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Low-Cost On-Line Convolution Checksum Checker
Dionyssios Filippas, Nikolaos Margomenos, Nikolaos Mitianoudis, Chrysostomos Nicopoulos, and Giorgos

Dimitrakopoulos

Abstract—Managing random hardware faults requires the
faults to be detected on-line, thus simplifying recovery.
Algorithm-based fault tolerance has been proposed as a low-cost
mechanism to check online the result of computations against
random hardware failures. In this case, the checksum of the
actual result is checked against a predicted checksum computed
in parallel by a hardware checker. In this work, we target the
design of such checkers for convolution engines that are currently
the most critical building block in image processing and computer
vision applications. The proposed convolution checksum checker,
named ConvGuard, utilizes a newly introduced invariance con-
dition of convolution to predict implicitly the output checksum
using only the pixels at the border of the input image. In this way,
ConvGuard reduces the power required for accumulating the
input pixels without requiring large buffers to hold intermediate
checksum results. The design of ConvGuard is generic and
can be configured for different output sizes and strides. The
experimental results show that ConvGuard utilizes only a small
percentage of the area/power of an efficient convolution engine,
while being significantly smaller and more power efficient than
a state-of-the-art checksum checker for various practical cases.

Index Terms—Convolution, Error Detection, Reliability, Algo-
rithm based fault tolerance

I. INTRODUCTION

Convolution is an essential operation in image processing
and it is widely applied in image signal processors [1],
[2], camera processing pipelines [3], and computational pho-
tography [4]. The importance of convolution has increased
considerably with the emergence of deep learning and, more
specifically, Convolutional Neural Networks (CNNs). A CNN
is a special type of neural network architecture that relies on
convolution layers and has shown remarkable performance in
many application fields, such as computer vision [5], natural
language processing [6], and robotics [7].

This widespread adoption of CNNs has triggered the need
to accelerate them directly in hardware, using a variety of
customized architectures that attempt to balance the need for
high-throughput with energy efficiency [8]. Specialized vector
and tensor processors are designed to accelerate convolutions
by first mapping them to equivalent matrix algebra operations,
covering both dense and sparse data representations [9], [10],
[11]. Dataflow and systolic architectures follow a similar
approach, but orchestrate computation differently, with the
goal being to break the register file bottleneck [12], [13].
Specialized convolution engines compute convolutions using
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Fig. 1. The online checksum checker operates in parallel to the convolution
engine and compares the true and the predicted checksums of convolution.

sliding-window architectures and unrolled hardware units,
thus taking better advantage of local buffering and memory
reuse [14].

Besides performance and energy-efficiency requirements,
the increasing prevalence of CNNs in safety-critical systems
also increases the need for building resilient CNNs as an
essential piece in guaranteeing the correctness of inference
applications [15], [16]. The correctness of convolution in the
presence of random hardware faults is necessary for safety and
possible standards compliance [17].

Managing random hardware faults, such as soft [18] and
hard errors [19], requires special hardware modules for fault
detection [20] that allow faults to be detected on-line and
rapidly, thus simplifying recovery. The importance of on-
line error detection is further increased, if one considers the
additional reliability constraints imposed by modern imple-
mentation technologies, including process variations, device
wear-out, and aging [19].

Algorithm-Based Fault Tolerance (ABFT) techniques [21],
[22] offer a low-cost mechanism to detect abnormal behaviour
in matrix-based computations [23] by comparing the true
output checksum with a predicted one. Checksum computation
and checking can be done either in software [24], [25], or in
hardware [26]. In this work, we focus on convolution-specific
ABFT hardware checkers.

In the case of a hardware online checker, as shown in Fig. 1,
the checker is attached to the input and the output of the
convolution engine and computes the true and the predicted
checksums that characterize the result of convolution. When
the two checksums differ, an error flag is asserted.

The checker does not interfere with, or interrupts, the opera-
tion of the convolution engine, but simply provides online fault
detection at the checksum level. Checksum checking cannot
distinguish the correctness of every output pixel produced by
the convolution engine. Instead, it checks if the sum of a group
of output pixels matches the expected sum. In a similar vein,
checking the result of convolution can be done using residue
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checking architectures [20], [27] that fall behind checksum-
based hardware checkers, as shown in [26].

The prediction of the convolution checksum should be done
in a cost efficient manner. In state-of-the-art approaches, such
as [26], [25], [28], the predicted output checksum is computed
explicitly using the same input pixels used for the actual
convolution. Significant amount of computation is saved [26]
by reusing efficiently the already computed checksums at the
cost of additional buffering to store those reusable results.

On the contrary, the proposed checksum checker, called
ConvGuard, follows a different approach, enabled by a new
fundamental property of convolution checksums introduced in
this work. Instead of accumulating the input pixels used for the
actual convolution, ConvGuard predicts the output checksum
of convolution implicitly by accumulating only the peripheral
pixels at the border of the input image that are dropped, or not
computed, at the output. In this way, ConvGuard significantly
reduces the power required for accumulating the input pixels,
without requiring large buffers to store intermediate checksum
results. Overall, the key contributions of this work can be
summarized as follows:
• ConvGuard introduces a novel invariant condition for

2D convolutions and utilizes it to predict implicitly the
checksum of the convolution output. This alternative
checksum computation can be computed rapidly with
a low-cost hardware module that can easily track the
performance (clock frequency and throughput) of the
monitored convolution engine.

