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Abstract The present work reports on an attempt to

empirically identify the epistemological status of mathe-

matical knowledge interactively constituted in the

classroom. To this purpose, three relevant theoretical

constructs are employed in order to analyze two lessons

provided by two secondary school teachers. The aim of

these analyses was to enable a comparative reading of the

nature of the mathematical knowledge under construction.

The results show that each of these three perspectives

allows access to specific features of this knowledge, which

do not coincide. Moreover, when considered simulta-

neously, the three perspectives offer a rather informed view

of the status of the knowledge at hand.

1 Introduction

Despite the considerable research interest shown in the last

two decades in the study of the conditions under which the

mathematical meaning is constructed in the classroom, the

nature of the mathematical knowledge shaped within this

context has attracted little attention. The reason for this

rather limited research activity might be sought in the

difficulty of defining coherently the exact status of the

knowledge under consideration in didactical contexts.

What do we mean by the term ‘‘school mathematics’’?

How does it relate to mathematics as a scientific discipline?

Although the latter appears to play a decisive (but ambig-

uous) role in the determination of the former, the two types

of knowledge present epistemological differences (Sier-

pinska & Lerman, 1996) with respect to their nature and

structure. The epistemological status of the school mathe-

matical knowledge cannot be deduced only from the

scientific mathematical knowledge, but needs to be studied

also in relation to the social contexts of the teaching and

learning processes.

To this direction, the present work, which is concerned

with the nature of the meaning emerging in the classroom

and characterized as ‘‘mathematics’’, focuses on the

classroom phenomena that determine this emergence. In

particular, three relevant theoretical constructs are

employed to investigate this nature, i.e., the idea of socio-

mathematical norms (Yackel & Cobb, 1996), the notion

of the epistemological triangle (Steinbring, 2006) and the

analysis of the management of the epistemological fea-

tures of mathematics (Kaldrimidou, Sakonidis & Tzekaki,

2000). These constructs are used to analyze two mathe-

matics lessons, provided by two secondary school

teachers, in an attempt to examine the different features

of the mathematical knowledge shaped in the classroom

that each one of these constructs allows to identify. Our

claim is that the comparative and sometimes comple-

mentary use of different theoretical tools enables the

sharpening of the analysis related to the mathematical

status of this knowledge.
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2 Mathematics and school mathematics

All research in mathematics education deals with issues

that have to do with mathematics: ‘‘mathematical mean-

ing’’, ‘‘mathematical activity’’, ‘‘mathematical outcomes’’

(of students, teachers, communities, etc). However, the

‘‘mathematical’’ part in these expressions remains rather

undefined and one could hardly justify why a meaning, an

activity or an outcome can be characterized as

‘‘mathematical’’.

It is generally admitted that school mathematics differs

from science mathematics (Chevalard, 1985; Steinbring,

1998) because changes occur in the process of transfor-

mation from one to the other, both ‘‘externally’’ (from

experts’ knowledge to knowledge for teaching) and

‘‘internally’’ (from knowledge for teaching to taught

knowledge). In fact, there are researchers who consider

school and science mathematics as completely different

subject matters. For example, Sfard (1998, p. 494) argues

that ‘‘although, mathematicians and mathematics education

researchers deal with the same ‘subject matter’, the fact

that they come from completely different paradigms is

likely to make their views of mathematics incommensu-

rable rather than merely different in some points’’. Such a

view raises a number of questions. For example, is it only

the reconstruction of the mathematical knowledge for

teaching purposes that changes it so substantially as to

create new knowledge, different from the one that it comes

from? What are the similarities and differences between

school mathematics and science mathematics (e.g., with

respect to concepts, procedures, structures, etc.)? When we

teach mathematics, what do we refer to (the mathematics

itself, a part of it, its nature, functioning, structures, etc.)?

The relation between a ‘‘teaching object’’ and the cor-

responding ‘‘mathematical object’’ is rather blurred. First,

because mathematical objects and approaches adopted

various forms and followed varied paths in the history of

their development and the correspondence we are looking

for is not so obvious. Second, as Ernest (2006, p. 73) points

out, ‘‘most school mathematics topics are no longer a part

of academic mathematics and thus figure in no contem-

porary academic textbooks’’.

Whether one agrees or not with the aforementioned

comments, it is evident that the study of the knowledge

taught in the mathematics classroom requires certain clear

criteria for what can be considered as ‘‘mathematics’’ and if

this can be considered as such. As Godino and Batenero

(1998, p. 177) argue, it has to be ‘‘based upon an analysis

of the nature of mathematics and mathematical concepts....

Such epistemological analysis is essential in mathematics

education for it would be very difficult to efficiently study

the teaching and learning process of undefined and vague

objects’’.

It is widely accepted today that mathematical meanings

or procedures are not simply ‘‘learnt’’ and ‘‘applied’’ by the

students (e.g., Yackel, 2001; Steinbring, 1998), but are

constructed, accepted or negotiated in the classroom (Voigt,

1994). Either as a personal or as a social construction,

materialized in different contexts and in different ways

(e.g., in action, in social interaction, etc.), school mathe-

matics knowledge needs an agreement on whether what is

personally or socially constructed is or is not mathematics.

Moreover, the study of teaching and learning phenomena in

the mathematics classroom and, in particular, the study of

learners’ activity within the perspective of developing

mathematical meanings need agreed detailed criteria with

respect to the nature of the knowledge constructed.

In the search for these criteria, which will allow us to

analyze the nature of the knowledge developed in the

classroom, we attempt to exploit the above-mentioned

theoretical approaches. Their choice was made on the basis

that they all address the issue at hand in a direct and well-

defined manner, each offering a coherent and detailed

framework for its study. In addition, they focus on different

aspects of the classroom meaning construction process in

seeking to decide the mathematical status of this meaning,

that is, social, individual and mathematical, respectively,

thus enabling their comparative consideration. Although

other perspectives could be seen as possible candidates for

this enterprise, our search did not detect any which could

be seen as satisfying the above-mentioned features equally

well with these three particular approaches.

3 The theoretical approaches

As it has already been pointed out, the identification of

what emerges as mathematics in the social context of

classroom interaction is related to the epistemological

status of the knowledge under construction.

