Int. J. Economics and Business Research, Vol. x, No. x, xxxx

Technical analysis forecasting and evaluation of
stock markets: the probabilistic recovery neural
network approach

Andreas Maniatopoulos*, Alexandros Gazis
and Nikolaos Mitianoudis

Department of Electrical and Computer Engineering,
Democritus University of Thrace,

Xanthi, 67100, Greece

Fax: +30-2541079015

Fax: +30-2541079569

Email: amaniato@ee.duth.gr

Email: agazis@ee.duth.gr

Email: nmitiano@ee.duth.gr

*Corresponding author

Abstract: The market efficiency theory suggests that stock market pricing
reflects all publicly available information regarding a given stock. To
outperform the market, a shareholder must study the market’s price
volume patterns and predict human behaviour and tendencies. Except for
conventional approaches based on fundamental or technical analysis, new
tools are currently proposed using big data and artificial intelligence.
This publication analyses and evaluates four commonly used deep-learning
artificial neural network models. Then, it proposes a new method by adopting
the ‘probabilistic recovery’ algorithmic approach. The dataset used consists
of 501 unique company names based on real data derived from US Dow
Jones. This method closely follows the market’s behaviour, providing daily
upwards-downwards data trends. The proposed system can be used as a tool
for technical analysis regarding the prediction accuracy of trading strategies,
providing approximately 60% future movements’ accuracy, over 90% relative
price prediction and annual investment return slightly over 60%.

Keywords: technical analysis; probablistic neural network; neural networks;
stock market prediction; stock market forecast; stock market dynamics; stock
market neural networks forecasting; algorithmic trading; finance generative
adversarial networks; finance convolutional neural networks; CNNs; fully
connected neural networks; recurrent neural networks; RNNs; technical
indicators; decision making; trading strategies.

Reference to this paper should be made as follows: Maniatopoulos, A.,
Gazis, A. and Mitianoudis, N. (xxxx) ‘Technical analysis forecasting and
evaluation of stock markets: the probabilistic recovery neural network
approach’, Int. J. Economics and Business Research, Vol. x, No. X,
PP-XXX—XXX.

Copyright 20XX Inderscience Enterprises Ltd.

2

A. Maniatopoulos et al.

Biographical notes: Andreas Maniatopoulos completed his integrated
Bachelor’s and Master’s in Electrical and Computer Engineering in 2018
from the Democritus University of Thrace, Greece. Since then, he is a
PhD candidate in Artificial Intelligence and Topology Optimization. He was
an engineer intern in the Civil Aviation Authority of Mytilene, Greece in
2017 and a team leader in the ‘Network Forensics’ exercise, led by the
Greek National Cyber Defense in 2018. He is a research assistant in Signal
Processing Lab from November 2018, a teaching assistant since January
2019, and an information technology administrator since October 2019 in the
Democritus University of Thrace. Lastly, since 2020, he is a lab moderator
at the iGEM Competition (Biotechnology) in Alexandroupolis, Greece, and
an Al engineer for ADwork, a technology driven advertising agency. He was
also an engineer for OiS, in Dorpen, Lower Saxony (Germany) in July 2020
and his research interests include Artificial Intelligence, high performance
computing, systems optimisation, image and signal processing.

Alexandros Gazis received his Diploma in Electronic and Computer
Engineering and his MSc in Microelectronics and Computer Systems from
the Democritus University of Thrace, Greece in 2016 and 2018 respectively.
Since 2018, he is a PhD candidate at the same university, in the field of
Computer Science and a member of its ‘Operating Systems and Middleware
for Pervasive Computing and Wireless Sensor Networks’ research group.
Moreover, he is a teaching assistant and a lab demonstrator, supervised
by Assistant Professor Eleftheria Katsiri. He is a member of the Technical
Chamber of Greece and he works as a software engineer specialising in
core banking systems and mainframe development. He has published articles
on artificial intelligence, big data, web data analytics, remote sensing, and
neural networks. His research focuses on the internet of things via wireless
sensor networks, cloud computing, and middleware development for pervasive
computing.

Nikolaos Mitianoudis received his Diploma in Electronic and Computer
Engineering from the Aristotle University of Thessaloniki, Greece in 1998.
He received his MSc in Communications and Signal Processing from the
Imperial College London, UK in 2000 and PhD in Audio Source Separation
using Independent Component Analysis from the Queen Mary, University of
London, UK in 2004. Between 2003 and 2009, he was a research associate
at the Imperial College London, UK working on the Data Information
Fusion-Defense Technology Centre project ‘Applied Multi-Dimensional
Fusion’, sponsored by General Dynamics UK and QinetiQ. From 2009 until
2010, he was an academic assistant at the International Hellenic University.
Since 2010, he is with the Electrical and Computer Engineering Department
at the Democritus University of Thrace, Greece, where he currently serves as
an Associate Professor in Audio and Image Processing. He also serves as an
associate editor at /EEE Trans. on Image Processing from 2018-2021 and at
MDPI Journal of Imaging. His research interests include machine learning,
deep learning, computer vision, music information retrieval and blind source
separation/extraction.

This paper is a revised and expanded version of a paper entitled [title]
presented at [name, location and date of conference].

Technical analysis forecasting and evaluation of stock markets 3

1 Introduction

Efficient interpretation and inference of stock market tendencies are a very important
assets for modern analysts. More specifically, there are many stock markets worldwide,
the largest of which are located in New York, Tokyo, Shanghai, and Europe. A typical
example of a dataset used in the field of economic analysis is the stock market, i.e., a
secured public market. On the one hand, scientists are presented with high-frequency and
high volume datasets comprising an intriguing case study for preprocessing and mining
the noisy data detected by Ntakaris et al. (2018). Within the stock market dynamics,
investors act on their opinion regarding the course of the company and the world. On
the other hand, investing companies are interested in forecasting stock price fluctuations
as it addresses their need to make strategically informed decisions as suggested in Li
and Ma (2010) and Iuhasz et al. (2012).

Askari and Rafae (2019) highlight that, as these studies suggest financial markets
may have predictable behaviour, as mentioned in thus, they can be modelled and
studied using technical analysis for investments (Sharma et al., 2021). In many cases,
this is achieved via the use of software that outperforms traditional economic models
(Borovykh et al., 2018).

As a result, modelling the market has absorbed huge quantities of time and effort.
Algorithmic trading (AT) is an example of one of these models that, mainly tries
to exploit the market latency, making thousands of transactions in a second, when
traders see fit (Scholtus et al., 2014; Huang, 2018). These AT models, whilst they
can produce a profit, can only be implemented by large investor groups as their cost
makes them inaccessible to the regular user. At the same time, AT narrows spreads,
reduces adverse selection, and reduces trade related price discovery. Also, AT causes an
improvement in the frequency of triangular arbitrage opportunities and autocorrelation of
high frequency returns. However, whilst improving informational efficiency by speeding
up price discovery, it imposes higher adverse selection costs on slower traders. For
more on this read (Chaboud et al., 2014). At the same time, AT can be used for
market-making, in a way that a human is physically unable to do (Kirilenko and Lo,
2013; Lo, 2016).

Recent areas of advancement in big data technology focus on expanding marketing
activities (Nuseir, 2018), using pattern and graph tracking predictions (Jeon et al.,
2018; Kusuma et al., 2019), cryptocurrency price prediction (Nakano et al., 2018;
Gopal and Senthilkumar, 2020), high performance computing (Malakar et al., 2018),
network and system resources (Gazis and Katsiri, 2019), stock market analysis (Chong
et al., 2017), applied mathematics (Pouyanfar et al., 2018), healthcare (Priyadarshini
et al., 2020), environment monitoring (Tsekouras et al., 2018), transportation (Welch
and Widita, 2019), traffic monitoring (Gravvanis et al., 2019), education (Cantabella
et al., 2019), humanitarian aid (Gazi and Gazis, 2021), business (Khanboubi et al.,
2019), and finance (Begenau et al., 2019). A particularly interesting area is economics
as both macro (see Terdsvirta et al., 2005; Onder et al., 2013; Kock and Terisvirta,
2016) and microeconomics (see Terna, 1992; Erbas and Stefanou, 2009; Erdogdu, 2016)
are centred on handling, analysing, pre-processing, and making predictions based on
real datasets, like Chen et al. (2006) for Asia, Mostafa (2010) for Kuwait, Alhazbi
et al. (2020) and Ahmed (2015) for Qatar, Qiu et al. (2016) for Japan, Long et al.
(2020) for China, Manojlovic and Stajduhar (2015) for Croatia, Selim (2009), Kara
et al. (2011) for Turkey, Ramezanian et al. (2019) and Parsva (2020) for Iran, Thakur

4 A. Maniatopoulos et al.

et al. (2016) for India, Ismail et al. (2020) for Kuala Lumpur, Temponeras et al. (2019)
and Kokkinos and Potamianos (2017) for Greece, and Oliveira et al. (2013) for Brazil.
There are new statistical tools available each day and due to advancements in computer
hardware new capabilities to test and simulate. As a result, traditional traders, have to
consult forecasting models as their profit mainly depends on long-term results rather
than day-to-day profits. Up until recently, the only forecasting models were based on
linear regression or were used to support vector machine models [e.g., Kewat et al.
(2017), or risk management (Barta and Gorcsi, 2021)]. Over the past few years, there
has finally been a surge of artificial neural network (ANN), giving people a powerful
tool to be able to model such nonlinearities that are present in modelling the stock
market. In the famous book, 4 Non-Random Walk Down Wall Street, written by Lo
and Mackinlay (1999), through detailed analysis, significant flaws in both technical and
fundamental analysis are noted, concluding that, for most investors, following these
methods will produce inferior results compared to passive strategies. However, this book
was written in the late ‘90s, long before the existence of actual working ANNs. Today,
neural networks again offer popular solutions to many technological problems, therefore,
we should explore all the countless possibilities they can offer in other fields.

Other research efforts rely on previous stock price data to predict future prices
through extrapolation or linear regression. The accuracy of these kinds of models is
heavily bottlenecked, not only by the inherent nonlinearity of the problem but also by
the human factor of determining the margin of effect each indicator has on the final
prediction (Hudson et al., 2017; Shen and Shafiq, 2020; Hu et al., 2021).

In this paper, we first apply feed-forward conventional neural network (FF-ANN)
models, varying in size, to the historical prices of each company. We then propose an
algorithm for probabilistic recovery of the classified data to improve the output model.
A recurrent neural network (RNN) is also used, which is a type of ANN widely regarded
as the best candidate to model time-series data, such as stock price history. Lastly, a
convolutional neural network (CNN) is implemented to explore the visual interpretation
of our dataset. We aim to use the best of these networks in terms of accuracy, to
benchmark our model in real test data, and determine its actual predicting value. This
paper is organised, as follows: in the next sections, we present the basics of neural
network-based prediction using deep architectures, such as the novel post-processing
reclassification module, the long short-time memory (LSTM) architectures and the CNN
architectures. The proposed architectures are then evaluated over a real dataset derived
from the US Dow Jones, producing interesting results.

Lastly, it is noted that the three architectures presented were selected based on
the three fundamental topologies of neural networks. More analytically, derived from
their characteristics, neural networks can be categorised centred on their application as
follows:

1 Fully connected neural networks: Work best with numerical non-location-specific
data.

2 CNNs: Work best with location-specific data.
3 Recurrent/LSTM neural networks: Work best with serial, time-related data.

4 Generative adversarial neural networks: Work best at simulating realistic data and
can be used to test existing financial data (i.e., real-time stock market prices).

Technical analysis forecasting and evaluation of stock markets 5

2 Related work

All stakeholders, regardless of their beliefs on fundamental or technical analysis, base
their speculation on mathematical models in order to measure a company’s impact, lower
potential risk exposure, and maximise their profit. Although conventional approaches
have produced interesting results throughout the years, new methods are starting
to appear using mainly artificial intelligence and forecast-specific neural networks
(Sermpinis et al., 2019).