• The proposed checksum convolution checker can be con-
figured to various convolution structures, including output
size and stride. Especially in the case of non-unity stride
convolutions, only useful input pixels are accumulated
and no redundant computation is involved.

• The experimental results, using detailed hardware anal-
ysis of synthesized designs, highlight that ConvGuard
utilizes only a small percentage of the area/power of
an efficient convolution engine, while being significantly
smaller than a state-of-the-art checksum checker [26].
The results scale well for increased image and filter sizes.
Also, the minimum buffering requirements of ConvGuard
reduce its susceptibility to bit-flip errors.

The rest of the paper is organized as follows: Section II
introduces the invariance condition of convolution checksum
and the implicit checksum prediction. Section III presents the
hardware checker that implements implicit prediction. Sec-
tion IV presents the checker for non-unity stride convolutions.
Experimental results are given in Section V, while conclusions
are drawn in Section VI.

II. PREDICTION OF CONVOLUTION CHECKSUM

The convolution of an H ×W image x with a filter h of
size M ×M is calculated as follows [29]:

ymn =

M−1∑
i=0

M−1∑
j=0

hijxn−i,m−j , (1)

m ∈ [0, P − 1], n ∈ [0, Q− 1]

yB=


y00 y01 y02 y03
y10 y11 y12 y13

y20 y21 y22 y23

y30 y31 y32 y33

 yD=


y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33


Fig. 2. Examples of output images as a result of the convolution of a 3× 3
input image and a 2 × 2 filter. The useful output pixels are highlighted in
blue. The rest are the extra outputs that should have been dropped, or not
calculated.

Formally, the size of the output y is P ×Q, with P = M +
H − 1 and Q = M + W − 1, and is larger than the input
image. However, in practice, the output pixels on the border
of the image may not be computed. In such cases, the output
image is either of equal size to the input image, or, most often,
smaller. Fig. 2 depicts two possible convolution outputs (pixels
in blue) for a 3×3 input image and a 2×2 filter. In the case of
yD, convolution is performed only on the pixels of the input
image without requiring any border padding [14]. Hence, the
output image is smaller than the input.

Convolution can be equivalently expressed as a matrix-
vector multiplication [8]:

y = Ahvec (2)

Vector hvec contains all the M̂ = M × M coefficients of
the filter arranged one after the other in one column. Output
vector y contains all elements of convolution (P ×Q in total).
For the multiplication to be valid, matrix A contains one row
for each application of the filter to the input image, i.e., for
each possible position of the sliding window, including the
outer border. Therefore, since the M̂ filter coefficients will
be multiplied with an equal number of input pixels, matrix A
consists of M̂ columns. For the convolution of a 3× 3 input
with a 2× 2 filter,

x=

x00 x01 x02

x10 x11 x12

x20 x21 x22

 h=

[
h00 h01

h10 h11

]
A consists of all elements of the input from where the filter
h would slide over, assuming a zero-padded border:

A=



0 0 0 x00

0 0 x00 x01

0 0 x01 x02

0 0 x02 0
0 x00 0 x10

x00 x01 x10 x11

x01 x02 x11 x12

x02 0 x12 0
0 x10 0 x20

x10 x11 x20 x21

x11 x12 x21 x22

x12 0 x22 0
0 x20 0 0
x20 x21 0 0
x21 x22 0 0
x22 0 0 0



(3)
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A. An invariant condition for convolution checksum

Since y = Ahvec, and A = [aij ], every element yi of y is
computed as

yi =

M̂−1∑
j=0

aijh
vec
j

Summing all yi’s yields:

PQ−1∑
i=0

yi =

PQ−1∑
i=0

M̂−1∑
j=0

aijh
vec
j

By rearranging the order of the two sums, we get:

PQ−1∑
i=0

yi =

M̂−1∑
j=0

PQ−1∑
i=0

aijh
vec
j =

M̂−1∑
j=0

(
PQ−1∑
i=0

aij

)
hvec
j

The sum inside the parentheses corresponds to the sum of the
elements of the jth column of A. It can easily be observed
in (3), and proven in the general case, that the sum of the
input pixels of each column of A is the same for all columns
and equal to the sum of all pixels of the input. Therefore, we
can replace

∑PQ−1
i=0 aij with

∑H−1
k=0

∑W−1
l=0 xkl. Based on this

observation, we can write:

PQ−1∑
i=0

yi =

M̂−1∑
j=0

(
H−1∑
k=0

W−1∑
l=0

xkl

)
hvec
j

=

(
H−1∑
k=0

W−1∑
l=0

xkl

)M̂−1∑
j=0

hvec
j


In other words, we have shown that, the sum of all output
pixels of the convolution is equal to the product of the sum
of all input data elements xkl with the sum of all the filter’s
coefficients.