To this direction, the first of these three approaches, the

one of the sociomathematical norms (S-N), is concerned

with the criteria according to which the mathematical status

of the knowledge collectively constructed in the classroom

is constituted.

The second approach, the one of the epistemological

triangle (E-T), focuses on the mathematical nature of

concepts interactively constructed in the classroom by the

individual student with respect to their relational, abstract

and general character within mathematics.

The third approach, the one of the classroom manage-

ment of the epistemological features of mathematics (E-

M), concentrates on the mathematical nature of both con-

cepts and procedures interactively constructed in the

classroom with respect to the role of these features in

mathematics.
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The basic elements of the above three approaches are

briefly described below.

3.1 Sociomathematical norms (S-N)

The idea of the sociomathematical norms was conceived in

order to analyze and describe the mathematical aspects of

teachers’ and students’ activity in the mathematics class-

room (Yackel & Cobb, 1996). These norms are collective

criteria of values with respect to mathematical activities,

which are constituted and continually regenerated and

modified by the interactions taking place between the

teacher and the pupils (Voigt, 1995). The sociomathemat-

ical norms are not predetermined, are context dependent

and are established in all types of classrooms. The most

common sociomathematical norms reported in the litera-

ture are specifically related to explanations, justifications

and solutions. With respect to explanations and justifica-

tions, the main sociomathematical norm identified is

related to ‘‘what counts as an acceptable mathematical

explanation’’ (Yackel & Cobb, 1996). In particular, three

categories of explanations have been identified:

• explanations as procedural descriptions;

• explanations as descriptions of actions on experientially

real mathematical objects; and

• explanations as objects of reflection.

For example, focusing on a second grade classroom

working on the addition of two-digit numbers (e.g.,

12 + 13), Yackel and Cobb (1996, p. 469) interpret pupils’

explanations with reference to the digits (1 plus 1 makes 2,

2 plus 3 makes 5) as procedural in nature, whereas

explanations of the type ‘‘10 plus 10 makes 20, and 2 plus 3

are 5 more’’ as descriptions of actions on mathematical

objects. They claim that the teacher’s attitude to accept

both solutions provided by the pupils but to promote the

second one, thus legitimizing it, allows the establishment

of a sociomathematical norm of ‘‘what counts as an

acceptable mathematical explanation in the classroom’’.

Negotiations about the adequacy and clarity of an expla-

nation, which took place later in the year in the above class,

are considered explanations as ‘‘objects of reflection’’. As a

consequence, the related sociomathematical norms estab-

lished in this class were, respectively: (a) explanations

must describe actions on mathematical objects and should

not constitute procedural instructions, and (b) explanations

should aim at being understood by the pupils.

With reference to solutions, the related sociomathe-

matical norms are concerned with ‘‘what is valued

mathematically’’; ‘‘what is a more sophisticated solution’’;

‘‘what is an elegant mathematical solution’’ (Yackel &

Cobb, 1996). Asking for a mathematically different solu-

tion (Yackel, Cobb & Wood, 1998) and evaluating the

solutions using terms such as ‘‘insightful solution, simple

solution, discoveries’’ (Voigt, 1995, p.198), the teacher

helps the classroom to elaborate norms about what is

mathematically efficient and/or what is mathematically

different (Yackel & Cobb, 1996). For example, Voigt

(1995, p. 197) reports on a teacher who accepted as correct

the solving of the task of three additions with 9 (27 + 9,

37 + 9, 47 + 9) as three isolated problems. However, he

characterized as ‘an insightful’ or as a ‘discovery’ the

solving of the task by identifying the pattern of adding with

9 (that is, increase of the tens by one and decrease of the

units by 1), a solution that the teacher seemed to consider

cognitively as more demanding.

The teachers’ role is crucial in establishing situations

that highlight the importance of issues related to explana-

tions, argumentation, justifications and solutions. As

Yackel (1995, p. 160–161) points out ‘‘it is the teacher’s

responsibility to help students learn how to describe and

talk about their mathematical thinking, to help them learn

what constitutes an acceptable explanation.... Rather than

taking the responsibility for judging this fits him or herself,

the teacher can ask children if they understand and

encourage them to ask questions and request clarification.

In this way, the teacher contributes not only to children’s

developing understanding of what constitutes an acceptable

explanation, but also to the interactive constitution of the

obligation to listen to and try to make sense of the expla-

nation attempts of others’’.

However, within the above perspective, the criteria

related to the mathematical character of the knowledge

under construction as well as the way these criteria affect

their mathematical learning remain implicit. This is

because these criteria are context-dependent and heavily

subjected to personal interpretation. As individual pupils

interact with the others, participate in collective negotia-

tions of sociomathematical norms and try to adapt their

activity to the classroom culture, they develop their per-

sonal interpretations of mathematical meanings and of

values and beliefs about mathematical activity.

So far, the sociomathematical norms have been studied

in the context of inquiry classrooms, the focus being

mainly on the substantiation of the interactive constitution

of these norms. Hence, they allow us to study how what is

accepted as ‘‘mathematical’’ in the classroom is con-

structed, but they do not inform us whether the constructed

knowledge is or is not mathematical in character.

3.2 The epistemological triangle (E-T)

Steinbring (2001, p. 211) focuses on the epistemological

status of the mathematical knowledge, which is seen as

interactively constructed by the students through working

on concrete problems, being treated as exemplary cases
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‘‘endowed with embodiments of mathematical structures’’.

He advocates that this status can be identified through an

epistemological analysis of the pupils’ statements, that is,

by examining whether the knowledge under construction

reflected in these statements is oriented towards general-

izing or it remains within the frame of the old, familiar

factual knowledge or, finally, it is specific, partly situation-

bound.

An analysis of this type can be achieved, according to

Steinbring (2006, p. 136), through a relational structure

called ‘‘the epistemological triangle’’, which allows us to

consider the nature of the (invisible) mathematical

knowledge shaped in the classroom by means of repre-

senting learner’s construction of relations and structures

during the relevant interaction. In particular, he suggests

that the mathematical meaning of concepts emerges in the

complex interplay between sign/symbol systems (for cod-

ing the knowledge) and reference contexts (for establishing

the meaning of the knowledge), giving rise to the episte-

mological triangle below (Fig. 1).