ANNSs are highly complex computational models functioning similarly to a human
system of neurons. Many types of neural networks exist in stock market dynamics
regarding regression analysis (e.g., Nunes et al., 2019), time series prediction (e.g.,
Stoean et al., 2019; Henrique et al., 2019), classification (e.g., Zhong and Enke, 2017),
pattern recognition (e.g., Kaeppel, 2008), market trends (e.g., Atsalakis and Valavanis,
2009; Sezer and Ozbayoglu, 2018; Li et al., 2019) and decision making (e.g., Kraus and
Feuerriegel, 2017; Merello et al., 2019).

The basic theory regarding stock price forecasting is the efficient market hypothesis,
which asserts that everyone has some degree of access to the relevant information, and
the price of a stock reflects all available information. The market supposedly reacts
instantaneously to news and no one can outperform this in the long run. Several time
series analysis models have been developed in an effort to forecast the market direction,
such as by Pavlidis et al. (2003), Wei et al. (2005), Worasucheep (2016), Mingyue
and Yu (2016), Vargas et al. (2017), Selvin et al. (2017), Hongping et al. (2018),
Lee et al. (2019) and Bustos and Pomares-Quimbaya (2020). The first models, such
as those presented by Moghaddam et al. (2016) and Zhong and Enke (2019), were
derivatives of linear regression, offering sub-optimal accuracy, as the stock movement
is highly irregular and completely nonlinear were presented. Almost all of these studies
suggest that additional factors should be taken into account on top of the basic or
unmodified model as suggested in Jagwani et al. (2018). The most common additional
information considered, is the online news information related to the stock. Furthermore,
recent research efforts have been focused on data mining and estimating the correlation
between online information and price movement, using textual information in public
media to evaluate news. This information was used in different studies, including but
not limited to Maltoudoglou et al. (2015), Mingyue et al. (2016), Chen et al. (2017),
Vargas et al. (2018), Symeonidis et al. (2018), Zhang et al. (2018), Khan et al. (2020)
and Althelaya et al. (2021).

Lastly, it is noted that the technical novelty of this publication lies in the way the
inputs are constructed as well as the detailed presentation of the data cleaning and
processing for the proposed neural networks. This article manages to provide an annual
return on investment of 60%, which is significantly higher than the return resulted from
existing strategies, such as Huang et al. (2019), Song (2019) and Zhou (2019). Most
researchers in this field focus their interest on providing complex multi-layer network
comparisons over existing statistical analysis. In contrast, this publication showcases
some of the most commonly used neural network approaches regarding daily stock
exchange rates, i.e., for short-term historical stock prices, and suggests a novel neural
network approach derived from our statistical and empirical analysis.

6 A. Maniatopoulos et al.

3 Deep neural network architectures for prediction

3.1 Feed-forward ANNs

Feed-forward artificial neural networks (FF-ANN) are well-studied prediction tools as
noted by Rosenblatt (1962) and Kumar and Yadav (2011). They are based on the
function of the neurons of the human brain, where the ANN consists of a large number
of artificial neurons linked together, and working together to solve a particular problem.
Neurons are usually arranged on multiple levels and an ANN with multiple levels is
called a ‘deep neural network’ (DNN). The topology of such a network consists of
an input level, an unknown number of hidden levels, and a final decision level. The
output of each layer in the neural network depends on the activation function and the
connections between the levels and the neurons therein, given by the weight matrix .

For a two-hidden-level neural network, an output plane and a vector x € R, the
output is defined by € R, as follows:

h(1) = f(D)(wDT +bY)
h(2) = f2)(wPT + b?)
h(3) = f(3)(wPT + %)

where h(i) with ¢ = 1, 2, ... is the output of level 7, f(¢) with ¢ = 1, 2, 3 is the activation
function of level j, b® is the bias of level i, and w' is the weight matrix of the plane i.
One can observe that the neural network is just a synthesis of functions.

Figure 1 A common feed-forward neural network architecture

"""
7]

S] 5
P (TSN eTS (Y ev m\
\\V

\w)

O

X L7 4
Aﬁg&WMg.A

; ol
b =N ‘\VVI.;W
X aly % /’}'I/
TSN PN WIN G WN G Ro—s
7 N N WN

It is universally accepted by the universal approximation theorem, presented in Li and
Wang (2017), that a FF neural network (as shown in Figure 1) with at least one hidden
layer, a linear activation function for the hidden layer, and an activation function (such

Technical analysis forecasting and evaluation of stock markets 7

as tanh or sigmoid) can approach any function with only the requirement of having
several neurons. Therefore, neural networks are a very powerful tool in describing
complex nonlinear functions.

A common problem in neural network training is over-fitting, where a neural
network becomes very familiar with the training dataset and fails to generalise and
perform well with testing data, i.e., data not presented to the network before. One recent
development to address the problem of over-fitting in DNNs is the dropout technique
suggested by Srivastava et al. (2014) and Labach et al. (2019). According to this
technique, a percentage p of the total number of neurons in the network is randomly
switched off during training. This procedure randomly shrinks the network and serves
to force the network to seek a simpler, more general solution, i.e., to avoid over-fitting.
Using dropout, the network is given the opportunity to ‘forget’ the road that leads to the
local minimum and to seek other opinions, that are likely to lead to the right destination,
i.e., the total minimum. The aforementioned ‘opinions’ are the rest of the ‘shallow’
networks, each using a different subset of neurons. This technique is reported to improve
the performance of DNNs.

3.2 An improvement to traditional FF-ANN architectures

Similarly to Li et al. (2020), Sazli (2006) proposes an improvement of the original
feed-forward topology through the addition of an extra layer that evaluates the output of
the final softmax classification neuron. This layer selects the classification results from
those that are reliable, and those that will be deleted and re-classified. At this point,
we clarify that immediately before the execution of the neural network’s evaluation, we
have added an extra step where the results of the first neural network are evaluated
based on the evaluation function presented in this publication. This step aims to develop
a ‘ground truth’ validation mechanism since, in case of error, the second neural network
acts as a means to evaluate, enhance, and calculate the output results based on the
correct (i.e., real) dataset studied.

In a traditional FF-ANN, neural network weights are trained using a finite number
of samples; when an acceptable error has been reached, the ANN stops updating
the weights, and the training phase ends. The network cost function used to be the
mean square error between the input and the output, however, it has been replaced
by cross-entropy for classification networks with better results, as noted by Liu et al.
(2017). The optimisation of the network cost function is usually performed using
gradient descent, with an adaptive learning rate. In the testing phase, the most educated
ANN is used to classify new samples that it has never encountered before.

Bishop (1995) claimed that the majority of the misclassification errors occured in
those regions of x-space where the largest of the posterior probabilities are relatively
low since there is then a strong overlap between different classes. In some applications,
it may be better not to make a classification decision in such cases. This technique is
called the ‘reject option’, where the rejected samples are later classified by a human
expert. However, in our case, an augmented neural network, trained and modified based
on the success of the original one, will take on the role of the human expert, relieving
the pressure and obviating the time constraint, especially on big data applications, such
as the stock market.

The new ANN proposed topology (Figure 2), which will be coined ‘probabilistic
FF-ANN’, consists of two simple feed-forward networks that are connected in series

8 A. Maniatopoulos et al.

with input data sharing, similarly to that described by Maniatopoulos et al. (2020b). The
second network has additional training input samples that achieve a high probability of
correct classification by the first FF-ANN. The second FF-ANN reclassifies only the
most likely wrong results, leaving the correct classification unchanged.

Figure 2 The proposed probability-based cascade training neural network

NS o0 S 0\

QNEZ (eysiiNeviat teviel]

SR \Ny¥cva¥ics; "1"'/.&,' 0O v 0

N R N\
Wi ARV OGN RN \

o W AV SN A N

0 ?\\‘w'f'i‘:‘ 4 [0

h VIA \

RN .
ALV

N ’; AN N p>0.65
Mo o g\
R e
“\\Qw,e,a,{,ﬁ,,;;oi‘gv"'i"\ WX RN O AN}
OV ‘W”V’""’"""
N

This idea is now illustrated in more detail. In the beginning, a simple deep FF-ANN is
used to roughly sort the aggregate samples. This simple ANN is trained and evaluated as
an independent neural network using the training dataset that is available. The result of
this ANN is g. This is the first phase of training. The second phase of training includes
the training of a second neural network of a similar size to the first one. A typical
method would train the network using the initial training dataset. Using a combination
of the two networks, we can now use more data to train the second ANN. The data are

Technical analysis forecasting and evaluation of stock markets 9

derived from the first ANN which has already been trained and has roughly classified
the data from the test dataset. Therefore, we can use the results from the training dataset
as well as the results from the test set that have been correctly classified, as training
samples for the second ANN.

To identify the samples that have been correctly identified by the first ANN, we need
a formula to calculate the probability of correct classification. In the case of positive
classification, these samples will be used as training data for the second ANN. In the
opposite case, they will be reclassified again by the second ANN, as soon as it is trained.
The classification evaluation criterion is proposed, as follows:

p(i) = e~ 19— Pin2

where represents the index of each sample and ¥ represents the output of each sample
of ANN, when rounded to the nearest whole number. Since the final classification is
based on rounding to the nearest integer, the probability function must be equal to 0.5
in the middle of the two classes and must be nearly 0 for a distance of one class.
The graph of each possible output p(i), for a given §(:) — §(i) distance, is shown in
Figure 3. With the aforementioned formula, the probability of correctness can be formed
with acceptable accuracy. Note that, only probabilities of up to 0.5 may occur, but the
formula calculates values to almost zero.

Figure 3 Probability of correct classification for the distance (i) — ¢(i) between the
estimated and the correct label

Probability
p(i)
1.0 4

038 |
06

0.4

02 §00-510)

0.0

Each sample is then assigned a probability and the next FF-ANN is trained with all
training data, plus any samples that achieve a probability value greater than 0.98. In
this set of second-generation NN training, the training dataset is enriched with more
data from the test dataset, which will improve its training. The learning function of both
networks is based on the gradient descent with adaptive learning rate. For the second
ANN, we use random initialisation of weights, to avoid falling into the same optima
with the first ANN, i.e., producing the same classification.

Once the second ANN has been trained, it is ready to classify all the given
evaluations. To save time in the calculation, we require the second network to reclassify

10 A. Maniatopoulos et al.

only the samples with a probability of less than 0.58 as they are classified by the
first ANN during the training phase. The remaining samples retain their own initial
classification from the first coarse network. Using the proposed methodology, the ANN
reduces the chance of being trapped to the local minimum so there is no real risk of
destroying an initially good classification. We chose the value of 0.58 because it is the
validation accuracy given by the first network; therefore, we consider any sample that
does not satisfy the this probability value to be potentially wrong. Lastly, it is noted that
the above-mentioned networks are characterised as a cascade (back-to-back) and act as
a means to measure and validate the final results. More specifically, they are not used as
a means to compare and select the optimal network, but, in case different results occur,
our system’s architecture selects the second one to take control and act as a conjugative
solution.

3.3 RNNs with LSTM modules

The second architecture we studied is an ANN with a memory and feedback element,
ie., a RNN with a LSTM, as presented by Zaremba et al. (2014) and Yu et al.
(2019). The basic RNN consists of a network of nodes, organised into successive
layers as presented in Lipton et al. (2015). Each node in a layer is connected with a
directed connection to every other node in the next successive layer. Each node has
a time-varying real-valued activation and each connection features real-valued weights.
Nodes can be either input nodes, hidden nodes, or output nodes. An LSTM network
consists of a cell, an input gate, an output gate, and a forget gate. The cell remembers
values over arbitrary time intervals and the three gates regulate the flow of information
into and out of the cell. The architecture of the neural network is shown in Figure 4.