Let Sy denote the set of indices that support image y and
Sh, Sx the indices that support h and x, respectively. The
invariance condition becomes∑

i∈Sy

yi =

(∑
k∈Sx

xk

)∑
j∈Sh

hj

 (4)

The set Sy can be divided into two sets Sxtr
y and Scrp

y that
denote the pixel indices that are cropped from the original
image, and the pixel indices that remain in the cropped image,
respectively. The set of Sxtr

y is not fixed and it represents
all pixels that are left off, depending on the choice of the
useful output and the structure of the convolution. It is
straightforward to see that Sy = Scrp

y +Sxtr
y . Thus, (4) becomes:

∑
i∈Scrp

y

yi+
∑
i∈Sxtr

y

yi =

(∑
k∈Sx

xk

)∑
j∈Sh

hj

 (5)

Let us see an arithmetic example of this newly introduced
invariance condition for the convolution of a 3×3 input image
x with a 2× 2 filter h:

x=

1 1 2
1 1 2
1 1 2

 h=

[
1 2
3 4

]

According to (1) the complete output consists of 4× 4 pixels,
as follows:

y =


1 3 4 4
4 10 14 12
4 10 14 12
3 7 10 8


Depending on which output pixels are considered useful,

invariant condition (5) would take a different form. For the
case of unity-stride convolutions, and assuming that convo-
lution is performed only on the pixels of the input image
without padding (like case yD in Fig. 2), the useful pixels
that will actually be computed by the convolution engine are
the ones highlighted in blue. Inevitably, the remaining pixels at
the periphery of the output image are the extra pixels that will
not be computed by the convolution engine. The sum of the
highlighted outputs is equal to

∑
ycrp = 48, while the sum of

the unused outputs
∑

yxtr = 72. In all cases, according to (5),
the sum of the two disjoint sets of pixels (48 + 72 = 120) is
equal to the product of sums (

∑
xk)(

∑
hj) = 12× 10.

B. Explicit and implicit prediction of the output checksum

An online checksum checker, similar to the one shown in
Fig. 1, would accumulate all useful output pixels coming out
of the convolution engine and compare the derived checksum
with the predicted one. Predicting the output checksum ei-
ther explicitly, or implicitly, means to re-compute

∑
i∈Scrp

y
yi

directly from the input without interfering at any point with
the convolution engine.

The useful output pixels ycrp and the extra ones yxtr can both
be computed according to (2), as follows:

ycrp = Acrphvec yxtr = Axtrhvec (6)

Matrices Acrp and Axtr contain only the rows of A that
correspond to each disjoint set of outputs. For our running
example (case yD in Fig. 2),

Acrp=


x00 x01 x10 x11

x01 x02 x11 x12

x10 x11 x20 x21

x11 x12 x21 x22

Axtr=



0 0 0 x00

0 0 x00 x01

0 0 x01 x02

0 0 x02 0
0 x00 0 x10

x02 0 x12 0
0 x10 0 x20

x12 0 x22 0
0 x20 0 0
x20 x21 0 0
x21 x22 0 0
x22 0 0 0


From (6), we can compute the elements of ycrp and yxtr, as

follows:

yicrp =

M̂−1∑
j=0

acrp
ij hj yixtr =

M̂−1∑
j=0

axtr
ij hj
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To compute the checksum of the useful output pixels, we need
to sum all elements yicrp. Let us assume that the number of
useful output pixels is equal to K:

K−1∑
i=0

yicrp =

K−1∑
i=0

M̂−1∑
j=1

acrp
ij hj=

M̂−1∑
j=0

K−1∑
i=0

acrp
ij hj

=

M̂−1∑
j=0

(
K−1∑
i=0

acrp
ij

)
hj (7)

The derived equation (7) tells us how to explicitly predict the
output checksum using only the pixels that participate in the
convolution (i.e., the ones in the center of the input image that
are grouped in Acrp). To do so, we need to compute the sum
of each column of Acrp, i.e.,

∑K−1
i=0 acrop

ij for column j, and
multiply the result with the corresponding filter coefficient.
Then, we should reduce the derived partial products to one
final predicted checksum.

Alternatively, with ConvGuard, we can compute implicitly
the same sum of output pixels using the new invariance
condition (5), which can be re-written as:

K−1∑
i=0

yicrp =

(∑
k∈Sx

xk

)∑
j∈Sh

hj

− K̂−1∑
i=0

yixtr (8)

Since the number of useful pixels is assumed to be equal to
K, the number of extra pixels (zero and non-zero) is equal
to K̂ = P Q − K. The sum of extra output pixels can be
expressed similarly to (7), as follows:

K̂−1∑
i=1

yixtr =

M̂−1∑
j=0

K̂−1∑
i=0

axtr
ij

hj (9)

Also, the product of sums (
∑

xk)(
∑

hj) can be restructured
as: (∑

k∈Sx

xk

)∑
j∈Sh

hj

 =

M̂−1∑
j=0

(∑
k∈Sx

xk

)
hj (10)

By replacing (9) and (10) in (8), we get

K−1∑
i=0

yicrp =

M̂−1∑
j=0

(∑
k∈Sx

xk

)
hj −

M̂−1∑
j=0

K̂−1∑
i=0

axtr
ij

hj

=

M̂−1∑
j=0

∑
k∈Sx

xk −
K̂−1∑
i=1

axtr
ij

hj (11)

Eq. (11) corresponds to the implicit prediction of the output
checksum. Instead of directly using the central pixels of the
input image, we accumulate the columns of Axtr that consist
only of peripheral pixels, i.e.,