The links between the corners of this triangle are seen as

not explicitly defined but as forming a mutually supported,

balanced system. As knowledge develops, the interpretations

of sign systems and their corresponding reference contexts

are modified. For example, considering the concept of

probability, there is interplay between ‘‘fraction numerals’’

(sign system) and the ‘‘ideal die’’ (the reference context) in

the early stages. Later, this interplay takes place between the

‘‘limit of the relative frequency’’ and the ‘‘statistical col-

lectives’’ and even later between ‘‘stochastically dependent

and independent structures’’ and ‘‘implicitly defined axi-

oms’’, respectively (Steinbring, 2006, p. 138).

During the developmental process, the reference context

gradually changes to a structural connection. For example, as

the number concepts expands, concrete, empirical reference

contexts (e.g., going up a staircase for adding) are increas-

ingly substituted by others favoring relational aspects of the

linkage between reference context and sign system, like

diagrams, visualizing means (e.g., dots arranged in groups

for adding) and even by other sign systems (e.g., number line

for adding; Steinbring, 1997, pp. 54–55).

Based on the above, the production of mathematical

meaning resulting from the interplay between reference

context and sign system can be seen as a process via which

possible meanings are transferred from a relatively familiar

situation (the reference context) to a still unfamiliar sign

system. Moreover, Steinbring (1998, p. 516) argues that as

knowledge evolves, the roles of the reference context and

the sign system can be exchanged, ‘‘leading to a situation

where a familiar sign system serves as a reference context

for another reference context, now conceived as a sign

system with respect to some specific aspect’’.

In the course of classroom interaction, students have to

actively construct likely relationships between signs/sym-

bols and reference contexts. This personal construction

turns to ‘‘official’’ in social negotiations with the teacher

and the fellow students. She analysis of the classroom

production of mathematical meaning within an epistemo-

logical perspective acknowledges that all mathematical

knowledge is context-specific and therefore, the difference

between scientific and school mathematics lies in the dif-

ferent types of reference contexts exploited in the course of

development. Mathematical knowledge is theoretical in

nature and thus abstract, relational and general. On the

contrary, mathematics teaching, often aiming at obtaining a

definite learning result, tends, in general, to provide

empirical reference contexts and to avoid relational refer-

ence contexts for sign systems, thus promoting an

empirical type of mathematical knowledge (Steinbring,

1998, pp. 523, 524):

‘‘…(which) accompanied by routinized interactive

patterns of communication, such as the funnel pattern,

changes meaningful mathematical understanding into

conventionalized rules of algorithmic operations…
(and) produce(s) a mythical interpretation of mathe-

matical symbols that conflicts with the theoretical

epistemology of mathematical knowledge because, in

this way, students become accustomed to an artificially

concrete understanding of mathematical concepts, and

this produces epistemological obstacles to an under-

standing of the relational character of mathematical

knowledge, that is unavoidable in later confrontations

with new mathematical concepts’’.

The above perspective offers a way of looking at the nature of

the mathematical knowledge under construction, particu-

larly the knowledge related to concepts, leaving out,

however, structural and functional elements of the mathe-

matical activity. Such elements include processes like

defining a mathematical object or reasoning mathematically.

3.3 Classroom management of the epistemological

features of mathematics (E-M)

It has already been pointed out that the study of the nature

of the knowledge under construction in the mathematicsFig. 1 Steinbring’s epistemological triangle
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classroom is necessarily connected with the role and the

function that concepts and procedures play in mathematics.

In fact, it is generally accepted that learning mathematics

means doing mathematics or, more generally, learning to

think mathematically (Schoenfeld, 1992), which is

unavoidably connected with functioning with the same

‘‘means’’ as mathematics does (Brousseau, 2006).

By what means does mathematics science operate?

Among others, mathematics creates concepts, which are

theoretical objects and uses definitions to identify and

differentiate these objects from one another; it studies

attributes and relations and uses theorems to present them.

It also follows certain processes as means of management

of objects and relationships and produces results or new

objects. All these elements are of different nature and are

used in an epistemologically different way. If there are

aspects of this scientific activity to be developed in stu-

dents’ minds, these are not the formal procedures and rules

but the mathematical ways of functioning and solving

problems (Kaldrimidou, Sakonidis & Tzekaki, 2000).

Based on the above, we advocate that an analysis of

classroom interaction with respect to the nature of the

mathematical knowledge under construction should incor-

porate the study of the epistemological characteristics of

the mathematics managed by both teachers and students:

how the teacher and the students deal with the nature, the

meaning and the definition of a concept, or how a theorem

functions in solving, proving or validating procedures; in

general, if and in what degree these important character-

istics of the scientific activity are valued in the classroom

(Kaldrimidou, Sakonidis & Tzekaki, 2007). More specifi-

cally, do teachers and pupils distinguish a specific case

from a general one, are they in a position to define an

object, and are the properties they use related to basic or

implied properties? Do they solve a problem or explain a

position by resorting to some basic attributes or relations or

do they simply limit themselves to procedural negotia-

tions? Do they analyze, compose or construct an object or

do they simply recognize and describe it by visual means?

An analysis like the one suggested above allows the

identification of a number of serious epistemological dis-

tortions evolving during the instructional process. For

example, the teacher might replace a definition of a deci-

mal fraction by a morphological description of the type

‘‘decimal fractions are written in the form of a decimal

number recognised by the comma or decimal point’’; or a

concept, e.g., the area of a rectangle, by a procedure like

‘‘count the number of boxes’’ (Ikonomou, Kaldrimidou,

Sakonidis & Tzekaki, 1999, p. 172). Also, he might reduce

an argument to a property coming from a definition, e.g.,

‘‘each angle is 45 degrees, because this is an isosceles,

right-angled triangle’’ (Sakonidis, Tzekaki & Kaldrimidou,

2001, p.140). In other occasions, we might discover that a

proving process is turned to measuring, or a solution pro-

cess is equated to a course of operations of the type ‘‘do

this and then that’’. Although certain researchers advocate

that this passage from the procedural to the structural

aspects of the mathematical concepts and processes is

inevitable, some others suggest that this way of managing

the mathematical objects and procedures distorts the nature

of the meaning constructed in the classroom (Voigt, 1995).