Figure 4 Diagram of a long short-term memory neuron (see online version for colours)

¥

4

L= L,+C |~ Y

o>

K‘

JAN
G.,
At each, step;, the neuron takes the input vector x;, the volatility estimation ;, and the
information I;,_; that comes from the previous step. The gates are controlled by either
the sigmoid function or the hyperbolic tangent (tanh) function, whilst the multiplication
and addition are indicated by * and + within the model. The LSTM neuron update
equation is as follows:

Technical analysis forecasting and evaluation of stock markets 11
I = fili_1 + il

Here, f; is the fraction of past information passed so far, counting the information
flowing at this time, and c¢; is the weight of how important this information stream is.
These three quantities are the inputs of the function z; and the variability estimator of
the previous step.

fi = sigmoid [(7, wy + by)]
¢; = sigmoid [(7;, we + be)]
I; =tanh|[(d;, wr + br)]

3.4 Convolutional neural networks

The last architecture we studied was a CNN similar to the works of Chen and He
(2018) and Liu et al. (2020). A typical CNN contains an input, and output layer and
between them multiple hidden layers (as shown in Figure 5). The hidden layers include
convolutional layers, pooling layers, fully connected layers as well as normalisation
layers. The convolutional layers are what describe the nature of a CNN and are typically
found in the largest number among other layers. These layers consist of some learnable
2D filters which despite being small in size, they manage to cover the entire input by
moving spatially. During the forward pass, each filter is convolved across the width and
height of the input volume, computing the dot product between the entries of the filter
and the input, and producing an activation map of that filter. As a result, the network
recognises and learns filters that activate when a specific type of feature is detected at
a spatial position in the input.

Figure 5 A typical CNN architecture

pooled Fully connected 1
feature maps pooled featuremaps oqtyre maps
feature maps o
r O \PYW
o
' TR
o
o
I o
(©)
Outputs
Input Convolutional Pooling 1 Convolutional) .
Pooling 2
layer 1 layer 2

However, to compress the size of the network while retaining the highest possible
amount of information, CNN includes another type of layer, a form of nonlinear down
sampling, called ‘pooling’. There are several nonlinear functions to implement pooling
among which max-pooling is the most common. Max-pooling function partitions the
input image into a set of non-overlapping rectangles and, for each such sub-region it
outputs the maximum. The intuition is that the rough location of a feature relative to
other features is more important than its exact location. The pooling layer manages

12 A. Maniatopoulos et al.

to progressively reduce the spatial size of the representation, decreasing the number
of parameters and amount of computation in the network, and hence to also control
over-fitting.

3.5 Generative adversarial network

In this section, we will present an adversarial network and, more specifically, the
machine learning framework designed by Goodfellow et al. (2014), the ‘generative
adversarial network’ (GAN). More specifically, GAN is a class of machine learning
system that operates on the logic of rival learning and it is considered by Kishore
et al. (2020) as “the smartest idea in machine learning in the last 20 years.” A
typical GAN topology is presented in Figure 6. The rationale behind GAN is that
two neural networks compete in a (usually zero-sum) game; given a set of training
samples and iterations, this technique teaches them to adapt and create new data with
the same statistics. Although originally proposed as a purely productive model form for
unsupervised learning applications, it can also be used accurately in semi-supervised
learning, fully-supervised learning, and supportive learning (Luc et al., 2016; Creswell
et al.,, 2018). An example of a GAN used in a real-life scenarios is the analysis of an
image collection archive to create new images, which look at least superficially authentic
to human observers but have plenty of realistic features (Wang et al., 2016).

A generator creates candidates whilst a ‘discriminating network’ (DN) evaluates
them. The competition operates in terms of data distribution. Analytically, as shown
in Figures 6 and 7 the generator learns to project from a latent space into the desired
data distribution, whilst the DN distinguishes the generated candidates from the actual
distribution. The training goal of a generator is to increase the error rate of a DN. To
achieve this, the generator tries to ‘trick’ the DN by producing new (data) candidates
that the DN will use along with the data from the actual distribution. More specifically,
the generator’s input is a random incoming sampling from a predetermined latent space
(e.g., multiple normal distributions). It is then evaluated by a discriminator and, by
using reverse propagation to both networks, the generator produces new (enhanced) data,
whilst, the discriminator becomes more specialised in detecting synthetic data. For more
on this subject see Karpathy et al. (2016).

Figure 6 A typical GAN architecture (see online version for colours)

— N Discriminator
Real Data i
4 Sampling Loss

Discriminating
] Neural Network

) Random Generative Neural |~ : SEEEE
input from A Network .y Sampling Loss
latent space

Technical analysis forecasting and evaluation of stock markets 13

Figure 7 A GAN topology for financial test data (see online version for colours)

Discriminator
Real Data) i
Sampling lEss
Discriminating
Neural Network
inRaL::dft::m Generative Neural |~ vt Generator
P : Network —] pine Loss
latent space

4 Data

In this section, we describe the dataset used in our experiments. The dataset presented
(Maniatopoulos et al., 2020a), consists of daily data from the US Dow Jones for 501
large companies over the period 2010-2016; monthly publicly available indexes are also
used. The first four years are used as training, whilst approximately the last two years
are used for evaluating the efficiency of the model, benchmarking the annual return on
investment at about 60%. A sliding window of 15 days has been used, giving us enough
time-relevant information on price movement to use the dataset on regular classification
networks. A duration of 15 days was determined by thorough experimentation. The raw
price and volume information provided by the data could not be used efficiently due to
large variances of price among companies. Our model should be able to work on all
501 companies regardless of their size/capital, therefore, a degree of regularisation is
necessary.

Two datasets were built: one consisting of 12 assets and another of 16 assets. Both
were used and evaluated for the FF-ANN models, whilst the recurrent and convolutional
models were evaluated using the 12-asset dataset, which presented more stable results.
The datasets consist of the following indices that were extracted in a 15-day window:
simple moving average (opening prices), exponential moving average (opening prices),
Garman-Klass (daily high, low, opening price, and closing price), momentum (closing
prices), return vs. risk (closing prices), volume, exponential volume (stock volume),
Williams R (high, low, and closing prices), baseline overall index (Policy Uncertainty
Index), news-based index (Policy Uncertainty Index), real dividends (SP500), and real
earnings (SP500).

The 12 above-mentioned indices, normalised to the simple moving average,
constitute the dataset of this paper. The dataset is also divided into approximately

14 A. Maniatopoulos et al.

67% training data and 33% control/test data. Note that the dataset is not perfectly
size-consistent, since new companies opened, whilst others went bankrupt. As a result,
the dataset is only approximately split to 2/3 and 1/3. However, since the data are
normalised and the names of the companies are not used, the accuracy and validity of
our model are not affected by that. The results from the test data will be used to specify
the efficiency of the methods used and analysed below. All indices were normalised to
the simple moving average, so as not to let the scale difference deteriorate the training.
Moreover, a higher value in these indices does not necessarily mean higher significance.
The 16-indices dataset also contains the latter: consumer price index (SP500), long
interest rate (SP500), and real price (SP500).

5 Model delineation

The algorithm accepts these indices as input and attempts to recognise whether or not
the price of the share in question will be up or down at the end of the next 15 days. The
outcome-output of the algorithm is the ratio of the predicted X + 15 value to the value
at day X, having studied all the indicators for days X — 15. In brief, the algorithm on
day X (i.e., 15/6) studies the indicators for days X — 15 (i.e., 1/6—15/6) and calculates
the closing price of day X + 15 (i.e., 30/6) to day X value. If the result is above the
unit, and depending on the projection price for the next 15 days, the right choice is
to consider buying the share, as the expected price will be higher. In order to avoid
limiting the algorithm to a single transaction per company, the magnitude of the change
from the decision level (1.0), which corresponds linearly to the sale (or purchase) of
more shares, the further the value differs from one. For example, when the projection
is 1.1 (an increase of 10% in the value to 15 days), the algorithm will buy ten shares
instead of one. At the end of each period, in order to calculate the final profit, every
share is liquidated for each company to calculate the final balance. Next, we are going
to outline the specific DNN architectures that were used in our experiments.

5.1 Standard FF-ANNs

In a classical case of a FF-ANN, a topology of 4 hidden layers and 50 neurons on each
level was chosen. The entry of the neural network consists of 12—16 neurons, the same
as the input vector, i.e., the number of derived indices. The output consists of a softmax
layer, a kind of weighted average application, which ‘squashes’ the values at the final
layer so that each entry is in the interval (0, 1), and all the entries add up to 1. The
optimisation function used is the gradient descent, and the model ran for 100 epochs.
We notice that with this topology, convergence stops at approximately 12—14 epochs,
with the precision ‘clipping’ after that.

5.2 Probabilistic FF-ANNs

For the novel probabilistic FF-ANN, we used the same configuration as with the
standard FF-ANN: two FF-ANNs with exactly the same configurations as the ones used
in the previous FF-ANN. The first FF-ANN will conduct a pre-classification on the input
data. The second will be trained again, also using the potentially correctly-classified data

Technical analysis forecasting and evaluation of stock markets 15

(with the predicted labels, not the ground truth) to augment the training set in order to
classify any incorrectly classified data. More details are described in the earlier section.

5.3 RNNs with LSTM modules

The examined RNN consists of either 256 or 384 LSTM neurons in each of the two
LSTM levels, followed by a fully-connected level (FF-ANN) with parallel dropout
application with probability p = 0.5 at each level. The activation function for each
neuron chosen was the sigmoid function, whilst the RMSProp algorithm, as presented
in Graves (2013) and Mukkamala and Hein (2017), was selected for the optimisation of
the model’s loss function: binary cross-entropy. The LSTM element held 12 sequential
vectors. Thorough experimentation has shown that the model ceased to improve after a
few epochs (approximately 10), showing similar performance to all other models, except
for the probabilistic recovery neural network.

Furthermore, we analysed the results from the neural network consisting of neurons
with memory elements, and the final level of fully-connected traditional neurons. The
main objective was to identify whether the use of sequential topology offered by the
RNN, together with a forgetting element offered by the LSTM, could enhance the
prediction capabilities of DNNs for financial forecasting. Here, we implemented a RNN
with LSTM on the Keras frontend, using the TensorFlow backend and an NVidia GTX
Titan Xp graphics processing unit card.

The first topology used 256 LSTM neurons in each of the two levels, and the second
topology used 384 neurons per layer. In both topologies, a dropout layer was applied
after each LSTM level with probability p = 0.5. From the 600,000 available training
data, 10% of the data was used to construct the validation set.

5.4 Convolutional neural networks

The examined network has two convolutional levels, which are both followed by a
max-pooling layer. More specifically, the first layer consists of 32 image filters and
the second of 64 image filters. The network is completed by a fully-connected layer
(FF-ANN) of 1,024 neurons, an output level with two neurons, as well as our logical
outflow, i.e., the increase or decrease in the share price. The novelty here is the way
the inputs are constructed. Each input consists of a 12-value vector, as used in the
other architectures; however, here, they are temporally grouped to form a 12 x 12
‘image’. In other words, we gather the 12-value vectors extracted for 12 consecutive
days and arrange them one after the other to form a 12 x 12 array, i.e., an image.
An example of such images can be seen in Figure 8, where the results shown in the
real axis are presented in chronological order (consecutive days) and the imaginary axis
is independent of the data points due to image skewing (data augmentation) of the
studied dataset. This is an essential step to transform the data into the 2D requirement of
CNNs. Another reason is that by using this 2D representation, we attempt to emphasise
the temporal connection and correlation between the indices in adjacent days that may
influence the trend of a share. Therefore, the convolutional filters of the CNN will
attempt to identify this relationship and influence the final trend of a share.

The proposed CNN examines the data images, using 32 2 x 2 filters at the first
convolutional level, whilst the second level uses 64 3 x 3 filters. Following the second

16 A. Maniatopoulos et al.

level of max-pooling, there exists a fully-connected level of 1,024 neurons. This layer is
necessary to evaluate the features that have been extracted from the convolutional layers.
The output level consists of two neurons using softmax which represent the acceptable
responses, i.e., up or down. In this topology, the ANN stops essential learning after a
few (12—14) epochs. This has led to the application of the dropout technique to prevent
over-fitting. It was initially tested with a probability of maintaining p = 0.8 of each
neuron, and then with a probability of p = 0.5.