∑K̂−1
i=1 axtr

ij for each column j.
Each one of those accumulated sums (one for each filter coef-
ficient) is subtracted from a common sum that corresponds to
the sum of all input pixels, irrespective of their position. Then,
the derived differences are multiplied with their corresponding
filter’s coefficients and reduced to a final sum. In the case of
multiple filters (3D convolution?) the same approach holds for
each separate filter.

decoderx(i,j)

common
sum

predicted 
output

checksum

h0,0 h0,1 hM-1,M-1

input
pixel

output
checksum

output
pixel

error

convolution
engine

Fig. 3. The organization of ConvGuard. It runs in parallel to the convolution
engine and it receives the same input and the engine’s output pixels. Conv-
guard accumulates the sum of the output pixels and compares it to its predicted
checksum value. The predicted output checksum utilizes a set of accumulators
– one for each filter coefficient – and a common sum accumulator that
computes the sum of all input pixels.

For realistic image sizes and unity-stride convolutions, the
number of extra pixels is much smaller than the the useful
ones. Therefore, choosing to accumulate the peripheral input
pixels is expected to lead to overall fewer additions. This
choice is unique to ConvGuard and a direct consequence of
the invariance condition (5) introduced in this work.

III. ON-LINE CHECKER ARCHITECTURE

The architecture of ConvGuard is depicted in Fig. 3. The
checker module operates in parallel to the convolution engine,
without interfering with its operation. ConvGuard monitors the
input x and the output y of the engine and predicts implicitly
the output checksum by computing online Eq. (11).

A. Checker Organization

In each cycle, ConvGuard performs two tasks. On the output
side, it accumulates the valid output samples produced by the
convolution engine. Recall that, without loss of generality, we
assume that the convolution engine computes only the useful
output pixels and does not produce any invalid output. If
it does, it just needs to mark the pixels as invalid, so that
ConvGuard can skip them. On the input side, to check the
correctness of convolution, ConvGuard computes one sum for
each column of Axtr and a common sum of all input pixels.
To do this, it employs one accumulator for each column of
Axtr (M̂ in total) and one accumulator for the common sum.

Initially, all accumulators are reset to zero. Then, as each
input pixel arrives, (one per cycle; more pixels can arrive
per cycle after marginal design changes), it is added to the
appropriate accumulator, while all of the incoming pixels are
added to the common-sum accumulator. Depending on the
arriving input pixels, multiple accumulators may be enabled
in the same cycle. For instance, in our running example, when
input pixel x00 arrives, it contributes to the running sum of
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output

useful output

extra output

input needed
for extra output

H

W

M

M-1
2

M-1
2

computed from

W

H

M-1

M-1

input

Fig. 4. The peripheral pixels that should be added for the computation of the
sum of extra output pixels. Each highlighted pixel may contribute to many
accumulators in the same cycle, as dictated by the decoder function.

accumulators that correspond to the filter’s coefficients h01,
h10, and h11. On the contrary, when input pixel x20 arrives,
only the accumulator of h11 is activated. It should be noted
that central pixels – like x11 – that do not appear in Axtr are
skipped and not added to any accumulator besides the common
one.

The decision to which accumulator each input pixel con-
tributes is done in the decoder, which is also shown in Fig. 3.
The decoder decides two things: (a) which peripheral input
pixels contribute to the computation of the extra output pixels,
and (b) to which accumulator they should be added.

As shown in Fig. 4, the extra output pixels consist of the
(M − 1)/2 rows and columns on the border of the output.
To derive those outputs, a larger border of M − 1 rows
and columns is actually used from the input image. The
decoder would allow only those input pixels to be added to
the appropriate accumulators. On the contrary, all input pixels
are added to the common sum accumulator. Stated formally, an
input pixel xij is added to the accumulator that corresponds to
the filter’s coefficient hnm when at least one of the following
inequalities is satisfied:

n > i > H−M+ n m > j > W−M+m (12)

When all input pixels have passed through the convolu-
tion engine, the checker’s accumulators have accumulated
all needed sums: one common sum, and one sum for each
column of Axtr. At this point, the sum that corresponds to
each coefficient is subtracted from the common sum, in order
to correctly compute the term in the parentheses of (11). Then,
each resulting term is multiplied with the corresponding filter’s
coefficient and the products are added to produce the final
value, which corresponds to the predicted output checksum of
the convolution.

For fixed-point implementations, which is the focus of this
work, all registers and arithmetic units are sized appropriately
so as to avoid any overflow conditions that would ruin the out-

put checksum prediction. For checking a floating-point-based
convolution engine, we cannot guarantee that the predicted
output checksum would match the true output checksum,
even under error-free operation. In these cases, the equality
comparison should be transformed to a bounds check. If the
predicted and the true output checksums differ by a certain
small error bound, the convolution would still be considered
fault free [20], [30].

Finally, it should be stressed that the prediction of the
output checksum is computed gradually without requiring any
buffering of intermediate results. This lack of buffering is
critical in reducing the cost of the checksum checker. It is
expected that an on-line checker should consume only a small
percentage of the area of the convolution engine and leave only
an incremental energy footprint, as compared to the energy
consumed in computing the actual convolution.