Most of the current curricula support the need for the

students to develop an awareness of the nature of mathe-

matics, how it is created, used and communicated. Along

this line, we argue that the nature of mathematical objects,

like concepts, properties, relations and their role in the

mathematical activity should constitute an important

dimension of both teaching and learning processes, if stu-

dents are to learn how to work mathematically. Otherwise,

the activity developed in the mathematics classroom will

bear none of the epistemological features characterising the

mathematical processes. As a result, the means of carrying

out a mathematical activity are likely to be mixed up, the

methods of problem solving will constitute a typical, non-

negotiable route to the solution, and the validation proce-

dures (checking and confirming) will be submitted to the

teacher’s final approval.

Obviously, elements like definitions or theorems cannot

always explicitly be presented to and identified by the stu-

dents. However, the teacher needs to present, control and

handle them in ways that respect the mathematical way of

functioning and support students’ understanding of the

meaning and role of these features in the mathematical

activity. To this direction, our research on the mathematical

knowledge under construction in the classroom examines

and compares with one another each discursive contribution

made by both teachers and pupils in the course of their

interaction in relation to the characteristics (a) assigned to it

from a scientific mathematics point of view and (b) attributed

to it in the context of the specific interaction (Kaldrimidou,

Sakonidis & Tzekaki, 2000; Tzekaki, Kaldrimidou & Sak-

onidis, 2001; Kaldrimidou, Sakonidis & Tzekaki, 2003).

Summarizing, we argue that the above three perspec-

tives allow us to look at different dimensions of the nature

of the mathematical meaning constructed within the

classroom, which could be described in general terms as

follows: the socio-mathematical norms perspective allows

us to identify what is ‘‘mathematical’’ by resorting to what

is collectively accepted as such; the epistemological tri-

angle approach permits us to examine whether what is

interactively constructed by the individual student is

‘‘mathematical’’ by appealing to its relational character;

finally, the classroom management of the epistemological

features perspective offers us a way to look at whether

what is formulated in the classroom is ‘‘mathematical’’ by

considering its status within mathematics.
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4 The study

The teaching episodes utilized in the present work are

taken from lessons provided by two female secondary

school teachers. These were ‘‘normal’’ teaching sessions to

two different classes of ninth grade pupils (14–15 years

old). Both teachers had a university degree in mathematics

and more than 15 years of teaching experience.

The lessons are part of the data coming from a large

project focusing on mathematics teaching in the 9 years of

the Greek compulsory educational system.

For the purpose of the present work, we chose two

episodes that could be discussed simultaneously from the

point of view of all three theoretical perspectives: one

concerned with the concept of algebraic fractions and the

other with the solving procedure of quadratic equations.

Our main intention was to investigate what each of them

had to offer in relation to the nature of the mathematical

knowledge produced. Methodologically speaking, we were

not interested in analyzing systematically a large number of

episodes or different mathematical contexts; thus, we

focused on episodes, which would allow us to compare or

combine the analytic benefits offered by each of the three

perspectives.

5 Data analysis and discussion

For each episode under consideration, the analysis that

follows concentrates first on the notion of the socio-

mathematical norms (S-N), then on that of the

epistemological triangle (E-T) and, finally, on the man-

agement of the epistemological features of mathematics

(E-M).

5.1 Analysis of an episode from the first teacher’s

lesson

In the following episode, the class is working on algebraic

fractions.

1. T(eacher): What does an algebraic fraction mean?

Will you tell us Agy?

2. Agy: It is an expression, which has a variable as

denominator.

3. T: Very good! It is an expression, which has a

variable as denominator. Right? Now, Alexia, I want

you to come to the board and write such a fractional

algebraic expression. And Aphrodite, tell us exactly

what we had (Alexia writes 1/x).

4. T: Right! Harry, is x a variable?

5. Harry: Yes, it is.

6. T: Tell me, does it take all values?

7. Harry: Except 0.

8. T: Except 0, very nice! Why doesn’t it take the value

of 0, Christina?

9. Christina: Because the denominator becomes equal to

0.

10. T: I did not understand anything. So? Does it matter?

11. Christina: The denominator becomes equal to 0.

12. T: So what? Why does it matter?

13. Christina: We do not want it to be 0.

14. T: Why don’t we want it to be 0?

15. Christina: There is no fraction with 0 as denominator

16. T: There is no fraction with 0 as denominator. How

did we call this in primary school?

17. George: Division by 0.

18. T: Division by 0. Well done my dear!

From a mathematical point of view, the issue under

negotiation in the classroom in this excerpt is the definition

and the analysis of what constitutes a fractional algebraic

expression. This requires the concept of variable as well as

the criterion of the domain of a fractional algebraic

expression.

The teacher, starting off by describing an algebraic

fraction as an ‘‘expression with a variable in the denomi-

nator’’, asks for an example. Using the example provided

by the students, e.g. 1/x, she tries to elicit the reference to

the condition ‘‘the denominator should be different from 0’’

for the rational algebraic expressions’ domain. The stu-

dents justify their answer with reference to fractions, ‘‘there

is no fraction with 0 as denominator’’, while the teacher

aims at an explanation of the type ‘‘division by 0 is

impossible’’.

5.1.1 From a sociomathematical norms’ perspective

Within this perspective, the negotiation between the tea-

cher and the students in lines 1–8 appears to concern

explanations as descriptions of mathematical objects (i.e.,

‘‘It is an expression, which has a variable as denomina-

tor’’). However, in lines 9–18, the teacher seeks for

explanations, which can be interpreted as objects of

reflection in terms of sociomathematical norms (i.e.,

‘‘Why does it matter (that the denominator becomes equal

to 0)?’’ or ‘‘Why don’t we want it to be 0?’’). This might

be attributed to her wish to guide the students to the

formulation ‘‘division by 0 is not allowed’’, which

becomes evident by her overwhelming acceptance of this

formulation, when provided by a student (lines 17 and

18).

