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Abstract

In this letter, the authors explore the use ofLaplacian Mixture Models(LMMs) to address the

overcomplete Blind Source Separation problem in the case that the source signals are very sparse. A

two-sensor setup was used to separate an instantaneous mixture of sources. Ahard and asoft decision

scheme were introduced to perform separation. The algorithm exhibits good performance as far as

separation quality and convergence speed are concerned.
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I. I NTRODUCTION

Assume a set of sensorsx(n) = [x1(n), . . . , xM(n)]T , observing a number of source signals

s(n) = [s1(n), . . . , sN(n)]T . In this letter, we will assume noiseless instantaneous mixing, i.e.

x(n) = As(n) (1)

whereA denotes themixing matrix. The source separation problem consists of estimating the

original sourcess(n), given the observed signalsx(n). In the case of equal number of sources

and sensors (N = M ), a number of robust approaches using Independent Component Analysis

(ICA) have been proposed in literature [7]. In theovercompletesource separation case (M < N ),
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the source separation problem consists of two sub-problems: i) estimate the mixing matrixA,

ii) estimate the source signalss(n).

In general, the linear blind source separation problem can have two theoretical issues: the

identifiability and theseparability of the problem.Identifiability describes the capability of

estimating the structure of the linear model up to a scale and permutation.Separabilityrefers

to the capability of retrieving the sources using the estimate of the mixing model. According to

Eriksson and Koivunen [4], in the case of overcomplete ICA, it is still possible to identify the

mixing matrix from the knowledge ofx alone, although it is not possible to uniquely recover

the sourcess. However, if we assume a specific probability distribution fors, one can obtain

estimates of the sources, by maximising the likelihood ofp(x|A, s). Eriksson and Koivunen [4]

proved that the general linear ICA model isuniqueup to the following assertions: a) The model

is separable, b) all source variables are nonGaussian andrank(A) = M and c) none of the source

variables have characteristic function featuring a component in the formexp(Q(u)), whereQ(u)

is a polynomial of degree at least2 .

Several approaches were proposed to address the overcomplete source separation problem in

the past. Lewicki [6] provided a complete Bayesian approach, assuming Laplacian source priors

to estimate both the mixing matrix and the sources in the time domain. Clustering solutions were

introduced by Hyv̈arinen [5] and Bofill-Zibulevsky [2]. Davies and Mitianoudis [3] employed

the MDCT (Modified Discrete Cosine Transform) to obtain a sparse representation of the data

(see figure 1 for a two sensors - three sources scenario). They proposed a two-state Gaussian

Mixture Model (GMM) to represent the source densities and the possible additive noise and

used anExpectation Maximization(EM)-type algorithm to perform separation with reasonable

performance.

In this paper, the authors explore the case of a two-sensor setup with no additive noise, where

the source separation problem becomes a one-dimensional (1D) optimal detection problem. The

phase difference between the two-sensor data is employed. ALaplacian Mixture Model(LMM)

is fitted to the phase difference between the two sensors, using an EM-type algorithm. The LMM

model is then used to perform separation using either asoft or a hard threshold.
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Fig. 1. Scatter plot of the two sensor signals in the sparse MDCT domain.

II. A TWO-SENSOR APPROACH

In figure 1, one could see the scatter plot of the two sensor signals, in the case of two sensors

and three sources. To get a sparser representation of the data, we applied theModified Discrete

Cosine Transform(MDCT) on the observed signals. Other transforms with similar properties,

such as the Wavelet Transform, can also be employed [8]. The need for sparser representations

in overcomplete source separation is discussed more rigorously in [3]. Observing the scatter

plot, we can see that the two-dimensional (2D) problem can be mapped to a 1D problem, as

the only important parameter is the angleθn of each point, i.e. the phase difference between the

two sensors.

θn = atan
x2(n)

x1(n)
(2)

Using only the phase difference is equivalent to mapping all the observed data points on the

unit-circle. The whole idea resembles the processing of all the observed data points mapped

to the half-unitN -dimensional sphere, as proposed by Bofill and Zibulevsky [2]. In figure 2,

we plot the histogram of the observed data angleθn. We can see that the strong superGaussian

characteristics of the individual components in the MDCT domain are preserved inθn. Observing

figure 2, we can model the observed densityp(θn), by fitting aLaplacian Mixture Model(LMM).