B. When does implicit prediction of the output checksum make
sense?

Predicting the output checksum implicitly using Eq. (11) is
useful only when it can be computed with fewer additions,
as compared to an explicit prediction of the checksum. To
understand when the two approaches break even, we need to
count the number of additions needed in each case. Equiva-
lently, we need to count the number of non-zero elements of
matrices Acrp and Axtr, respectively.

In the case of explicit checksum prediction, Acrp consists of
only non-zero elements. It has as many rows as the number of
useful output pixels. According to Fig. 4, the number of useful
output pixels is K = (H−M+1)(W−M+1) for odd values
of M . The number of columns of matrix Acrp is always equal
to the number of the filter’s coefficients M̂ (equal to M2).
Therefore, by multiplying the two, the number of additions
required for the explicit computation of the checksum is:

#explicit adds=M̂ K=M2(H −M +1)(W −M +1) (13)

On the contrary, the implicit checksum prediction has to
do with all the remaining output pixels. Recall from Eq. (3)
that each column of A contains all input pixels and some
zero elements. Therefore, the non-zero elements of every
column of Axtr that should be added are equal to the number
of all input pixels HW minus the elements of the same
column of Acrp, i.e., HW − (H − M + 1)(W − M + 1).
Since there are M̂ columns in Axtr, the number of additions
required is equal to M̂ (HW − (H −M + 1)(W −M + 1)).
By replacing Eq. (13) in the derived formula, we conclude that,
to compute the sum of the extra output pixels, we need

M̂ H W − #explicit adds

additions. The checker computes also a common sum that
involves the sum of all input pixels. Therefore, ConvGuard
requires HW more additions. Overall,

#implicit adds = (1 + M̂)HW − #explicit adds (14)

Using Eqs. (14) and (13), we can compare the efficiency
of these two approaches for arbitrary image and filter sizes.
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The implicit approach proposed by ConvGuard requires fewer
additions than the explicit approach when

#explicit adds >

(
M̂ + 1

2

)
HW (15)

Fig. 5 depicts the number of additions required in each
case (“Explicit” and “Implicit”) for a 3 × 3 and a 5 × 5
filter for various square input dimensions. For really small
input images, it is more efficient – in terms of number of
additions – to predict the output checksum explicitly. When
the input image is larger, implicit prediction is more efficient
that explicit prediction. For instance, for a 3 × 3 input filter,
implicit prediction is more efficient for any input image larger
than 8× 8 pixels. The minimum input image size required to
make implicit prediction more cost-efficient for various filter
sizes and for stride S = 1 is presented in the first column of
Table I. The presented sizes are encountered in many existing
applications. For instance, VGG-16 [31] has an input image
of size 224 × 224, which is convolved with a filter of size
3 × 3. Furthermore, the 2nd to 5th convolutional layers of
AlexNet [32] perform convolutions on images with sizes of
27× 27 and 13× 13, using 5× 5 or 3× 3 filters.
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Fig. 5. The number of additions needed for predicting the output check-
sum explicitly, implicitly and with maximum reuse of already computed
results [26], for two filter cases and various square input image sizes.

Fig 5 also shows the number of additions required by
the state-of-the-art “Reuse” checksum checker, as presented
in [26]. This approach relies on explicit prediction of the
output checksum and reduces the total number of additions
by reusing many of the already computed sums. However,
the reduced number of additions comes at the cost of extra
buffering to store the required intermediate results. As clearly
shown in the experimental results in Section V-B, this extra
buffering significantly increases the total area and power
of this checker, relative to ConvGuard. Moreover, the extra
buffers make the checker more susceptible to random bit-
flips that would lead to false detection alarms, as analyzed
in Section V-C.

IV. CHECKING NON-UNITY STRIDE CONVOLUTIONS

In the non-unity stride convolutions found in many practical
applications, the useful output pixels are even fewer. Further-
more, in these cases, extra pixels are present not only at the
periphery of the image, but in the center as well. In such cases,
predicting the output checksum implicitly would always re-
quire more additions than the explicit prediction. To enable the
applicability of ConvGuard to non-unity-strided convolutions,
we utilize a recently-proposed transformation [33], [34] that
allows the computation of any convolution with stride S > 1

Fig. 6. Transformation of a strided convolution with S = 2 to a 4-channel
unity-stride convolutions, depicted with symbol ∗.

using multiple channels of unity-stride convolutions. By ap-
plying the implicit checksum prediction on each independent
unity-stride channel, we can still design a low-cost checksum
checker.

A. Checking independently per channel

In a unity-stride convolution, the filter is applied to every
pixel of the input. On the contrary, in the case of a non-unity
stride convolution, the filter moves on the input with a step
of S. In this case, each input pixel will not be multiplied
with every filter coefficient, but with a subset of them. Fig. 6
groups the input pixels based on which filter’s coefficient
“touches” them. The blue input pixels will be multiplied only
with the blue filter coefficients, while the green ones will
be multiplied only with the green filter coefficient. Based on
this observation, the work in [33], [34] proposed to compute
any non-unity stride convolution by summing the result of S2

smaller and independent unity-stride convolutions. The unity-
stride convolutions are applied on selected sub-image and sub-
filter pairs, as also shown in Fig. 6.