The above analysis allows us to ascertain that what

counts as an acceptable mathematical explanation is

introduced by the teacher’s questions (8, 10, 12, 16). The

pupils’ contributions appear as reactions to these questions,

aiming at finding the formulation or the explanation
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expected by the teacher, which thus becomes ‘‘mathemat-

ically appropriate’’.

5.1.2 From an epistemological triangle’s perspective

The sign system of the mathematical object under consid-

eration is initially the fractional algebraic expression 1/x.

As the negotiation of its meaning goes on, the reference

context changes: from fractional algebraic expressions (1–

5) to fractional algebraic numbers (6–14), then to rational

numbers (15, 16) and, finally, to an arithmetic operation

(17, 18).

As the reference context changes from an algebraic

expression to a rational number (by the student, first in line

2 and then in line 15), the corresponding relations that

could legitimize these changes (i.e., an explanation of the

type, ‘‘by giving values to the variables of an algebraic

fraction, you get rational numbers’’) are not discussed

explicitly and the whole changing enterprise remains

implicit. Thus, it can be argued that the meaning of the

related concept (algebraic fractions) remains rather blurred.

This analysis allows us to detect the interrelation

between the concept and the corresponding reference

context utilized, as well as the nature of the mathematical

concept emerging in the classroom: the algebraic fraction is

given the status of and is handled as a number.

5.1.3 From a management of epistemological elements’

perspective

Considering the way in which the teacher poses the ques-

tion at the beginning of this episode, one could claim that

the mathematical object under consideration is the defini-

tion of an algebraic fraction.

However, examining the negotiation taking place within

the management of the epistemological features frame-

work, we cannot detect the identifying and discriminating

role of a definition in the interaction.

As the teacher searches for the ‘‘right’’ explanation,

three different mathematical objects (algebraic fractions,

fractions, division) are introduced in the discussion

and are implicitly interconnected. These objects are

mainly presented in a morphological or procedural way

and with no connection to definitions or properties (even

informal, but accurate) that could help the new object

(the rational algebraic expression) to be identified by the

students.

Thus, there is not only a change of reference context in

order to create a new piece of knowledge (the definition of

an algebraic fraction), but also an interplay between dif-

ferent mathematical objects (fractions, equations, etc.)

partly ‘‘defined’’ or even undefined, engaged in a rather

blurred manner.

This analysis allows us to ascertain that the mathemat-

ical meaning of the algebraic fraction is apparently lost by

the way the teacher handles the above-mentioned elements

during the interaction, while the negotiation of the defini-

tion turns to a negotiation of a property (division by zero is

not allowed).

Summarizing, the different elements that each of the

above three analyses brings out with respect to the status

of the mathematical knowledge under construction (i.e.,

the concept of algebraic fraction) are as follows: using

indiscriminately procedural and morphological elements,

the teacher demarcates what is accepted as ‘‘mathemati-

cal’’ (S-N); remaining in the same sign system (1/x), she

changes reference systems without notifying, thus not

facilitating the students to attend to relations established

and to generalizations arising (E-T); the teacher turns a

definition of a new object to the description of a property,

entailing from the properties of other objects (E-M),

without allowing the students to be led to the definition

and generally to the clarification of the term that initiated

the discussion.

5.2 Analysis of an episode from the second teacher’s

lesson

The topic of the lesson is the process of solving quadratic

equations. The issue under consideration in the following

episode is the solving process appropriate for each of three

originally given equations: x2 - 2x = 0, x2 - 4 = 0 and

x2 - 3x + 2 = 0.

66. T: Children, let us look at some of these equations…
I write down the equation x2 - 2x = 0, another one,

x2 - 4 = 0 and a third one x2 - 3x + 2 = 0. What do

you notice in all these equations? There is an x, with

what as an exponent?

67. Students. Two

68. T: When the highest exponent of the unknown is 2,

as in our case, the equation is of second degree, because

the highest exponent of a variable is called ‘‘the degree

of that variable’’. Of what degree is x in this term?

69. Students: Second

70. T: So, the equation is of second degree in all three

cases. Let us see how such an equation is solved in all

three cases. I want to hear your opinion, children. How

do you suggest we should solve the first equation? What

shall we do on the left-hand side? Do you have an idea?

How will we solve the equation [x2 - 2x = 0], George?

71. George: We should separate the known from the

unknown terms.

72. T: So, you suggest we separate. It cannot be done,

because both terms are unknown. George expressed his

opinion. Anyone else?
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73. Margarita: Can’t we factorize?

74. T: That’s it, bravo! We will factorize the left hand

side, and what will we have then, Margarita? Thus, what

will happen to the left hand side? We will take out x as a

common factor and what will we have inside, Harry?

[75–93] The class starts working on the second equation

(x2 - 4 = 0). In this case, the teacher accepts the two

solving processes suggested by the students: factoriza-

tion and separation of terms, both of which are

mathematically applicable. Moreover, she emphasizes

the separation of terms, which allows her to introduce

new mathematical objects (negative square roots).

However, a little later....

94. Kostas: Madam, in the first example, we had x2 -

2x = 0, what if we do ‘‘x times x equals 2x’’? The x is

canceled and then x = 2....

95. T: Watch it! Which x’s will go?.... These x’s are

multiplied.... Priority of operations.... We first multiply....

96. Kostas: Madam, we will do x2 = 2x.... x.x = 2x....

97. T: But you have a root! But you have a root! It is

forbidden! Ok? You lose a root. Don’t do this kind of

cancelations, because you lose roots. All right? How-

ever, when we take out the common factor, we don’t lose

the root. x = 0, eh? We come up to x = 0. Don’t do this

kind of cancelations, because we lose a root.

5.2.1 From a sociomathematical norms’ perspective

The analysis of the episode within this perspective allows

the identification of the characteristics of the explanations

provided as well as of the way in which the different

solving processes suggested are judged and valued.

With respect to explanations, these are exclusively

provided by the teacher (lines 68, 72, 95 and 97) and, as in

the previous episode, are based either on procedural ele-

ments (lines 68 and 74) or on non-negotiable rules of

procedures (lines 95 and 97). Thus, according to the S-N

approach, the explanations and the justifications emerging

as mathematical during this episode are mainly explana-

tions as procedural (or morphological) descriptions.