Figure 8 An input image for the convolutional ANN: 12-value vectors are extracted for 12
consecutive days and are arranged one after the other to form a 12 x 12 array

Figure 9 Determining the optimal number of neurons per layer
0.59 _

Accuracy level

0592 |

0.588 |

0.584 |

0.580 |

0.576 |

0572 |

0568 |

Number of neurons per layer

0.564

10 20 30 40 50 60 70 80 920 100

Notes: A plot of accuracy for various number of neurons used per layer indicates
an optimal value of 50.
5.5 The optimal number of neurons per layer

Increasing the number of neurons increases the degrees of freedom for the neural
network to adapt and classify more complex data. However, increasing the number

Technical analysis forecasting and evaluation of stock markets 17

of neurons increases the danger that the network will over-fit, resulting in degraded
performance. The first experiment attempts to identify the optimal number of neurons
per layer in the case of a simple feed-forward network. We created a simple FF-ANN
with 4 layers but with a variable number of neurons. We examined the accuracy of
prediction varying the number of neurons from 2 to 100. Figure 9 depicts the outcome
of the experiment. Based on these measurements, it became clear that the optimal choice
was 50 neurons per layer since it features the best performance. This marked the best
trade-off between accuracy and computational complexity. The derived network belongs
to the category of DNNs due to its size and complexity.

6 Data evaluation

In this chapter, we will study the performance of the proposed implementations.
The following cases will be analysed and compared: deep vs. non-DNNs, FF-ANNs,
feed-forward networks with probabilistic improvement of post-processing, RNNs with
memory elements (LSTM), and CNNs. Finally, we will discuss the creation of the
dataset and the selection of indices as well as the impact that each had on the precision
of the final model.

For performance evaluation, the accuracy of the daily up and down price-movement
prediction is evaluated. This metric is very strict since the daily small movements appear
to be very random. The baseline accuracy is the ‘toss-the-coin’ probability of 50%.
Accuracy consistently above 50% results in gradual money-making, beating the market.
State-of-the-art models, such as Tka¢ and Verner (2016), currently rarely exceed 54%.
This level of accuracy is expected, because anything higher would result in an unstable
and highly volatile stock market, rendering the whole idea of long-term commitment
and believing/investing in the fate of a company obsolete.

Another method of evaluating predictions takes into account not the up-and-down
movement accuracy of the model, but the final relative difference of the predicted and
real prices. In this paper, the up/down movement evaluation method will mainly be used,
however, the relative price differences evaluation (RPDE) method will also be presented
for one company as a reference for other relative models. The company chosen for the
RPDE method is ‘Apple Inc.” (stock market name APPL) because, as it often appears
in stock market forecasting.

To test the proposed architectures with another metric, we devised a trading
algorithm for evaluation purposes. The algorithm uses the actual stock prices for the
given days in order to purchase or sell the stock, as dictated by the neural network. The
algorithm buys a company’s share if the network determines that the share price will
go up in the next 15 days or sells it if it indicates the opposite. At the end of the test
phase, the purchased shares are liquidated to have a final portfolio value that the network
has achieved. Along with the final portfolio value, the algorithm keeps in mind the
maximum amount invested and the maximum amount credited during the process. This
way, we are not only monitoring the final portfolio value that each network topology
has produced, but also the final rate of investment return. Below follows a series of
experiments that report on the effectiveness of the proposed architectures.

18 A. Maniatopoulos et al.

6.1 The optimal number of days for prediction

In this section, we will examine the validity of using 15 days of past share values to
estimate the 16 features that are used as input to our network. We used the probabilistic
FF-ANN with 16 features as the testing framework since it demonstrated the best
performance in our previous tests. We examined four different time spans to calculate
the input features: 5, 10, 15 and 20 days. We did not examine for more than 20
days because the stationarity of the input data seemed to collapse for longer intervals.
Similarly, we performed 50 independent runs for each time span. The results are outlined
in Table 4. We concluded that the optimal time span is 15 days, as originally determined
via extensive testing. We could also see that the network underperforms for longer
periods since the stationarity of the dataset in these periods decreased.

6.2 FF-ANNs vs probabilistic FF-ANNs

This section will compare the performance of a FF-ANN with the novel proposed
probabilistic F-ANN discussed earlier. To compare these two architectures, we will
evaluate the accuracy of each topology based on the average of 50 random runs. The
statistics of these runs can also demonstrate the consistency of the performance. We
used the first 12 indices as input to the network. For the simple-FF network, the results
for 50 runs are presented in Figure 10.

Figure 10 Accuracy per run for 50 independent executions for the simple network using 12
indices

0.590 _
Accuracy level

0.585 |
0.580 |
0575 |
0570 |

0.565 |

0.560 |

Runs of the network

T T T T T T T T T]

5 10 15 20 25 30 35 40 45 50

0.555 |

Table 1 presents the results for the simple FF-ANN. The mean accuracy achieved is
57.3%, which is above the toss-the-coin 50%. The standard deviation of accuracy for the
50 independent runs is 0.0081985, which implies that the outcome can be volatile. Using
the trading-evaluation algorithm, we gather that the return on investment is 202.4%.
Figure 11 depicts the accuracy of the proposed probabilistic FF-ANN for an average
value of 58.83%. Table 2 presents the statistical profile for the network’s accuracy
and the return on investment. The probabilistic post-processing improves accuracy by
approximately 0.9%, reaching the overall mean accuracy of 58.3%. The return on
investment, however, has changed quite a lot, reaching 262%, offering a higher profit
margin and making the new topology much more profitable.

Technical analysis forecasting and evaluation of stock markets

Table 1 Feed-forward neural network tests for stock inputs (12 indices dataset) and 2
benchmark quantities (initial investment portfolio-wallet portfolio, current after
transactions portfolio-trading portfolio)

Accuracy Wallet portfolio [$] Trading portfolio [$]

0.579646586
0.568807229
0.576879518
0.565734940
0.562618474
0.578586345
0.578469880
0.571497992
0.584096386
0.564606426
0.583710843
0.586208835
0.576722892
0.579168675
0.574164659
0.573385542
0.582493976
0.573261044
0.572417671
0.578473896
0.582277108
0.573461847
0.575200803
0.568489960
0.572670683
0.568096386
0.569088353
0.571060241
0.577666667
0.566638554
0.570963855
0.573526104
0.581971888
0.574827309
0.572485944
0.567771084
0.562955823
0.583056225
0.565638554
0.575891566
0.575084337

9,576,467.794
10,609,572.73
4,163,715.854
17,233,786.58
7,168,434.151
15,301,159.24
12,661,095.43
9,779,461.713
2,093,257.306
6,345,811.712
829,794.3146
8,970,223.197
9,873,186.899
12,493,731.98
13,715,931.32
1,801,506.764
8,204,882.495
5,158,260.496
11,365,918.72
14,823,387.69
5,059,541.740
7,974,212.882
11,813,165.92
9,354,512.692
7,698,806.315
9,371,875.044
196,938.7691
7,512,916.905
12,783,843.13
9713,623.553
14,653,473.94
16,188,439.44
5,716,331.445
7,659,757.631
15,294,969.53
3,416,317.113
11,217,038.63
11,381,068.89
6,755,202.270
8,871,174.699
2,477,339.497

~1,376,974.578
~6,211,148.116
-3,891,246.343
~8,779,525.594
~1,342,184.974
-8,182,107.679
-5,055,161.415
~37,452,887.14
~7,919,887.396
~2,574,851.192
~7,671,279.130
~1,864,784.108
~13,172,454.25
~14,252,039.92
~13,919,758.44
~6,445,478.138
~1,713,094.897
~4,340,296.276
~11,939,334.52
-3,731,525.024
~4,886,441.106
3,446,596.427
~13,788,153.01
—4.426,274.906
~3,870,028.970
~796,707.5862
-9,660,378.892
~10,745,922.81
~14,768,898.43
2,444,483.184
~14,884,279.76
~18,130,494.05
-5,342,362.033
-3,961,336.931
~14,519,065.83
-5,444,799.418
~4,736,644.478
~2,677,231.301
~1,611,231.182
-2,138,126.135
-5,256,613.192

20 A. Maniatopoulos et al.

Table 1 Feed-forward neural network tests for stock inputs (12 indices dataset) and 2
benchmark quantities (initial investment portfolio-wallet portfolio, current after
transactions portfolio-trading portfolio) (continued)

Accuracy Wallet portfolio [$] Trading portfolio [$]

0.567020080
0.575040161
0.583048193
0.559485944
0.561489960
0.575100402
0.582606426
0.562362346
0.567345892

4,864,080.168
9,439,300.018
17,001,504.56
10,703,287.00

-3,864,657.252

~2,952,916.044
2,680,568.659
12,472,992.69
15,869,208.35

~2,124,374.007
~2,058,949.308
—40,477,649.09
~14,807,256.79
~11,621,219.98
~11,508,377.44
-5,580,786.148
~6,807,572.784
7,583,452.349

Mean: 0.573824297 Mean: 8,440,652.157 Mean: —8,282,306.282
St. deviation: 0.006651228 St. deviation: 5,007,029.74 St. deviation: 8,012,412.169

Table 2 Proposed probabilistic recovery neural network tests for stock inputs (12 indices
dataset) and 2 benchmark quantities (initial investment portfolio-wallet portfolio,
current after transactions portfolio-trading portfolio)

Accuracy Wallet portfolio [$] Investment portfolio [$]

0.579646586
0.568807229
0.576879518
0.565734940
0.562618474
0.578586345
0.578469880
0.571497992
0.584096386
0.564606426
0.583710843
0.586208835
0.576722892
0.579168675
0.574164659
0.573385542
0.582493976
0.573261044
0.572417671
0.578473896
0.582277108
0.573461847
0.575200803
0.568489960

9,576,467.794
10,609,572.73
4,163,715.854
17,233,786.58
7,168,434.151
15,301,159.24
12,661,095.43
9,779,461.713
2,093,257.306
6,345,811.712
829,794.3146
8,970,223.197
9,873,186.899
12,493,731.98
13,715,931.32
1,801,506.764
8,204,882.495
5,158,260.496
11,365,918.72
14,823,387.69
5,059,541.740
7,974,212.882
11,813,165.92
9,354,512.692

~1,376,974.578
~6,211,148.116
-3,891,246.343
~8,779,525.594
~1,342,184.974
-8,182,107.679
-5,055,161.415
~37,452,887.14
~7,919,887.396
~2,574,851.192
~7,671,279.130
~1,864,784.108
~13,172,454.25
~14,252,039.92
~13,919,758.44
~6,445,478.138
~1,713,094.897
~4,340,296.276
~11,939,334.52
-3,731,525.024
~4,886,441.106
-3,446,596.427
~13,788,153.01
~4,426,274.906

Technical analysis forecasting and evaluation of stock markets 21

Table 2 Proposed probabilistic recovery neural network tests for stock inputs (12 indices
dataset) and 2 benchmark quantities (initial investment portfolio-wallet portfolio,
current after transactions portfolio-trading portfolio) (continued)

Accuracy Wallet portfolio [$] Investment portfolio [$]

0.572670683
0.568096386
0.569088353
0.571060241
0.577666667
0.566638554
0.570963855
0.573526104
0.581971888
0.574827309
0.572485944
0.567771084
0.562955823
0.583056225
0.565638554
0.575891566
0.575084337
0.567020080
0.575040161
0.583048193
0.559485944
0.561489960
0.575100402
0.582606426
0.562362346
0.567345892

7,698,806.315
9,371,875.044
196,938.7691
7,512,916.905
12,783,843.13
9,713,623.553
14,653,473.94
16,188,439.44
5,716,331.445
7,659,757.631
15,294,969.53
3,416,317.113
11,217,038.63
11,381,068.89
6,755,202.270
8,871,174.699
2,477,339.497
4,864,080.168
9,439,300.018
17,001,504.56
10,703,287.00
~3,864,657.252
-2,952,916.044
2,680,568.659
12,472,992.69
15,869,208.35

-3,870,028.970
~796,707.5862
-9,660,378.892
~10,745,922.81
~14,768,898.43
~2,444.483.184
~14,884,279.76
~18,130,494.05
-5,342,362.033
-3,961,336.931
~14,519,065.83
-5,444,799.418
~4,736,644.478
-2,677,231.301
~1,611,231.182
-2,138,126.135
-5,256,613.192
-2,124,374.007
~2,058,949.308
—40,477,649.09
~14,807,256.79
~11,621,219.98
~11,508,377.44
-5,580,786.148
-6,807,572.784
~7,583,452.349

Mean: 0.582610191 Mean: 13,012,888.84 Mean: —10,351,956.39
St. deviation: 0.005227101 St. deviation: 10,782,717.71 St. deviation: 17,897,484.88

6.3 Probabilistic FF-ANN with 16 input features

In this paragraph, we examine the performance of the probabilistic FF-ANN with
additional features as inputs. In total, we used an input vector of 16 features. The four
additional features tested here are the SP500 index, consumer price index (SP500), long
interest rate (SP500), and real price (SP500).