Being able to transform a non-unity stride convolution into
multiple unity-stride ones allows us to apply ConvGuard effi-
ciently to arbitrary strides. More precisely, ConvGuard predicts
the output checksum implicitly using Eq. (11) separately, per
channel. Since – according to [34] – the result of the each
sub-convolution is added to form the final convolution result,
then the final prediction of the output checksum is the sum of
all intermediate implicit predictions.

B. Generalized checker

The organization of generalized ConvGuard is illustrated in
Fig. 7. To compute Eq. (11) for each channel we need more
accumulators. Since the number of the filter’s coefficients does
not change, the number of accumulators that sum the input
pixels per coefficient remains the same as in the baseline
case (S = 1). However, we need more than one common-
sum accumulators. Since we compute a common sum for
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Fig. 7. The generalized ConvGuard architecture that support arbitrary strided
convolutions.

the sub-image of each channel, we need S2 common-sum
accumulators in total (one per channel). Thus, overall, for
supporting convolutions with stride S, we need S2 + M2

accumulators.
For convolutions of arbitrary stride, decoding is a two-step

procedure. The first step decides to which channel each pixel
belongs, and the second step decides if it is a peripheral pixel
of the channel’s sub-image, or not. The first check determines
to which channel’s common sum accumulator the pixel should
be added, and the second check (also using the result of the
first check) decides to which filter coefficients the incoming
pixel refers.

For the first check, the common sum accumulator of channel
(k, l) is increased when, for the input pixel (i, j), the following
hold: k = i mod S and l = j mod S.

For the second check, we actually need to check if at least
one of the inequalities in (12) holds after mapping the indices
of the input pixels (i, j) and the filter’s coefficients (m,n)
to the “smaller” co-ordinates of each channel. The considered
sizes for the sub-images and sub-filter should be scaled too. To
achieve this, we merely need to integer-divide each variable
of the inequalities with the selected stride S.

Once the common sums per channels have been accumu-
lated and the coefficient accumulators get their final values, the
appropriate common sums are subtracted from the appropriate
accumulators, as shown in Fig. 7. The mask logic of Fig. 7
decides the assignment by identifying the common sums and
the filter coefficients that belong to the same channel.

The number of additions required for the implicit prediction
of the output checksum depends on the size of the input image,
as well as the size of the filter. Additionally, in the case of
a non-unity stride convolutions, the efficiency of ConvGuard
also depends on the sizes of all sub-images and sub-filters that
emerge after the transformation to multi-channel unity stride
convolutions. Thus, the number of additions depends on the
selected stride as well.

Table I shows the minimum number of pixels that an input
image should have to make the implicit prediction of the

TABLE I
THE MINIMUM SIZE OF THE SIDE OF A SQUARE IMAGE THAT FAVORS
IMPLICIT OVER EXPLICIT PREDICTION OF THE OUTPUT CHECKSUM.

Filter Stride - S
1 2 4 6

3× 3 8 14 - -
5× 5 15 17 43 -
7× 7 23 26 34 64

11× 11 35 38 46 54

output checksum more efficient than its explicit counterpart.
For instance, for stride S = 2 and a filter or size 5 × 5 the
input image should be at least 17×17 pixels, while for a larger
11× 11 filter, the minimum image size increases to a 38× 38
pixels. When the stride is larger than the filter, the multi-
channel decomposition of the original strided convolution is
degenerated. In this case, each channel may contain only one
filter coefficient or none. Hence, in such cases, the differentia-
tion between implicit and explicit prediction no longer makes
sense.

V. EXPERIMENTAL EVALUATION

In the experimental results, we aim to highlight three aspects
of ConvGuard. In the first set of experiments, our plan is
to measure the hardware overhead of ConvGuard, relative to
a customized convolution engine. Then, ConvGuard is com-
pared, in terms of hardware complexity, with a state-of-the-art
checker that minimizes the number of required additions to
explicitly predict the output checksum. Finally, in the third set
of experiments, we explore the fault detection properties of
both checkers.

A. Hardware overhead added to check an optimized convolu-
tion engine

Convolution engines can employ various architectures.
Choosing a high-throughput, but area-efficient, sliding-window
based architecture – similar to the one used in [14] and [35]
– would reveal the worst-case overhead expected from Conv-
Guard. In such sliding-window-based convolution engines, the
incoming pixels are streamed in the engine and stored in an
active window buffer of the same size as the filter, and in row
buffers that keep the M −1 recently fetched lines of the input
image [14]. Row buffers can be built either using registers,
or SRAM blocks. The filtering function is an unrolled and
possibly pipelined arithmetic datapath. The baseline input-
output throughput of 1 pixel/cycle of these architectures can
easily be increased to facilitate parallelism by accepting and
producing more pixels/cycle [36].

The sliding-window-based convolution engine and the Con-
vGuard checker that operates in parallel have been designed
in C++ and synthesized to Verilog RTL using Catapult HLS
and driven by a commercial-grade 45 nm standard-cell library.
Final timing/area results are derived from the Oasys logic
synthesis tool. Line buffer memories are mapped to SRAM
macro blocks to further minimize the area of the convolution
engine. Keeping line buffers in registers would have increased
the area of the convolution engine significantly and would
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TABLE II
THE AREA AND POWER COMPLEXITY OF AN APPLICATION-SPECIFIC

CONVOLUTION ENGINE AND CONVGUARD OPERATING AT 1 GHZ.