As for the solving processes suggested, they are judged

only as right or wrong. The teacher rewards the one she

judges as right (line 74) and rejects the one she identifies as

wrong or ‘‘dangerous’’ (lines 72 and 95–97).

One of the students (Kostas), at a later point of the

lesson, returns to the first equation, x2 - 2x = 0 (line 94),

and again suggests separating terms as a solving process,

which was earlier rejected by the teacher (lines 71 and 72),

but in an intermediate phase was emphatically used by her

as an alternative way to solve the second equation (x2 -

4 = 0). It could be argued that Kostas simply adopts an

implicitly established norm (i.e., the right processes are the

ones that have been approved by the teacher) with accu-

racy. Reacting to this, the teacher provides an explanation,

which reflects an attempt to rely on rules (‘‘priority of

operations’’, line 95). This could be seen as an explanation

on object, which, however, eventually takes the form of an

explanation based on result (‘‘you lose a root’’, line 97). In

fact, the final explanation constitutes a prohibition rule,

with no mathematical value, which serves, however, a

teaching target, i.e., to avoid errors (losing a root), thus

ensuring a satisfying performance.

The points raised above indicate that the sociomathe-

matical norms evolving in this class promote the idea that

what is mathematically acceptable is not determined by

an explicit and clear way, recognizable by the pupils, but

by unidentifiable reasons and rules controlled by the

teacher.

5.2.2 From an epistemological triangle’s perspective

Considering the episode from within this framework, it

could first be noted that the reference context (solving

quadratic equations with two terms) and the sign system

(algebraic expression of these equations) remain rather

stable.

Some intangible changes of the reference context can

also be identified. For example, when defining a quadratic

equation (line 68), the teacher makes a reference to the

second-degree algebraic expressions or polynomials

through the use of the term ‘‘variable’’ instead of the term

‘‘unknown’’.

The lenses offered by this particular perspective allow

the detection of another important aspect of the lesson. As

it was pointed out earlier, one of the students (George)

proposed a solving procedure, which the teacher rejected.

Another student (Kostas) returned to this proposal, after a

similar approach was applied by the teacher in solving the

second equation (x2 - 4 = 0) in the meantime (lines 94–

96). The mathematical negotiation of this proposal would

require the change of the reference context (to the man-

agement of algebraic expressions), since the cancelation

demands division with divisor different from 0 (either

x = 0 or x = 0, hence x = 2). This could allow a more

intrinsic analysis and facilitate a generalization of the

solving processes.

The teacher, however, rejects this in an authoritarian

manner: ‘‘it cannot be done, because both terms are

unknown’’ (line 72), ‘‘it is forbidden’’ (line 97) and she

does not proceed to change the reference context. As a

consequence, she limits the possible mathematical pro-

cesses, thus in fact reducing the mathematical meaning.

She does not only throw out a correct solving approach, but

she also prevents the students from gaining a more general

picture of how to solve quadratic equations.
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Thus, the analysis of the episode in terms of the epis-

temological triangle allows us to notice that, in this case,

the familiar sign system, that is, the solving of first-degree

equations by separation of terms is utilized as a reference

context for the solving of the second quadratic equation

(x2 - 4 = 0) but not of the first (x2 - 2x = 0), which

could be conceived as a similar sign system with respect to

some specific aspects. What is more, the teacher com-

pletely declines to change the reference context, thus not

allowing the students to see the two equations in terms of

the same sign system.

5.2.3 From a management of epistemological elements’

perspective

The first thing to notice within this perspective is that the

definition of a quadratic equation is being turned to a

morphological description (lines 66–68).

The most interesting aspect worth pointing out is,

however, the way the teacher handles students’ contribu-

tion concerning the solving procedures. In particular, she

initially rejects a student’s idea (‘‘separation’’, line 71),

simply by providing a mathematically vague descriptive

explanation (‘‘it cannot be done, because both terms are

unknown’’, line 72), with no reference to properties or

theorems. Later on, she accepts another student’s proposal

(factorization, line 74), offering procedural explanations,

again with no reference to relevant properties or theorems

(e.g., the distributive property of multiplication over sub-

traction, the conditions under which a product is equal to

zero). Thus, the students are led to concentrate on solving

quadratic equations based on algorithmic rather than

structural elements of mathematics.

A final point that could be made in analyzing the

episode within this perspective is related to a student’s

contribution (line 94). This intervention could be seen by

the teacher as an opportunity to clarify what had been

left blurred up to that point, that is, the attributes of

algebraic expressions, which support the solving of

equations and determine the most appropriate route to

their solution. On the contrary, threatening the students

with the danger of ‘‘losing roots’’, as earlier, she rejects

a correct way of solving, without any mathematical

justification.

Summarizing, the analysis of this episode within each of

the three perspectives highlights, as in the first episode,

different aspects of the nature of the mathematical

knowledge under construction (i.e., solving procedures of

quadratic equations).

The mathematically correct solution is determined by

the teacher, who creates no opportunities for the compar-

ison and the evaluation of the proposed processes by her or

the students. Quite the opposite, adopting an authoritarian

attitude, she reduces the mathematical meaning of the

knowledge under construction and even distorts it by pro-

hibiting correct mathematical processes (S-N).

Also, she rigidly handles the links between reference

context and sign system, which would need to change in

this case, in order for the mathematical process of solving

an equation to be fully developed. Moreover, her main

concern ‘‘to avoid errors’’ (‘‘do not lose roots’’, lines 95

and 97) leads her to deny or/and to suggest approaches,

even contradictory ones, to ensure that students may pro-

ceed to solving equations (E-T).

Finally, the teacher refuses to rely on properties and

theorems, which substantiate the solving processes

employed, leading the students essentially to function with

procedural rules and not in a mathematically justified

manner, that is, on the basis of properties and theorems (E-

M). The latter would allow them to not only approach

solving equations effectively, but also to become conscious

of more general ways of functioning in their mathematical

activity.