Once we assessed that the probabilistic FF-ANN performed better, we used this
architecture to define the performance of the extra four features. Figure 12 depicts the
accuracy for each of the 50 independent runs, whilst Table 3 describes the statistical
properties on the accuracy and the return on investment. The proposed post-processing
topology manages to improve the accuracy scoring over 59% and returning almost 257%
of the original capital. The difference in accuracy with similar architecture using only

22 A. Maniatopoulos et al.

12 features is important and, justifies the use of a more complex dataset. Note, however,
that the standard deviation is almost double that of the 12-indices dataset’s, and as
a result, only the 12-indices dataset will be used for the evaluation of the other two
topologies. Finally, this analysis was executed on a daily basis and we accumulated the
results of the monthly index (for 28, 29, 30 or 31 days accordingly). Analytically, on
the last trading day of the month (i.e., after the end of the stock market’s session), when
the updated monthly index was publicly made available (value date), we immediately
incorporated it into the dataset.

Figure 11 Accuracy per run for 50 independent executions for the probabilistic network using
12 indices

059 _
Accuracy level

0592 |
0588 |
0584 |
0580 |
0576 |
0572 |

Runs of the network
0.568

5 10 15 20 25 30 35 40 45 50

Figure 12 Accuracy per run for 50 independent executions for the probabilistic network using
16 indices

0.620 _
Accuracy level

0610 |

0.600 |

0.590 |

0.580 |

Runs of the network

0.570

5 10 15 20 25 30 35 40 45 50

6.4 Convolutional neural networks

Here, we apply CNNs for the first time in the field of finance for the prediction
of stock market index data. As mentioned earlier, the data are grouped by 12 days
and entered as a 2D array into the neural network to be used for forecasting. This

Technical analysis forecasting and evaluation of stock markets 23

grouping attempts to enforce temporal coherence to the data and lets the CNN exploit
the underlying temporal correlations that may exist. As previously explained, the CNN
with the proposed architecture stops being substantially trained after 12—15 epochs. We
examined the use of dropout with values of p = 1, p = 0.8, and p = 0.5 in an attempt to
overcome the early network training termination. The CNN was implemented in Python
using the TensorFlow package on the NVidia GTX Titan Xp graphical processing unit
card.

Table 3 Proposed probabilistic recovery neural network tests for stock inputs (16 indices
dataset) and 2 benchmark quantities (initial investment portfolio-wallet portfolio,
current after transactions portfolio-trading portfolio)

Accuracy Wallet portfolio [$] Investment portfolio [$]

0.573409639
0.594943775
0.586265060
0.594477912
0.582321285
0.590795181
0.574710843
0.603799197
0.594481928
0.584650602
0.581457831
0.577305221
0.571317269
0.590433735
0.591666667
0.582281124
0.579803213
0.580493976
0.580851406
0.596979920
0.593457831
0.594389558
0.604120482
0.585506024
0.602546185
0.592068273
0.605345382
0.606939759
0.591485944
0.592594378
0.590835341
0.593742972
0.595534137
0.610060241

49,692,800.69
13,982,301.67
20,228,797.13
6,975,487.039
19,456,706.38
4,972,975.284
4,539,377.824
17,844,692.84
15,419,827.32
10,357,347.95
7,374,924.947
232,725,396.9
9,733,642.410
7,375,111.185
888,992.3039
13,583,725.21
11,271,968.64
1,456,191.595
33,129,766.46
8,099,100.806
6,391,852.159
15,912,814.29
27,712,782.10
1,602,227.210
362,966.1957
11,710,914.01
10,216,137.05
2,253,865.528
26,092,755.28
44.227,714.27
18,351,195.77
21,224,295.94
10,171,473.02
18,416,221.13

-2,157,087.955
~15,873,073.71
-834,033.6136
-3,452,280.708
~3,247,303.090
-9,531,794.182
-3,949,730.872
~4,263,499.625
~3,491,683.282
~4,244,551.251
~4,229,400.284
-233,488,151.9
-3,225,659.117
~1,819,369.090
-3,598,214.399
~16,971,746.62
~6,263,003.224
~2,465,736.967
~4,793,294.095
-3,754,576.693
~7,246,741.340
~2,908,281.007
~34,121,028.92
~6,369,763.190
~10,832,299.96
-2,984,629.613
—2.231,771.714
~6,771,350.884
~10,103,033.80
~7,543,559.768
~3,281,857.291
-9,949,133.497
-9,485,553.920
-10,217,002.43

24 A. Maniatopoulos et al.

Table 3 Proposed probabilistic recovery neural network tests for stock inputs (16 indices
dataset) and 2 benchmark quantities (initial investment portfolio-wallet portfolio,
current after transactions portfolio-trading portfolio) (continued)

Accuracy Wallet portfolio [$] Investment portfolio [$]
0.607128514 11,664,624.33 -15,217,265.30
0.605204819 1,101,898.581 —6,603,268.221
0.610919679 4,959,502.535 -2,286,375.027
0.600614458 9,436,144.243 —5,601,165.252

0.592799197
0.593401606
0.596883534
0.593847390
0.603188755
0.594771084
0.593084337
0.600377510
0.598807229
0.602184739
0.596116466
0.597257028

22,186,618.37
6,197,371.794
1,238,564.779
23,256,512.62
16,278,427.29
23,239,831.11
13,459,190.48
313,128.6255
11,804,650.95
1,230,450.284
6,434,961.056
5,605,214.844

~14,224,027.54
~4,160,122.545
~2,674,962.285
~13,395,360.86
~4,385,055.087
~7,335,415.832
~1,825,124.494
~556,732.5636
-2,103,231.004
-3,237,346.278
-3,857,863.017
~6,354,547.362

Mean: 0.593153173

Mean: 17,243,268.81
St. deviation: 32,853,424.33

Mean: —10,952,361.21

St. deviation: 0.009604004 St. deviation: 32,618,635.98

It is obvious that the application of dropout does not show any noticeable improvement.
It is interesting to note that despite the drop of error per iteration that is reduced by
more than half, e.g., 34.205 instead of 88.878 (see Figure 13), the final precision is only
slightly improved.

Figure 13 Comparison of loss between methods with and without dropout
log (Loss)

20,000,000,000| N\

—— Dropout p=0.5
- - - No Dropout

2,000,000,000 | \
200,000,000 |
20,000,000
2,000,000
200,000

20,000

Technical analysis forecasting and evaluation of stock markets 25

6.5 Generative adversarial networks

The most widespread use of a GAN is for realistic image generation, but, this does not
mean it can not be used to develop a behaviour stock market model. In our case, we
aimed to manage a portfolio that would not only keep its current price but would also
be profitable. To achieve this, the typical GAN architecture was changed slightly, as
presented in Figure 6, to create a financial dynamic neural network architecture. Firstly,
to control the generated data, the random input vector was replaced by the dataset input
vector which is part of our latent input space (see Subsection 3.5). Specifically, the
generator was trained to produce a decision (buy/sell), in the sampling stage and the
input with the decision vector was concatenated. Later, along with the real training data,
the data derived from the GAN were presented and evaluated by the discriminator.

Figure 14 Flow diagram of the studied neural network architectures (see online version
for colours)

' v

16 index 12 index
computation computation

Formatted
Dataset
16 id

Formatted
Dataset
12id

Feed Forward 12 12_" 12
Neural Network index image
¥ i v ¥ l
Long Short-Term Generative Convolutional
Feed Forward 16 Probabilistic Recovery Memory Adversarial

Meural Network Process Meural Network Meural Network Neural Network

—

Feed Forward
Neural Network

!

Qutput Data Qutput Data Output Data Output Data Output Data
Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

The topology corresponding to the GAN used in our financial data input case is
presented in Figure 7. It is noted that a 1:4 ratio is used for the discriminator and
generator training step as this was found to be a perfect balance. This ratio was selected
after several experiments to determine what is the optimal training mode for the job

26 A. Maniatopoulos et al.

and the discriminator’s training. The generator was an optimal fully-connected model
with 4 layers and 50 neurons per layer. These numbers were selected in accordance
with previous test cases as the discriminator’s part is similar to the CNN model used
previously.

Finally, it is noted that further tests have been conducted replacing the CNN with a
fully-connected ANN in the discriminator, without noticeable changes in the accuracy
rate.

6.6 Overall comparison

In summary, a flow diagram of all the test cases conducted as well as the the accuracy
of each of these topologies are presented in Figures 14 and 15 respectively. The
probabilistic FF-ANN with 16 features seems to offer the best prediction accuracy, at
over 59%.

Figure 15 Prediction accuracy comparison among all methods tested
0.600_

Probabilistic
FF 16

0.596 |

0.592

0.588
—\ Probabilistic

0.584 FE

0.580 |

Feed
0.576 |
Forward LSTM LSTM Conv w/o Conv With

0.572 | 256 384 dropout dropout

0.568 |
0.564 |
0.560 |

0.556 | Gan

0.552|

Similar systems, evaluated on the correct per-day prediction of up-or-down stock market
movement, are not much better than the ‘toss-the-coin’ method, ranging from 52 to 54%
at most. Schmidt and Hildebrandt (2017) use a deep learning framework and a similar
but undisclosed dataset, reporting accuracy that does not exceed 52.8%, whilst assessing
both FF models and RNNs. Chen et al. (2017) offer a system modelling how the Dow
Jones Index would be affected by daily popular news on Reddit. Two algorithms were
mostly used — CART and support vector machines — with CART offering the best
performance in terms of mean accuracy at 53.66%.

Our models surpass the aforementioned systems, offering over two times better
relative accuracy, assuming the baseline is 50%, all the while modelling a vast number

Technical analysis forecasting and evaluation of stock markets 27

of stocks (501) — a problem much more widespread and demanding than trying to model
efficiently only one index or single stock. Apple Inc. is one of the most common targets
for stock market prediction. Our model has achieved 93.43% accuracy, modelling 1,247
days and evaluating for 500 days, as shown in Figure 16. Comparable models achieve
less than 80% accuracy, rendering them unviable. Moreover, it is noted that during the
first 1,247 days the model is idle and trained, whilst in the last 500, it is evaluated
and models the real price efficiently. Moreover, after this stock analysis regarding its
predicted-actual values and the absolute-relative error margins, we calculated that the
mean square error and the root mean squared error are 84.35877379 and 9.18470325
respectively.

Figure 16 Testing case with an Apple stock price (see online version for colours)
Stock Index
160 _

140 | Actual Stock Price

— Predicted Stock Price

120
100
80 |
60 |

40 |

20
B B N R A L S I A D B R AR D B B A M R R MR R A R AR AR AR R
1234123412341234123412341 23 4quarter

2010 2011 2012 2013 2014 2015 2016 year

Notes: A comparison between the actual stock price and the predicted stock price using
the best performing methodology.

7 Conclusions and perspectives

This paper aimed to build a capable dataset as well as a robust model to solve the
problem of predicting market movement for high frequency transactions — a problem that
classical mathematics cannot solve. Our results showcase the model’s capability for high
accuracy predictions in large volume and high frequency transactions datasets, using
unsupervised learning techniques. Initially, different forms of the dataset were studied
to find the most appropriate one because information is power, and without proper data,
no topology can solve an ill-composed problem.