Filter Image Area (µm2) Power (mW)@ 1GHz
Engine Checker Engine Checker

3× 3
14× 14 26908 9860 3.99 1.31
28× 28 32947 11278 4.90 1.53
56× 56 36678 12164 5.26 1.84

5× 5
28× 28 74104 18651 10.36 2.09
56× 56 100900 20184 11.16 2.35

112× 112 115380 22451 15.56 2.78

11× 11
56× 56 508873 63536 37.88 4.65

112× 112 544887 74463 54.95 5.37
224× 224 616364 68110 65.39 5.46
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Fig. 8. The (a) area and (b) power cost of the ConvGuard checker as a
percentage of the total area and power of the protected convolution engine.

unrealistically minimize the overhead of the checker. Power
was estimated after synthesis using the PowerPro power
analysis and optimization tool. Switching activity information
was gathered after simulating the convolution engine and the
checker using actual images and filters.

Both the convolution engine and ConvGuard have been
synthesized for various image and filter sizes assuming 16-
bit wide input pixels. In all cases, we assumed a target clock
frequency of 1 GHz. Table II shows the area and power
of each constituent part of a protected convolution engine.
Additionally, Fig. 8 highlights the area and power percentage
of ConvGuard, relative to the total area and power of the
protected convolution engine, for each one of the examined
cases.

ConvGuard provides checking capability to the convolution
engine by incurring only a small additional area and power
overhead. The overhead added is below 10% for 11×11 filters
and increases for smaller filters and smaller image widths. The
cost of ConvGuard is mostly determined by the size of the
filter and is only slightly affected by the size of the image.
Image size determines only logarithmically the bit-width of
the checker’s accumulators. Further, when increasing the bit-
width of the input pixels, the cost of the convolution engine
that buffers actual pixels increases faster than the cost of
ConvGuard, which only stores their sum. For instance, for
32-bit inputs (instead of 16-bit), the highest overhead shown
in Fig. 8(a) for the case of a small 3 × 3 filter and a small
14× 14 input image drops from 25% – for 16-bit inputs – to
19% for 32-bit inputs (not shown in the Figure).

Fig. 9 illustrates the area and power scaling of the Con-
vGuard architecture for increasing stride. The synthesized
designs assume an 11×11 filter, where using non-unity strides
makes more sense. From the reported results, we can see that
increasing the stride only marginally increases the total area of
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Fig. 9. The (a) area and (b) power scaling of ConvGuard with increasing
stride for an 11× 11 filter and a 56× 56 example image.

the checker. Roughly, for every step of increasing stride, the
area and power increases by 6% and 11%, respectively. This
result can easily be explained, since the majority of the area
of ConvGuard is occupied by the area of the accumulators
per filter coefficient and their associated datapath logic, and
less by the area of the common sum accumulators used in
each channel (see Fig. 7). Moreover, part of the area/power
increase observed when increasing the stride is the result of
the complexity of the mask logic shown in Fig. 7. The mask
logic introduces additional multiplexing to forward the result
of the multiple common-sum accumulators (one per channel)
to the appropriate subtraction units.

B. Hardware complexity comparison with a state-of-the-art
checker

Having quantified the overhead of adding ConvGuard to a
customized convolution engine, we now aim to highlight its
efficiency relative to a recent state-of-the-art checker archi-
tecture [26]. In [26], the prediction of the output checksum
is done explicitly and the already computed sums of pixels
are kept and reused when forming larger sums. On one hand,
this approach significantly reduces the number of additions, as
shown in Fig. 5, but, on the other hand, it increases the number
of buffers added to store the intermediate results. The HLS-
ready C implementation of this “Reuse” architecture is pub-
licly available in Git and used in this work after easily mod-
ifying the Vivado-specific synthesis constraints to Catapult-
HLS-specific constraints. Although the design of [26] was
targeting an FPGA implementation for testing overclocking
possibilities, it was easily ported to an ASIC implementation
with marginal modifications that kept the original organization
of the checker. The C model was successfully synthesized to
1 GHz.

The area/power results obtained after synthesizing both
designs for various filter sizes, and assuming an input image
of 56 × 56 pixels, are shown in Fig 10. The trend for other
image sizes is the same. The cost of both checkers is mostly
affected by the size of the filter, while the size of the input
image only determines the bit-width of the accumulators.

In all cases, it is evident that ConvGuard requires signif-
icantly less area and power. This attribute of ConvGuard is
attributed to the complete lack of buffering resources that fits
well to its low-cost profile. Besides its accumulators, Conv-
Guard does not store any incoming pixels, nor any previous
intermediate checksum result. On the contrary, the “Reuse”
architecture requires a set of accumulators that handle final
additions (equal in number to ConvGuard), and an additional
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Fig. 10. The (a) area and (b) power overhead cost of the ConvGuard checker,
as compared to the Reuse architecture [26] for an input image size of 56×56.

set of accumulators for storing intermediate results. This
extra sequential storage is inherent to the organization of the
“Reuse” architecture.