6 Concluding remarks

The idea of sociomathematical norms seems to offer an

especially useful tool for analyzing classroom interactive

patterns, specifically connected to mathematics. However,

these interactive patterns concern almost exclusively

socially constructed characteristics, ignoring other features,

which also influence the relation of the knowledge built in

the classroom to mathematics. For example, the S-N

approach enables us to identify that the second teacher, and

hence her class, accept that the solution process of sepa-

rating terms is not permitted for the equation x2 - 2x = 0,

but does not provide us with the means to examine the

relation of this acceptance to what is mathematically

correct.

As a consequence, this perspective allows us to iden-

tify the criteria, which determine the mathematical status

of the knowledge constructed in the classroom, but not

the relation of that knowledge to mathematics. Hence, it

can be argued that the corresponding analysis provides

evidence concerning ‘‘how’’ something counts as mathe-

matics and not on ‘‘why’’ or ‘‘if’’ something is

mathematical.

The epistemological triangle offers a way to identify

epistemological aspects of the mathematical knowledge

under construction via focusing on its relational and

‘‘generalizable’’ nature (i.e., whether it remains concrete

and context specific or can be generalized). Also, it allows

attendance to the route followed by the mathematical

content and its management by the teacher and the pupils

through the succession of reference contexts and their
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relation to sign/symbol systems. For example, this

approach helps in identifying that in the first episode, the

rapid succession of reference contexts, from an algebraic

expression to rational numbers and then to an operation,

with the sign system remaining the same (algebraic sym-

bols), moves away from the mathematical knowledge

under consideration, drawing attention to a reduced value

mathematical concept with a very concrete character.

Consequently, this second perspective allows us to

examine epistemologically the ongoing development of

knowledge related to the corresponding theoretical one.

However, there are other elements of the mathematical

activity, such as the way in which a concept is defined or

operates in mathematics that this perspective does not take

into consideration.

The management of the epistemological elements per-

spective explicitly focuses on these (epistemological)

elements of the mathematical activity and especially on the

nature, the meaning and the role of them in the classroom

interactions. We argue that these elements constitute also

an important dimension of the teaching and learning pro-

cesses, if students are to learn how to work mathematically.

For example, the undifferentiated management of the

various distinct mathematical objects in the first episode,

algebraic expressions, fractions and division and the

imposition of rules and properties without any explanation

in the second episode do not help in highlighting the status

of mathematical properties and relations. This manner of

dealing with mathematical objects and their properties

distorts their nature and role in mathematics, possibly

leading students to difficulties in approaching the substance

of the mathematical activity.

Concerning the teaching and learning situations that

these three perspectives allow us to look at, we argue that

the S-N perspective can be useful in examining inquiry

classrooms, focusing on the mathematical character of the

explanations, justifications and solving procedures estab-

lished in them. When the instructional situation is oriented

towards the development of a mathematical concept, the E-

T approach appears to be more beneficial, examining the

mathematical character of this development. Finally, the E-

M can be fruitful in both cases, concentrating on whether

the structure and organization of the mathematical

knowledge constructed in the classroom is compatible to

those of mathematics.

The points raised above, as a result of the comparative

reading of the same teaching episodes, imply that each of

the three theoretical approaches reveal different aspects

related to the nature of the mathematical knowledge

emerging in the classroom. Hence, they suggest that the

parallel exploitation of these approaches can be especially

valuable, as it offers a more integrated understanding of the

parameters determining this nature. In particular, it allows

us to become aware that it is influenced by all three of the

following: (a) the kind of knowledge and how it becomes

collectively accepted ‘‘as mathematical’’ in the classroom

(S-N), (b) whether it is conceptually related in the indi-

vidual student’s mind via the appropriate interaction

between reference and sign systems (E-T) and (c) how this

knowledge is related to the corresponding mathematical

entity (E-M).

Thus, reading the first episode comparatively, we saw

that the accepted definiton of an algebraic expression was

based on morphological and procedural characteristics

encouraged by the teacher (S-N). These characteristics

refer mainly to numerical fractions and it is doubtful

whether they can help students approach the intended

concept (theoretical knowledge) of algebraic fractions (E-

T). Furthermore, this particular way of presentation differs

substantially from a mathematical definition of algebraic

fractions (E-M). Similarly, in the second episode, the

analysis showed that the solving procedures of quadratic

equations accepted as mathematically correct ended up to

be unconnected procedures determined by the teacher (S-

N). Also, the suggested ways of solving equations con-

cerned distinct forms of equations, thus preventing

students’ orientation towards generalizing the solving of

quadratic equations (E-T). Finally, neither properties nor

theorems were ever utilized, eliminating the possibility of

emergence of mathematically justified procedures (E-M).

Based on the above, it could be argued that each of the

three perspectives, as it was used for the reading of the

same teaching episode, allows us to identify different

aspects of the knowledge construction process, which

affect the nature of what emerges as ‘‘mathematical’’

knowledge within the classroom. In particular, these

aspects concern the legitimization of this knowledge within

the classroom community (S-N), its theoretical orientation

(E-T) and, finally, its status within mathematics (E-M).

Furthermore, they point out to the need of combining,

rather than comparing, the results of the three readings

initially planned. This combination offers a more global

understanding of the meaning of the construction process

taking place in the mathematics classroom, compared to

that provided by each of them separately.

There is no doubt that the above enterprise is but an

isolated and possibly rather uncertain attempt with respect

to its outcome to explore a very demanding, but rather

exciting issue, that of combining theoretical approaches

(Lerman, 2006). However, the didactical phenomena

occurring in the mathematics classroom as well as the

mathematical knowledge emerging within it are very

complicated in nature with respect to social, individual and

epistemological aspects. Thus, such multiple approaches

are indispensable, but they have to carefully incorporate

the issues raised above, in order to fully identify the nature
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of the mathematical knowledge interactively constructed in

the classroom context.
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Stehlı́ková (Eds.), Proceedings of the 30th conference of PME,

Vol. 1 (pp. 3–18). Prague: Charles University.

Chevallard, Y. (1985). La transposition didactique. Grenoble: La

Pensée Sauvage.

Ernest, P. (2006). A semiotic perspective of mathematical activity:

the case of number. Educational Studies in Mathematics, 61, 67–

101.