Subsequently, each of the Laplacians in the mixture will represent each individual source. Using

the estimated Laplacians, we can perform source separation by optimal detection schemes.
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III. L APLACIAN M IXTURE MODELLING

The Laplacian density is usually represented by

L(θ, c, θ0) = ce−2c|θ−θ0| (3)

whereθ represents the center (mean) andc > 0 controls the “width” of the density respectively.

A Laplacian Mixture Model(LMM) is defined as follows:

p(θ) =
N∑

i=1

αiL(θ, ci, θi) =
N∑

i=1

αicie
−2ci|θ−θi| (4)

whereαi, θi, ci are the weights, centers and widths of each Laplacian. Effectively,
∑N

i=1 αi = 1. A

common method used to train a mixture model is theExpectation-Maximization(EM) algorithm.

IV. T RAINING USING THE EM ALGORITHM

In this section, we derive the EM algorithm to train a LMM, based on Bilmes’s analysis [1].

In [1], Bilmes presents a procedure to find Maximum Likelihood Mixture density parameters

using the EM. AssumingT samples forθn and Laplacian Mixture densities (4), we can extend

Bilmes’s analysis to formulate EM’s cost function for Laplacian Mixtures, as follows:

J(ci, θi) =
T∑

n=1

N∑

i=1

(log ci − 2ci|θn − θi|)p(i|θn) (5)

wherep(i|θn) represents the probability ofθn belonging to theith Laplacian. The updates for

p(i|θn) andαi are given by the following formulas:

p(i|θn) =
αicie

−2ci|θn−θi|
∑N

i=1 αicie−2ci|θn−θi| (6)

α+
i ←

1

T

T∑

n=1

p(i|θn) (7)

To find the updates forθ+
i andc+

i , we have to solve the equations∂J/∂θi = 0 and∂J/∂ci = 0

(see Appendix I). The updates are given by:

θ+
i ←

∑T
n=1

θn

|θn−θi|p(i|θn)
∑T

n=1
1

|θn−θi|p(i|θn)
(8)

c+
i ←

∑T
n=1 p(i|θn)

2
∑T

n=1 |θn − θi|p(i|θn)
(9)
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V. SEPARATION

Once the LMM is trained, we can use optimal detection theory and the estimated individual

Laplacians to get estimates of the sources. Essentially, the center of each Laplacianθi represents

a column of the mixing matrixA, in the form of[cos θi sin θi]
T . To perform separation, we can

use ahard or soft decision threshold.

A. Hard threshold - “Winner takes all”

The “Winner takes all” strategy simply attributes each point of the scatter plot to one of the

sources. This is performed by setting a hard threshold at the intersections between the trained

Laplacians. In figure 2, you can see the fitted Laplacians in a two sensors - three sources example

and the hard threshold imposed.

B. Soft threshold

One can relax the hard threshold strategy, by allowing points belong to more than one source

simultaneously. A soft thresholding strategy can attribute only the points that constitute a ratio

q (i.e. 0.8-0.9) of each Laplacian to the corresponding source. This is that theith source will be

associated with the pointsθn for which p(θn) ≥ (1 − q)αici. This will allow points to belong

to more than one sources. However, for this scheme to be effective, the estimated Laplacians

need to be fairly concentrated aroundθi (quite small variance). In the opposite case, there will

be classification mistakes. The solutions are either to decreaseq or apply a hard threshold.

C. Edge effects

There is an issue about some edge effects on the Laplacian Mixture Modelling. The Laplacian

density, as described in (3), is valid∀ θ ∈ (−∞, +∞). However, the range ofθn is bounded

to (−π/2, π/2). Assume that you have a concentration of points close to these boundaries. The

EM algorithm will fit a Laplacian around this cluster without any problem, as the algorithm

is not imposing any restriction onθ. As a result, this Laplacian will be extended slightly

on (−3π/2,−π/2) or (π/2, 3π/2). The problem comes when we need to perform separation.