Then, when the appropriate dataset was selected, four topologies were studied to find
the most appropriate tool to solve the problem more efficiently. The first architecture
was a FF-ANN, which gave us an accuracy of approximately 57.36%. The second
architecture consisted of a post-processing network that evaluated the results of the
FF-ANN, accepted what it deemed to be correct, and reclassified what it depicted was
probably wrong. As a result, the accuracy that occurred after the use of the probabilistic

28 A. Maniatopoulos et al.

post-processing network exceeded 58.83%, an improvement that reached 1.5% on the
original coarse network and a higher accuracy than the topologies tested. The third
topology tested was the sequential ANN with LSTM elements. Two topologies were
tested and, although theoretically better results were expected due to the nature of
the problem as sequential neural circuits are ideal for time series processing, the final
precision approaches 57.03% regardless of topology, number of neurons, or dropout
implementation.

Figure 17 A comparison between the actual stock price and the predicted stock price using
the best performing methodology for 50 executions (see online version for colours)

29

98,22255322

98 -

96,74133481

97

93,48795405

93

92

91

Probabilistic FF12 FF12 GAN

Figure 18 Normalised standard deviation (%) for feed-forward neural network, probabilistic
neural network and GAN for 50 executions of the 12 indices dataset
(see online version for colours)

100000

12729,58029

10000

1000

69,25474

100 54,42626846

10

Probabilistic FF12 FF12 GAN

Technical analysis forecasting and evaluation of stock markets 29

For the first time in the field, a convolution neural network was tested. For the proper
use of this topology, a sliding window was used with a data aggregation per 12, resulting
in the neural network receiving the information in the form of images. Although
theoretically not an ideal topology for time series modelling, the final precision was
exactly the same as that of the sequential neural network at 57.03%.

Table 4 Accuracy (Acc) results for varying time window sizes

5-day ahead Acc 10-day ahead Acc 15-day ahead Acc 20-day ahead Acc
0.575533576 0.585791924 0.580452510 0.572760312
0.564756967 0.578173000 0.596400502 0.588244884
0.573821163 0.595627653 0.600406928 0.598823411
0.573194566 0.569792184 0.592027108 0.560497362
0.561091804 0.577475675 0.587122691 0.581045678
0.567284813 0.560309422 0.580672691 0.594203154
0.559392267 0.575112517 0.589924598 0.591332273
0.486745648 0.564334107 0.611502309 0.598310743
0.566804136 0.591034776 0.605073896 0.590799666
0.579057110 0.576584648 0.582028313 0.601506384
Average: Average: Average: Average:

0.560768205046311 0.577423590534156 0.592561154618474 0.587752386610811

Table S Numerical comparison of feed-forward neural network, probabilistic recovery neural
network and GAN for the 12 indices dataset

Neural network Feed-forward Probabilistic Generative adversarial
test cases neural network neural network neural network
Accuracy 0.573824297 0.582610191 0.554526766
Standard deviation 0.006651228 0.005227101 1.222549400

Using RPDE, our models achieved well over 93% accuracy in price prediction,
outperforming existing models currently on the market, and enjoying over 60% annual
return on investment. Additionally, we noticed that the final prediction considers
approximately an average 5% reduction regarding possible transaction costs and stock
exchange companies’ commissions.

The technical novelty of this paper is that the system proposed, contrary to the
theory of non-market forecasting (that suggests that one can not make a profit — i.e.,
accuracy over 52% — by modelling the market) achieves almost 60% accuracy in the
upwards-downwards movement of shares. Additionally, our system is characterised by
an accuracy rate of slightly over 90%, whereas the latest research in the field using
similar methods spans from 70% to 85%.

Furthermore, although GAN is not widely used in the fields of market and stock
market predictions, our novel GAN model achieved a 55.453% mean accuracy score
and a 1.222 standard deviation over 50 runs. The results of this method are promising,
proving further robustness of our constructed dataset and not using daily data of the
US Dow Jones Index. However, the authors argue that most conventional models can
achieve greater accuracy and lower standard deviation as presented comparatively in

30 A. Maniatopoulos et al.

Figures 17, 18 and Table 5. Finally, these results showcase that GANs could be used as
a tool to enhance current artificial intelligence tools, both by validating the prediction
and by enhancing the overall system dataset. We propose this method not to be used
as a standalone feature but rather as a supplementary tool for validation of the ‘ground
truth’ of machine and deep learning trading fine-tuning strategies.

Finally, regarding the future work of this publication, we aim to develop an
open-source library MATLAB, Python, and R repository for any user to be able to
use via an API, our proposed neural network. Investment-wise, future uses of this
method may include using this neural network as a solid tool to comprehend market
dynamics and shape possible trading strategies. Specifically, investors may use our
system’s results as a way to study price patterns and technical indicators for any given
stock market. Moreover, correlating forecasting for specific time frames (i.e., given input
sliding window size) can be used as a tool to study stock price times in future policy
(regulation) events such as rebalancing prices after additions/deletions from specific
indexes (such as MSCI’s market indexes). Also, an alarming concern is the recent
trend of contemporary portfolios to move away from mutual funds and stock picking
to shifting towards their capital to index funds. In the near future, will a stock’s price
embed all the necessary information and trends regarding its current market value? It
is important to focus our future system improvements on conducting a comparative
study between index funds and individually the group of stocks consisting of them.
For example, we are currently working on a method that actively manipulates the
topology of the neural networks, fitting the size of each layer to the problem, and using
information theory to simulate stock market index behaviour.

References

Ahmed, W.M. (2015) ‘On the buying and selling behaviour of investor categories: evidence from
Qatar’, International Journal of Economics and Business Research, Vol. 9, No. 3a, pp.292-315
[online] https://dx.doi.org/10.1504/IJEBR.2015.068551.

Alhazbi, S., Said, A.B. and Al Maadid, A. (2020) ‘Using deep learning to predict stock movements
direction in emerging markets: the case of Qatar Stock Exchange’, [EEE International
Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp.440—444 [online] https:
//doi.org/10.1109/1C10T48696.2020.9089616.

Althelaya, K.A., Mohammed, S.A. and El-Alfy, E.SM. (2021) ‘Combining deep learning and
multiresolution analysis for stock market forecasting’, /EEE Access, Vol. 9, pp.13099-13111
[online] https://doi.org/10.1109/ACCESS.2021.3051872.

Askari, M.Y. and Refae, G.A.E. (2019) ‘The rationality of irrational decisions: a new perspective
of behavioural economics’, International Journal of Economics and Business Research, Vol. 17,
No. 4, pp.388—401 [online] https://dx.doi.org/10.1504/IJEBR.2019.099972.

Atsalakis, G.S. and Valavanis, K.P. (2009) ‘Forecasting stock market short-term trends using
a neuro-fuzzy based methodology’, Expert Systems with Applications, Vol. 36, No. 7,
pp-10696—10707 [online] https://doi.org/10.1016/j.eswa.2009.02.043.

Barta, G. and Goresi, G. (2021) ‘Risk management considerations for artificial intelligence business
applications’, International Journal of Economics and Business Research, Vol. 21, No. 1,
pp.87—106 [online] http://dx.doi.org/10.1504/IJEBR.2021.112012.

Begenau, J., Farboodi, M. and Veldkamp, L. (2019) ‘Big data in finance and the growth of large
firms’, Journal of Monetary Economics, Vol. 97, pp.71-87 [online] https://doi.org/10.1016/j.
jmoneco.2018.05.013.

Technical analysis forecasting and evaluation of stock markets 31

Bishop, C.M. (1995) Neural Networks for Pattern Recognition, Oxford University Press [online]
http://publications.aston.ac.uk/id/eprint/639/.

Borovykh, A., Bohte, S. and Oosterlee, C.W. (2018) ‘Dilated convolutional neural networks for time
series forecasting’, Journal of Computational Finance Forthcoming [online] https://ssrn.com/
abstract=3272962.

Bustos, O. and Pomares-Quimbaya, A. (2020) ‘Stock market movement forecast: a systematic review’,
Expert Systems with Applications, Vol. 156, p.113464 [online] https://doi.org/10.1016/j.eswa.2020.
113464.

Cantabella, M., Espafia, PM., Ayuso, B., Yailez, J.A. and Muiloz, A. (2019) ‘Analysis of student
behavior in learning management systems through a big data framework’, Future Generation
Computer Systems, Vol. 90, pp.262-272 [online] https://doi.org/10.1016/j.future.2018.08.003.

Chaboud, A.P., Chiquoine, B., Hualmarsson, E. and Vega, C. (2014) ‘Rise of the machines:
algorithmic trading in the foreign exchange market’, Journal of Finance, Vol. 69, pp.2045-2084
[online] https://doi.org/10.1111/jofi.12186.

Chen, S. and He, H. (2018) ‘Stock prediction using convolutional neural network’, /IOP Conference
Series: Materials Science and Engineering, Vol. 435, No. 1, p.12026 [online] https://doi.org/10.
1088/1757-899X/435/1/012026.

Chen, W.H., Shih, J.Y. and Wu, S. (2006) ‘Comparison of support-vector machines and back
propagation neural networks in forecasting the six major Asian stock markets’, International
Journal of Electronic Finance, Vol. 1, No. 1, pp.49—67 [online] https://doi.org/10.1504/1JEF.
2006.008837.

Chen, W., Zhang, Y., Yeo, C.K., Lau, C.T. and Lee, B.S. (2017) ‘Stock market prediction using neural
network through news on online social networks’, IEEE International Smart Cities Conference,
pp-1-6 [online] https://doi.org/10.1109/ISC2.2017.8090834.

Chong, E., Han, C. and Park, F.C. (2017) ‘Deep learning networks for stock market analysis
and prediction: methodology, data representations, and case studies’, Expert Systems with
Applications, Vol. 83, pp.187-205 [online] https://doi.org/10.1016/j.eswa.2017.04.030.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B. and Bharath, A.A. (2018)
‘Generative adversarial networks: an overview’, [EEE Signal Processing Magazine, Vol. 35,
No. 1, pp.53-65 [online] https://doi.org/10.1109/MSP.2017.2765202.

Erbas, B.C. and Stefanou, S.E. (2009) ‘An application of neural networks in microeconomics:
input-output mapping in a power generation subsector of the US electricity industry’, Expert
Systems with Applications, Vol. 36, No. 2, pp.2317-2326 [online] https://doi.org/10.1016/j.eswa.
2007.12.062.

Erdogdu, E. (2016) ‘Asymmetric volatility in European day-ahead power markets: a comparative
microeconomic analysis’, Energy Economics, Vol. 56, pp.398—409 [online] https://doi.org/10.
1016/j.enec0.2016.04.002.

Gazi, T. and Gazis, A. (2021) ‘Humanitarian aid in the age of COVID-19: a review of big data crisis
analytics and the General Data Protection Regulation’, International Review of the Red Cross,
Vol. 102, No. 913, pp.75-94 [online] https://doi.org/10.1017/S1816383121000084.

Gazis, A. and Katsiri, E. (2019) ‘Web frameworks metrics and benchmarks for data handling and
visualization’, Theoretical Computer Science and General Issues — Lecture Notes in Computer
Science: International Symposium on Algorithmic Aspects of Cloud Computing, Vol. 11409,
pp-137-151 [online] https://doi.org/10.1007/978-3-030-19759-9 9.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.
and Bengio, Y. (2014) ‘Generative adversarial nets’, Advances in Neural Information
Processing System, Vol. 27, pp.2672-2680 [online] https://proceedings.neurips.cc/paper/2014/
hash/5ca3e9b122f618f06494c97blafccf3- Abstract.html.

32 A. Maniatopoulos et al.

Gopal, N. and Senthilkumar, K.S. (2020) ‘Predicting bitcoin prices-ANN approach’, International
Journal of Electronic Finance, Vol. 10, Nos. 1-2, pp.67-78 [online] https://doi.org/10.1504/1JEF.
2020.110296.

Graves, A. (2013) Generating Sequences with Recurrent Neural Networks, arXiv, 1308.0850 [online]
https://arxiv.org/abs/1308.0850.

Gravvanis, G.A., Salamanis, A.l. and Filelis-Papadopoulos, C.K. (2019) ‘Advanced parametric
methods for short-term traffic forecasting in the era of big data’, Machine Learning Paradigms,
Vol. 149, pp.199-231 [online] https://doi.org/10.1007/978-3-319-94030-4_9.

