given by 
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One can quickly verify that for t=0 - and assuming that kS ≤0 - the value of the 

option is nothing but the time value 

t
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At t=T, we receive what we expected, namely 
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This formula can be refined though so that it properly values also the option with the 

longest time to maturity. 

 

2.2 Formula introducing the time and the longest maturity option 

 

With the notation used in the first paragraph of the models and formulas section we 

insert in the pricing formula the price of the longest-maturity option, replacing the 

stock price and accepting that the market prices it correctly. This gives 

}];
max

)0;min{[max( max

ttt

E

t Sc
T

tT
kSc ⋅

−
+−= , 

where max

tc is the value of the option maturing at Tmax at time t. 

We can easily see that for t=0 - and assuming once and again that kS ≤0 - that the 

value of the option becomes 
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At t=T, again 
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The improvement is that it works though for the longest maturing option as well, for 

which T=Tmax. Observe that for t=0, we get 
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as anticipated. At the same time for t=T=Tmax, we receive 
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again as expected for the payoff of a European call option at maturity. 

 



2.3 Formula introducing the square root of time and the longest maturity option 

 

Looking at the generalized Brownian motion we see that the square root of time is 

present next to the stochastic term that maps the volatility. This makes as consider the 

square root of time instead of time itself. Our formula thus becomes 
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We readily see that 
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On top, when T=Tmax 
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2.4 Formula introducing the volatility and the risk-free rate 

 

Although our approach primarily lies in the use of time, would we want to consider at 

the same time the volatility and the risk-free rate, that would be in the following 

format 
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On top, when T=Tmax 
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2.5 Formula introducing the square root of time and the longest maturity option at 

t=0 

Would we want to assume that the market prices properly the longest maturity option 

at time t=0, i.e. when the option of interest is written, then we modify our previous 

formula as follows 
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We readily see that 
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On top, when T=Tmax 
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2.6 Formula introducing the volatility and the risk-free rate – take II 

 

As in section 2.4 a variation that introduces the volatility and the risk-free rate is 

given by 
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As before we observe that 
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All the aforementioned formulas work when kS ≤0 . What if this is not the case 

though? In the next tranche of formulas we attempt to tackle this. 

 

2.7 Formula introducing the square root of time and the longest maturity option at 

t=0 for kS =0  

 

Let max

0
~c be the value of the option at t=0 for which S0=k and T=Tmax. We let this 

price be our input and set: 
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All previous formulas having max

0c could be altered to include max

0
~c instead.  

 

What does this give us for our usual boundary conditions? We easily see that 
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On top, when T=Tmax 
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which is probably expected. 

 



2.8 Formula introducing the square root of time and the longest maturity option when 

St=k 

 

Let tc~ denote the options for which St=k. Let max~
tc denote the option for which St=k 

and T=Tmax. We then use it as input and set: 
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All previous formulas having max

tc could be altered to include max~
tc instead.  

 

The boundary conditions become 
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If St=k and T=Tmax, then the formula yields 
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showing that the formula prices properly the option used as input. 

 

2.9 Formula introducing time, the square root of time and the longest maturity option 

at t=0 

 

A global way to overcome our problematic is given by introducing the time elapsed in 

the pricing model. Such a route is indicated again by the Ito process followed by the 

stock price where time elapsed is part of the drift term. Our model yields then a price 

of 
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This formula overcomes the problematic described above, as there is no need to 

assume that kS ≤0 . The boundary conditions become 
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Variants of the above formula, matching what is indicated by other alternatives 

described above can be constructed. 

 

What about American call options? We again try a series of formulas. The type 

considered is as follows 



)(
max

max,

E

t

A

t

E

t

A

t cc
T

T
cc −+=  

where A

tc denotes the price of the American call option at time t and A

tc max, stands for 

the historical maximum price of the American call option.  

 

Observe that for t=T, would the call be on a non-dividend paying stock, we know that 

early exercise is not optimal. Hence at maturity 
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giving that  
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In case of a put option, where early exercise could be optimal, A

tp max, denotes the 

historical maximum of the American put at time t and A

Tp max, corresponds to the value 

at the time of the exercise. Thus, 
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being what was expected. 

 

As a matter of fact, when T=Tmax 
A
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This needs to be further looked at. 

 

 

3 Results 

 

We now test our models versus data from the Athens Stock Exchange. For this we 

consider call options on the FTSE/ Large Cap index. 

 

Preliminary examples using the Black-Scholes formula (instead of actual data) show 

that our models produce “good results” - in terms of proximity – when the option is at 

the money. The best performance is exhibited by the formulas of sections 2.5, 2.6 and 

2.9. 

 

This needs however to be further elaborated and actually tested by employing the 

appropriate tests
1
. 

 

 

                                                 
1
 This section needs significant work as soon as complete data is available. 
 



4 Further research 

 

In this article we worked primarily on the pricing of call and put options, European 

and American type on a non-dividend paying underlying asset. Further research could 

focus on 

• The pricing of other types of options/ derivatives, even when analytical solutions 

are not in place. 

• The pricing of options on dividend-paying underlying assets. 

• The calculation of implied volatility and its comparison with the observed one. 

• Potentially pricing insurance policies, realizing that they basically function “as an 

option”. What needs to be embedded here is the probability of the occurrence of 

the insured risk. 

 

 

5 Conclusions 

 

In our study we managed to develop models that can be used to price options in a 

simple way, capitalizing on the properties of time as a proxy measure of volatility. We 

presented a series of formulas and we ranked them based on the proximity of their 

output to the actual option premium. As a matter of fact the best performing ones are 

those of sections 2.5, 2.6 and 2.9. 

 

We trust that such an approach opens a route that can be further exploited and gives 

room for experimenting with other models as well. 
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