C. Fault detection properties and comparison with a state-of-
the-art checker

In the last set of experiments, the goal is to quantify the
fault detection properties of ConvGuard and compare them
to the state-of-the-art checker analyzed in Section V-B. In this
way, we highlight the additional benefit offered by the reduced
buffering requirements, as compared to reducing the number of
additions. The smaller the number of buffers a checker needs,
the smaller the probability to experience a fault inside the
checker itself. Checker faults may lead to false alarms and/or
missed fault detections.

Our experiments are based on injecting bit-flips in random
clock cycles during the time interval needed to complete a
convolution. Faults are injected to random storage elements in
both the convolution engine and the checker. The number of
faults injected in each run is a user parameter. The probability
to experience a bit-flip is proportional to the area of the
corresponding storage elements. For instance, the SRAM-
based row buffers of the convolution engine are expected to
experience a bit-flip more often than the accumulators of the
checker. The input pixels and the filter coefficients used in
each run are the ones used for power estimation. At the end of
each convolution, we record the outcome of the fault injection
campaign. The observed behavior may fall into one of four
categories:
• Detected: A fault occurred in the convolution engine and

the checker detected it.
• Silent: A fault occurred in the convolution engine and the

checker did not detect it. In this case, we must be certain
that the checker did not experience any faults. The effect
of the fault was masked at the checksum level.

• False Positive (FP): The checker flagged a fault detection
but no fault occurred in the convolution engine.

• False Negative (FN): A fault occurred in the convolution
engine and the checker did not detect it. In this case, we
must be certain that the checker experienced a fault that
caused its malfunction.

Fig. 11 shows the percentage of faults detected by Conv-
Guard and the “Reuse” architecture [26] after executing the
same 10 K convolutions of 56 × 56 input images and using
5 × 5 filters. In each case, an increasing number of faults
were injected per convolution. In the case of injecting only a

single fault, we assume that the fault is always injected in
the convolution engine and the checker remains error-free.
This is the reason why the fault detection performances of
both checkers match (their performance depends solely on the
fault detection properties of checksum-based checking). In the
following cases, the faults are injected randomly to both the
convolution engine and the checker. The increased number
of buffers in the “Reuse” architecture, relative to ConvGuard,
reduces its fault detection efficiency. This difference is mostly
the result of FP outcomes. Even if the convolution engine
is error-free, the checker signals an error. When the number
of faults injected is increased, both approaches converge to a
high fault detection rate. The multiple faults occurring almost
certainly cause a difference between the true and the predicted
checksum in both cases.
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Fig. 11. Fault detection efficiency of the ConvGuard and “Reuse” [26]
architectures after injecting a varying number of faults to the same 10 K
convolutions of 56 × 56 input images using a 5 × 5 filter. In the case of
1 injected fault, it is assumed that this is injected only into the convolution
engine in a random clock cycle.

TABLE III
THE OBSERVED BEHAVIOR AFTER INJECTING 2 RANDOM FAULTS IN
CONVOLUTIONS OF INCREASING INPUT SIZE AND A 3× 3 FILTER.

Image Fault Categories
Detected Silent FP FN

14× 14 91.36% 3.98% 4.62% 0.01%
28× 28 95.95% 2.03% 2.01% 0.01%
56× 56 97.96% 1.45% 0.59% 0.00%

112× 112 98.58% 1.17% 0.25% 0.00%

To quantify the fault detection efficiency of ConvGuard
when increasing the image size, we injected 2 random faults
in 10 K convolutions using a 3 × 3 filter. The same number
of convolutions was repeated for different input image sizes.
The results are presented in Table III. With small images,
the probability of injecting a fault into the checker is higher,
which leads to a measurable amount of false alarms (FP and
FN cases). Instead, when the input image increases, the area
of the line buffers increases, as compared to the rest of the
sequential storage. Thus, the line buffers inevitably experience
the majority of the faults. Since the checker is less likely to
experience a fault, it can detect the errors of the convolution
engine more often. In overall, ConvGuard, due to its low cost
and high fault detection efficiency, can act complementary to
other protection mechanisms, such as parity checking added
to memory blocks [20].
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VI. CONCLUSIONS

Algorithm-based fault tolerance is a generic approach for
detecting random hardware failures by identifying when there
is a difference between the actual and the expected outcome
at the checksum level. Such approaches can be used even
for post-silicon design validation. In this work, we focus on
convolution-specific ABFT implemented directly in hardware.

Our proposal identifies a generic invariance checking con-
dition for convolution and uses it to design simpler online
checksum checkers. To avoid any performance degradation,
the prediction is computed in the same time frame that the
convolution engine produces the true output. The proposed
ConvGuard architecture does not re-compute any output pixel;
it only quickly predicts their sum. The simple mathematical
formulation that guides the design of ConvGuard allows it to
adapt to any convolution structure, including arbitrary stride
parameters. Its algorithmic nature simplifies the design process
and allows its easy adoption in both ASIC and FPGA chips.

In addition to reducing the number of additions by pre-
dicting the output checksum implicitly, ConvGuard operates
using minimum buffering. Consequently, it saves considerable
amount of area relative to a current state-of-the-art checker
architecture [26], and it is less susceptible to false negative or
false positive alarms for precisely the same reason.
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