Limiting this Laplacian at−π/2 or π/2, implies that we are imposing a hard threshold at these

points, which might not be very accurate. Therefore, we need to map the parts that exist in
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Fig. 2. A plot of the observedθn, as in eq. (2). Three Laplacian densities were fitted by the proposed algorithm. A hard

threshold employed for separation is depicted.

(−3π/2,−π/2) or (π/2, 3π/2) to (−π/2, π/2). This can be achieved by using a “modified”

densityG(θ) (see figures 2, 3):

G(θ) = L(θ) + L(θ − π) + L(θ + π), ∀ θ ∈ (−π/2, π/2) (10)

VI. EXPERIMENTS - PERFORMANCE

To test the efficiency of the proposed scheme, we created two artificial instantaneous mixtures

of two sensors - three audio sources and two sensors - four audio sources.

In figures 2,3, we can see the actual distribution of observedθn and the fitted Laplacians. The

proposed EM algorithm fitted the Laplacians with relative accuracy. More accuracy is observed in

the case of3 sources than in the case of4 sources, as in the latter case Gaussianity has increased

with the number of sources. We managed to separate the sources in either case using the proposed

soft thresholding scheme, as the sources were quite concentrated around the estimatedθi.

In table I, we compare the algorithm’s performance (soft and hard thresholding) with Hyvärinen’s [5]

approach, in terms of average SNR of the separated sources in the two aforementioned experi-

ments. We observe that the algorithm features similar performance to well-established approaches

in the field.
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Fig. 3. A plot of the observedθn (2) for the case of four sources and two sensors. Four Laplacian densities were fitted by the

proposed algorithm.

The algorithm requires30 − 80 iterations to converge (see figure 4). We speculate that the

convergence speed is slightly decreased because we are not able to calculate directly the update

for θi (see Appendix I).

TABLE I

AVERAGE SNR (dB) COMPARISON BETWEENHYV ÄRINEN’ S AND LMM-EM APPROACH USING SOFT AND HARD

THRESHOLDS.

2× 3 2× 4

LMM-EM (soft thres.) 10.3 7.17

LMM-EM (hard thres.) 10.3 7.45

Hyvärinen’s [5] 11.2 8.1

VII. C ONCLUSIONS

In this letter, we present a Laplacian Mixture Modelling approach for overcomplete separation

of signals. The signals are processed in the MDCT domain, however, any alternative sparse

transform can be applied. We reduce the 2 sensors - many sources problem to an 1D optimal
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Fig. 4. Convergence of the LMM-EM algorithm forαi andci for the four sources experiment.

detection problem, by fitting a Laplacian Mixture Model using the EM algorithm. The algorithm

provided reasonable separation, compared to previous approaches. For future work, it would be

interesting to generalise the Laplacian Mixture Modelling and perform separation in the case of

more than2 sensors.
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APPENDIX I

CALCULATING UPDATES

Update forθi

∂J

∂θi

=
T∑

n=1

(−2ci
∂

∂θi

|θn − θi|)p(i|θn) = (11)

=
T∑

n=1

−2cisgn(θn − θi)p(i|θn) = 0 ⇒ (12)

T∑

n=1

sgn(θn − θi)p(i|θn) =
T∑

n=1

θn − θi

|θn − θi|p(i|θn) = 0 (13)
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In the previous equation, it is not possible to find an exact solution forθn, because of the sgn(·)
function. However, we can estimate a new update forθi, given a previous estimate for|θn− θi|.
This approximation may decrease the convergence of the EM algorithm.

T∑

n=1

θn

|θn − θi|p(i|θn) =
T∑

n=1

θi

|θn − θi|p(i|θn) (14)

θ+
i ←

∑T
n=1

θn

|θn−θi|p(i|θn)
∑T

n=1
1

|θn−θi|p(i|θn)
(15)

Update forci

∂J

∂ci

=
T∑

n=1

(
1

ci

− 2|θn − θi|)p(i|θn) = 0 (16)

1

ci

T∑

n=1

p(i|θn) =
T∑

n=1

2|θn − θi|p(i|θn) (17)

c+
i ←

∑T
n=1 p(i|θn)

2
∑T

n=1 |θn − θi|p(i|θn)
(18)
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