Henrique, B.M., Sobreiro, V.A. and Kimura, H. (2018) ‘Stock price prediction using support vector
regression on daily and up to the minute prices’, The Journal of Finance and Data Science,
Vol. 4, No. 3, pp.183-201 [online] https://doi.org/10.1016/j.jfds.2018.04.003.

Hongping, H., Tang, L., Shuhua, Z. and Haiyan, W. (2018) ‘Predicting the direction of stock markets
using optimized neural networks with Google Trends’, Neurocomputing, Vol. 285, pp.188—195
[online] https://doi.org/10.1016/j.neucom.2018.01.038.

Hu, Z., Zhao, Y. and Khushi, M. (2021) ‘A survey of forex and stock price prediction using
deep learning’, Applied System Innovation, Vol. 4, No. 1, p.9 [online] https://doi.org/10.3390/
asi4010009.

Huang, X. (2018) ‘Macroeconomic news announcements, systemic risk, financial market volatility,
and jumps’, Journal of Futures Markets, Vol. 38, pp.513-534 [online] https://doi.org/10.1002/
fut.21898.

Huang, Y., Capretz, L.F. and Ho, D. (2019) ‘Neural network models for stock selection based on
fundamental analysis’, IEEE Canadian Conference of Electrical and Computer Engineering,
pp.1-4 [online] https://doi.org/10.1109/CCECE.2019.8861550.

Hudson, R., McGroarty, F. and Urquhart, A. (2017) ‘Sampling frequency and the performance of
different types of technical trading rules’, Finance Research Letters, Vol. 22, pp.136—139 [online]
https://doi.org/10.1016/j.fr1.2016.12.015.

Ismail, M.S., Noorani, M.S.M., Ismail, M., Razak, F.A. and Alias, M.A. (2020) ‘Predicting next day
direction of stock price movement using machine learning methods with persistent homology:
evidence from Kuala Lumpur Stock Exchange’, Applied Soft Computing, Vol. 93, p.106422
[online] https://doi.org/10.1016/j.as0c.2020.106422.

Iuhasz, G., Tirea, M. and Negru, V. (2012) ‘Neural network predictions of stock price fluctuations’,
IEEE International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
pp-505-512 [online] https://doi.org/10.1109/SYNASC.2012.7.

Jagwani, J., Gupta, M., Sachdeva, H. and Singhal, A. (2018) ‘Stock price forecasting using data from
Yahoo finance and analysing seasonal and nonseasonal trend’, /EEE International Conference on
Intelligent Computing and Control Systems, pp.462—467 [online] https://doi.org/10.1109/ICCONS.
2018.8663035.

Jeon, S., Hong, B. and Chang, V. (2018) ‘Pattern graph tracking-based stock price prediction using
big data’, Future Generation Computer Systems, Vol. 80, pp.171-187 [online] https://doi.org/10.
1016/j.future.2017.02.010.

Kaeppel, J. (2008) Seasonal Stock Market Trends: The Definitive Guide to Calendar-Based Stock
Market Trading, No. 438, John Wiley and Sons Trading, ISBN: 978-0-470-27043-1 [online]
https://www.shorturl.at/tEJV1.

Kara, Y., Boyacioglu, M.A. and Baykan, O.K. (2011) ‘Predicting direction of stock price index
movement using artificial neural networks and support vector machines: the sample of the
Istanbul Stock Exchange’, Expert Systems with Applications, Vol. 38, No. 5, pp.5311-5319
[online] https://doi.org/10.1016/j.eswa.2010.10.027.

Karpathy, A., Abbeel, P., Brockman, G., Chen, P., Cheung, V., Duan, R., Goodfellow, I., Kingma, D.,
Ho, J., Houthooft, R., Salimans, T., Schulman, J., Sutskever, I. and Zaremba, W. (2016)
Generative Models [online] https://openai.com/blog/generative-models/.

Technical analysis forecasting and evaluation of stock markets 33

Kewat, P., Sharma, R., Singh, U. and Itare, R. (2017) ‘Support vector machines through financial time
series forecasting’, /EEE International conference of Electronics, Communication and Aerospace
Technology, Vol. 2, pp.471—477 [online] https://doi.org/10.1109/ICECA.2017.8212859.

Khan, W., Ghazanfar, M.A., Azam, M.A., Karami, A., Khaled, H.A. and Alfakeeh, A.S. (2020)
‘Stock market prediction using machine learning classifiers and social media, news’, Journal
of Ambient Intelligence and Humanized Computing, pp.1-24 [online] https://doi.org/10.1007/
$12652-020-01839-w.

Khanboubi, F., Boulmakoul, A. and Tabaa, M. (2019) ‘Impact of digital trends using IoT on banking
processes’, Procedia Computer Science, Vol. 151, pp.77-84 [online] https://doi.org/10.1016/j.
procs.2019.04.014.

Kirilenko, A.A. and Lo, A.W. (2013) ‘Moore’s law versus Murphy’s law: algorithmic trading and
its discontents’, Journal of Economic Perspectives, Vol. 27, No. 2, pp.51-72 [online] https:
//dx.doi.org/10.2139/ssrn.2235963.

Kishore, A., Kumar, A. and Dang N. (2020) ‘Enhanced image restoration by GANs using game
theory’, Vol. 173, pp.225-233 [online] https://doi.org/10.1016/j.procs.2020.06.027.

Kock, A.B. and Terésvirta, T. (2016) ‘Forecasting macroeconomic variables using neural network
models and three automated model selection techniques’, Econometric Reviews, Vol. 35,
Nos. 8-10, pp.1753—1779 [online] https://doi.org/10.1080/07474938.2015.1035163.

Kokkinos, F. and Potamianos, A. (2017) A Structural Attention Neural Networks for Improved
Sentiment Analysis, arXiv, 1701.01811 [online] https://arxiv.org/abs/1701.01811.

Kraus, M. and Feuerriegel, S. (2017) ‘Decision support from financial disclosures with deep neural
networks and transfer learning’, Decision Support Systems, Vol. 104, pp.38-48 [online] https:
//doi.org/10.1016/j.dss.2017.10.001.

Kumar, M. and Yadav, N. (2011) ‘Multilayer perceptrons and radial basis function neural network
methods for the solution of differential equations: a survey’, Computers and Mathematics with
Applications, Vol. 62, No. 10, pp.3796-3811 [online] https://doi.org/10.1016/j.camwa.2011.09.
028.

Kusuma, R.M.I,, Ho, T.T., Kao, W.C., Ou, Y.Y. and Hua, K.L. (2019) Using Deep Learning Neural
Networks and Candlestick Chart Representation to Predict Stock Market, arXiv, 1308.0850
[online] https://arxiv.org/abs/1308.0850.

Labach, A., Salehinejad, H. and Valaee, S. (2019) Survey of Dropout Methods for Deep Neural
Networks, arXiv, 1904.13310 [online] https://arxiv.org/abs/1904.13310.

Lee, TK., Cho, J.H., Kwon, D.S. and Sohn, S.Y. (2019) ‘Global stock market investment strategies
based on financial network indicators using machine learning techniques’, Expert Systems with
Applications, Vol. 117, No. 1, pp.228-242 [online] https://doi.org/10.1016/j.eswa.2018.09.005.

Li, D, Wang, Y., Madden, A., Ding, Y., Tang, J., Sun, G.G., Zhang, N. and Zhou, E. (2019)
‘Analyzing stock market trends using social media user moods and social influence’, Journal of
the Association for Information Science and Technology, Vol. 70, No. 9, pp.1000-1013 [online]
https://doi.org/10.1002/asi.24173.

Li, M. and Wang, D. (2017) ‘Insights into randomized algorithms for neural networks: practical
issues and common pitfalls’, Information Sciences, Vol. 382, No. 383, pp.170-178 [online] https:
//doi.org/10.1016/j.ins.2016.12.007.

Li, X., Chang, D., Ma, Z., Tan, Z.H., Xue, J.H., Cao, J., Yu, J. and Guo, J. (2020) ‘OSLNet:
deep small-sample classification with an orthogonal softmax layer’, IEEE Transactions on Image
Processing, Vol. 29, pp.6482—6495 [online] https://doi.org/10.1109/T1P.2020.2990277.

Li, Y. and Ma, W. (2010) ‘Applications of artificial neural networks in financial economics: a survey’,
IEEE International Symposium on Computational Intelligence and Design, pp.211-214 [online]
https://doi.org/10.1109/ISCID.2010.70.

Lipton, Z.C., Berkowitz, J. and Elkan, C. (2015) A Critical Review of Recurrent Neural Networks for
Sequence Learning, arXiv, 1506.00019 [online] https://arxiv.org/abs/1506.00019.

34 A. Maniatopoulos et al.

Liu, S., Zhang, X., Wang, Y. and Feng, G. (2020) ‘Recurrent convolutional neural kernel model
for stock price movement prediction’, PLoS ONE, Vol.l 15, No. 6, p.c0234206 [online] https:
//doi.org/10.1371/journal.pone.0234206.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y. and Alsaadi, F.E. (2017) ‘A survey of deep neural
network architectures and their applications’, Neurocomputing, Vol. 234, pp.11-26 [online] https:
//doi.org/10.1016/j.neucom.2016.12.038.

Lo, AW. (2016) Moore’s Law vs. Murphy’s Law in the Financial System: Who's Winning?, BIS
Working Paper, No. 564, pp.564.1-564.38 [online] https://ssrn.com/abstract=2789737.

Lo, A.W. and Mackinlay, A.C. (1999) 4 Non-Random Walk Down Wall Street, Princeton University
Press, Princeton, Oxford [online] https://doi/10.2307/j.ctt7tccx.

Long, J., Chen, Z., He, W., Wu, T. and Ren, J. (2020) ‘An integrated framework of deep learning and
knowledge graph for prediction of stock price trend: an application in Chinese Stock Exchange
market’, Applied Soft Computing, Vol. 91, p.106205 [online] https://doi.org/10.1016/j.as0c.2020.
106205.

Luc, P, Couprie, C., Chintala, S. and Verbeek, J. (2016) Semantic Segmentation using Adversarial
Networks, arXiv, 1611.08408 [online] https://arxiv.org/abs/1611.08408.

Malakar, P., Balaprakash, P., Vishwanath, V., Morozov, V. and Kumaran, K. (2018) ‘Benchmarking
machine learning methods for performance modeling of scientific applications’, IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems,
pp-33—44 [online] https://doi.org/10.1109/PMBS.2018.8641686.

Maltoudoglou, L., Boutalis, Y. and Loukeris, N. (2015) ‘A fuzzy system model for financial
assessment of listed companies’, IEEE International Conference on Information, Intelligence,
Systems and Applications, IEEE, pp.1-6 [online] https://doi.org/10.1109/IISA.2015.7388049.

Maniatopoulos, A., Gazis, A. and Mitianoudis, N. (2020a) U.S. Stock Market Data — Dow Jones (501
Companies, 2010-2016), Mendeley Data v1 [online] https://doi.org/10.17632/hfzvhd2f5p.1.

Maniatopoulos, A., Gazis, A., Palikaras, V.P. and Mitianoudis, N. (2020b) ‘Artificial neural network
performance boost using probabilistic recovery with fast cascade training’, NAUN International
Journal of Circuits, Systems and Signal Processing, Vol. 14, pp.847-854 [online] https://doi.org/
10.46300/9106.2020.14.110.

Manojlovic, T. and Stajduhar, I. (2015) ‘Predicting stock market trends using random forests:
a sample of the Zagreb Stock Exchange’, IEEE International Convention on Information
and Communication Technology, Electronics and Microelectronics, pp.1189—1193 [online]
https://doi.org/10.1109/MIPRO.2015.7160456.

Merello, S., Ratto, A.P., Oneto, L. and Cambria, E. (2019) ‘Ensemble application of transfer learning
and sample weighting for stock market prediction’, IEEE International Joint Conference on
Neural Networks, pp.1-8 [online] https://doi.org/10.1109/IJCNN.2019.8851938.

Mingyue, Q. and Yu, S. (2016) ‘Predicting the direction of stock market index movement using
an optimized artificial neural network model’, PLoS ONE, Vol. 11, No. 5, p.e0155133 [online]
https://doi.org/10.1371/journal.pone.0155133.