Godino, J., & Batanero, C. (1998). Clarifying the meaning of

mathematical objects as priority area for research in mathematics

education. In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics
education as a research domain (pp. 177–196). Dordrecht:

Kluwer.

Ikonomou, A., Kaldrimidou, L., Sakonidis, C., & Tzekaki, M.

(1999). Interaction in the mathematics classroom: Some episte-

mological aspects. In I. Scwank (Ed.), Proceedings of first
conference of European research in mathematics education, Vol.

I (pp. 168–181). Osnabrueck: Forschungsinstitut fuer Mathema-

tik Didaktik.

Kaldrimidou, L., Sakonidis, H., & Tzekaki, M. (2000). Epistemo-

logical features in the mathematics classroom: algebra and

geometry. In T. Nakahara, & M. Koyama (Eds.), Proceedings of
the 24th conference of PME, Vol. 3 (pp. 111–119). Hiroshima:

University of Hiroshima.

Kaldrimidou, L., Sakonidis, H., & Tzekaki, M. (2003). Teachers’

intervention in students’ mathematics work: A classification. In

M.A. Mariotti (Ed.), Proceedings of third conference of Euro-
pean research in mathematics education, thematic group 12.
Bellaria: CERME.

Kaldrimidou M., Sakonidis H., & Tzekaki, M. (2007). On the

mathematical knowledge under construction in the classroom: A

comparative study. In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-

Y. Seo (Eds.), Proceedings of the 31st conference of PME, Vol.

3 (pp. 89–96). Seoul: The Korea Society of Educational Studies

in Mathematics.

Lerman, S. (2006). Theories of mathematics education: Is plurality a

problem? Zentralblatt für Didaktik der Mathematik, 38(1), 8–13.

Sakonidis, H., Tzekaki, M., & Kaldrimidou, L. (2001). Mathematics

teaching practices in transition: Some meaning construction

issues. In M. van den Hauvel-Panhuizen (Ed.), Proceedings of
the 25th conference of PME, Vol. 4 (pp. 137–144). Utrecht:

Faculty of Mathematics and Computer Science, Freudenthal

Institute, Utrecht University.

Schoenfeld, A. H. (1992). Learning to think mathematically; Problem

solving, metacognition and sense making in mathematics. In D.

Grouws (Ed.), Handbook of research on mathematics teaching
and learning (pp. 334–370). New York: MacMillan.

Sfard, A. (1998). The many faces of mathematics: Do mathematicians

and researchers in mathematics education speak about the same

thing? In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics
education as a research domain (pp. 491–512). Dordrecht:

Kluwer.

Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics

and of mathematics education. In A. J. Bishop, K. Clements, C.

Keitel, J. Kilpatrick, & C. Laborde (Eds.), International
handbook of mathematics education (pp. 827–876). Dordrecht:

Kluwer.

Steinbring, H. (1997). Epistemological investigation of classroom

interaction in elementary mathematics teaching. Educational
Studies in Mathematics, 32(1), 49–92.

Steinbring, H. (1998). Epistemological constraints of mathematical

knowledge in social learning settings. In: A. Sierpinska, & J.

Kilpatrick (Eds.), Mathematics education as a research domain
(pp. 513–526). Dordrecht: Kluwer.

Steinbring, H. (2001). Analyses of mathematical interaction in

teaching processes. In M. van den Hauvel-Panhuizen (Ed.),

Proceedings of the 25th conference of PME, Vol. 1 (pp. 211–

217). Utrecht: Faculty of Mathematics and Computer Science,

Freudenthal Institute, Utrecht University.

Steinbring, H. (2006). What makes a sign a mathematical sign?—An

epistemological perspective on mathematical interaction. Edu-
cational Studies in Mathematics, 61(1/2), 133–162.

Tzekaki, M., Kaldrimidou, L., & Sakonidis, H. (2001). Reflections

on teachers’ practices in dealing with pupils’ mathematical error.

In J. Novotna (Ed.), Proceedings of second conference of
European research in mathematics education (pp. 322–332).

Prague: Charles University.

Yackel, E. (1995). Children’s talk in inquiry mathematics classroom.

In P. Cobb, & H. Bauersfeld (Eds.), The emergence of
mathematical meaning (pp. 131–162). Hillsdale: LEA.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumen-

tation and autonomy in maths. Journal for Research in
Mathematics Education, 27, 458–477.

Yackel, E., Cobb, P., & Wood, T. (1998). The interactive constitution

of mathematical meaning in one second grade classroom: an

illustrative example. The Journal of Mathematical Behaviour,

17(4), 469–488.

Yackel, E. (2001). Explanation, justification and argumentation in

mathematics classroom. In M. van den Heuvel-Panhuizen (Ed.),

Proceedings of the 25th conference of PME, Vol. 1 (pp. 9–24).

Utrecht: Faculty of Mathematics and Computer Science, Freu-

denthal Institute, Utrecht University.

Voigt, J. (1994). Negotiation of mathematical meaning and learning

mathematics. Educational Studies in Mathematics, 26, 275–298.

Voigt, J. (1995). Thematic patterns of interaction and sociomathe-

matical norms. In: P. Cobb, & H. Bauersfeld (Eds.), The
emergence of mathematical meaning (pp. 163–201). Hillsdale:

LEA.

Comparative readings of the nature of mathematical knowledge 245

123


	Comparative readings of the nature of the mathematical knowledge under construction in the classroom
	Abstract
	Introduction
	Mathematics and school mathematics
	The theoretical approaches
	Sociomathematical norms (S-N)
	The epistemological triangle (E-T)
	Classroom management of the epistemological features of mathematics (E-M)

	The study
	Data analysis and discussion
	Analysis of an episode from the first teacher&rsquo;s lesson
	From a sociomathematical norms&rsquo; perspective
	From an epistemological triangle&rsquo;s perspective
	From a management of epistemological elements&rsquo; perspective

	Analysis of an episode from the second teacher&rsquo;s lesson
	From a sociomathematical norms&rsquo; perspective
	From an epistemological triangle&rsquo;s perspective
	From a management of epistemological elements&rsquo; perspective


	Concluding remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