Mingyue, Q., Cheng, L. and Yu, S. (2016) ‘Application of the artifical neural network in predicting
the direction of stock market index’, International Conference on Complex, Intelligent, and
Software Intensive Systems, pp.219-223 [online] https://doi.org/10.1109/CISIS.2016.115.

Moghaddam, A.H., Moghaddam, M.H. and Esfandyari, M. (2016) ‘Stock market index prediction
using artificial neural network’, Journal of Economics, Finance and Administrative Science,
Vol. 21, No. 41, pp.89-93 [online] https://doi.org/10.1016/j.jefas.2016.07.002.

Mostafa, M.M. (2010) ‘Forecasting stock exchange movements using neural networks: empirical

evidence from Kuwait’, Expert Systems with Applications, Vol. 37, No. 9, pp.6302—6309 [online]
https://doi.org/10.1016/j.eswa.2010.02.091.

Technical analysis forecasting and evaluation of stock markets 35

Mukkamala, M.C. and Hein, M. (2017) ‘Variants of RMSProp and Adagrad with logarithmic regret
bounds’, ACM Proceedings of the International Conference on Machine Learning, Vol. 70,
pp.2545-2553 [online] https://dl.acm.org/doi/10.5555/3305890.3305944.

Nakano, M., Takahashi, A. and Takahashi, S. (2018) ‘Bitcoin technical trading with artificial neural
network’, Physica A: Statistical Mechanics and its Applications, Vol. 510, pp.587—609 [online]
https://doi.org/10.1016/j.physa.2018.07.017.

Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M. and losifidis, A. (2018) ‘Benchmark dataset
for mid-price forecasting of limit order book data with machine learning methods’, Journal of
Forecasting, Vol. 37, pp.852—-866 [online] https://doi.org/10.1002/for.2543.

Nunes, M., Gerding, E., McGroarty, F. and Niranjan, M. (2019) ‘A comparison of multitask and
single task learning with artificial neural networks for yield curve forecasting’, Expert Systems
with Applications, Vol. 119, pp.362-375 [online] https://doi.org/10.1016/j.eswa.2018.11.012.

Nuseir, M.T. (2018) ‘How big data is used in expanding marketing activities’, International Journal
of Economics and Business Research, Vol. 16, No. 4, pp.466—475 [online] https://dx.doi.org/10.
1504/1JEBR.2018.095342.

Oliveira, F.A., Nobre, C.N. and Zarate, L.E. (2013) ‘Applying artificial neural networks to prediction
of stock price and improvement of the directional prediction index — case study of PETR4,
Petrobras, Brazil’, Expert Systems with Applications, Vol. 40, No. 18, pp.7596-7606 [online]
https://doi.org/10.1016/j.eswa.2013.06.071.

Onder, E., Bayrr, F. and Hepsen, A. (2013) ‘Forecasting macroeconomic variables using artificial
neural network and traditional smoothing techniques’, Journal of Applied Finance and Banking,
Vol. 3, No. 4, pp.73—104 [online] https://dx.doi.org/10.2139/ssrn.2264379.

Parsva, P. (2020) ‘Investigating the impact of trade shocks on production in Iranian manufacturing
industries’, International Journal of Economics and Business Research, Vol. 20, No. 4,
pp.391-406 [online] http://dx.doi.org/10.1504/IJEBR.2020.111081.

Pavlidis, N.G., Tasoulis, D.K. and Vrahatis, M.N. (2003) ‘Financial forecasting through unsupervised
clustering and evolutionary trained neural networks’, IEEE 2003 Congress on Evolutionary
Computation, Vol. 4, pp.2314-2321 [online] https://doi.org/10.1109/CEC.2003.1299377.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P,, Shyu, M.L., Chen, S.C. and
Iyengar, S.S. (2018) ‘A survey on deep learning: algorithms, techniques, and applications’, ACM
Computer Surveys, Vol. 51, No. 5, p.92 [online] https://doi.org/10.1145/3234150.

Priyadarshini, R., Barik, R.K., Panigrahi, C., Dubey, H. and Mishra, B.K. (2020) Deep Learning
and Neural Networks: Concepts, Methodologies, Tools, and Applications, pp.654—666 [online]
http://doi:10.4018/978-1-7998-0414-7.

Qiu, M., Song, Y. and Akagi, F. (2016) ‘Application of artificial neural network for the prediction
of stock market returns: the case of the Japanese stock market’, Chaos, Solitons and Fractals,
Vol. 85, pp.1-7 [online] https://doi.org/10.1016/j.chaos.2016.01.004.

Ramezanian, R., Peymanfar, A. and Ebrahimi, S.B. (2019) ‘An integrated framework of genetic
network programming and multi-layer perceptron neural network for prediction of daily stock
return: an application in Tehran Stock Exchange market’, Applied Soft Computing, Vol. 82,
p-105551 [online] https://doi.org/10.1016/j.as0c.2019.105551.

Rosenblatt, F. (1962) Principles of Neurodynamics, Perceptrons and The Theory of Brain Mechanisms,
VG-1196-G-8, Cornell Aeronautical Laboratory, Buffalo, NY [online] https://cds.cern.ch/record/
239697.

Sazli, M.H. (2006) ‘A brief review of feed-forward neural networks’, Communications Faculty
of Science University of Ankara, Vol. 50, No. 1, pp.11-17 [online] https://doi.org/10.1501/
commual-2_0000000026.

Schmidt, B. and Hildebrandt, A. (2017) ‘Next-generation sequencing: big data meets high performance
computing’, Drug Discovery Today, Vol. 22, No. 4, pp.712-717 [online] https://doi.org/10.1016/
j-drudis.2017.01.014.

36 A. Maniatopoulos et al.

Scholtus, M., Dijk, D. and Frijns, B. (2014) ‘Speed, algorithmic trading, and market quality around
macroeconomic news announcements’, Journal of Banking and Finance, Vol. 38, pp.89—-105
[online] https://doi.org/10.1016/j.jbank{in.2013.09.016.

Selim, H. (2009) ‘Determinants of house prices in Turkey: hedonic regression versus artificial neural
network’, Expert Systems with Applications, Vol. 36, No. 2, pp.2843-2852 [online] https://doi.
org/10.1016/j.eswa.2008.01.044.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K. and Soman, K.P. (2017) ‘Stock price
prediction using LSTM, RNN and CNN-sliding window model’, /EEE International Conference
on Advances in Computing, Communications and Informatics, pp.1643—1647 [online] https://doi.
org/10.1109/ICACCIL.2017.8126078.

Sermpinis, G., Karathanasopoulos, A., Rosillo, R. and Fuente D. (2019) ‘Neural networks in financial
trading’, Annals of Operations Research [online] https://doi.org/10.1007/s10479-019-03144-y.

Sezer, O.B. and Ozbayoglu, A.M. (2018) ‘Algorithmic financial trading with deep convolutional
neural networks: time series to image conversion approach’, Applied Soft Computing, Vol. 70,
pp-525-538 [online] https://doi.org/10.1016/j.as0c.2018.04.024.

Sharma, D., Misra, V. and Pathak, J.P. (2021) ‘Emergence of behavioural finance: a study on
behavioural biases during investment decision-making’, International Journal of Economics and
Business Research, Vol. 21, No. 2, pp.223-234 [online] http://dx.doi.org/10.1504/IJEBR.2021.
113140.

Shen, J. and Shafig, M.O. (2020) ‘Short-term stock market price trend prediction using a
comprehensive deep learning system’, Springer Journal of Big Data, Vol. 7, p.66 [online] https:
//doi.org/10.1186/s40537-020-00333-6.

Song, J. (2019) Predicting Individual Stock Returns using Optimized Neural Networks, Aalto
University [online] http://urn.fi/URN:NBN:fi:aalto-201907144311.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) ‘Dropout: a
simple way to prevent neural networks from overfitting’, Journal of Machine Learning Research,
pp-1929-1958 [online] https://dl.acm.org/doi/abs/10.5555/2627435.2670313.

Stoean, C., Paja, W., Stoean, R. and Sandita, A. (2019) ‘Deep architectures for long-term stock price
prediction with a heuristic-based strategy for trading simulations’, PLoS ONE, Vol. 14, No. 10,
p-€0223593 [online] https://doi.org/10.1371/journal.pone.0223593.

Symeonidis, S., Effrosynidis, D. and Arampatzis, A. (2018) ‘A comparative evaluation of
pre-processing techniques and their interactions for twitter sentiment analysis’, Expert Systems
with Applications, Vol. 110, pp.298-310 [online] https://doi.org/10.1016/j.eswa.2018.06.022.

Temponeras, G.S., Alexandropoulos, S.N., Kotsiantis, S.B. and Vrahatis, M.N. (2019) ‘Financial
fraudulent statements detection through a deep dense artificial neural network’, International
Conference on Information, Intelligence, Systems and Applications, pp.1-5 [online] https://doi.
org/10.1109/1ISA.2019.8900741.

Terdsvirta, T., Dijk, D. and Medeiros, M.C. (2005) ‘Linear models, smooth transition autoregressions,
and neural networks for forecasting macroeconomic time series: a re-examination’, International
Journal of Forecasting, Vol. 21, No. 4, pp.755-774 [online] https://doi.org/10.1016/j.ijforecast.
2005.04.010.

Terna, P. (1992) Artificial Neural Networks: Microeconomic Experiments by Neural Networks,
pp.1339-1342, Elsevier [online] https://doi.org/10.1016/B978-0-444-89488-5.50109-3.

Thakur, G.S.M., Bhattacharyya, R. and Mondal, S.S. (2016) ‘Artificial neural network based model for
forecasting of inflation in India’, Fuzzy Information and Engineering, Vol. 8, No. 1, pp.87-100
[online] https://doi.org/10.1016/j.fiae.2016.03.005.

Tkac, M. and Verner, R. (2016) ‘Artificial neural networks in business: two decades of research’,
Applied Soft Computing, Vol. 38, pp.788—804 [online] https://doi.org/10.1016/j.as0¢.2015.09.040.

Technical analysis forecasting and evaluation of stock markets 37

Tsekouras, G.E., Trygonis, V., Maniatopoulos, A., Rigos, A., Chatzipavlis, A., Tsimikas, J.,
Mitianoudis, N. and Velegrakis, A.F. (2018) ‘A Hermite neural network incorporating
artificial bee colony optimization to model shoreline realignment at a reef-fronted beach’,
Neurocomputing, Vol. 280, pp.32—45 [online] https://doi.org/10.1016/j.neucom.2017.07.070.

Vargas, M.R., Lima, B.S.L.P. and Evsukoff, A.G. (2017) ‘Deep learning for stock market prediction
from financial news articles’, /[EEE International Conference on Computational Intelligence and
Virtual Environments for Measurement Systems and Applications, pp.60—65 [online] https://doi.
org/10.1109/CIVEMSA.2017.7995302.

Vargas, M.R., Lima, B.S.L.P. and Evsukoff, A.G. (2018) ‘Deep learning for stock market prediction
using technical indicators and financial news articles’, IEEE International Joint Conference on
Neural Networks, pp.1-8 [online] https://doi.org/10.1109/IJCNN.2018.8489208.

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X. and Wang, F.Y. (2017) ‘Generative adversarial
networks: introduction and outlook’, IEEE/CAA Journal of Automatica Sinica, Vol. 4, No. 4,
pp-588-598 [online] https://doi.org/10.1109/JAS.2017.7510583.

Wei, H., Nakamori, Y. and Wang, S.Y. (2005) ‘Forecasting stock market movement direction with
support vector machine’, Computers and Operations Research, Vol. 32, No. 10, pp.2513-2522
[online] https://doi.org/10.1016/j.cor.2004.03.016.

Welch, T.F. and Widita, A. (2019) ‘Big data in public transportation: a review of sources and
methods’, Transport Reviews, Vol. 39, No. 6, pp.795-818 [online] https://doi.org/10.1080/
01441647.2019.1616849.

Worasucheep, C. (2016) ‘A stock price forecasting application using neural networks with
multi-optimizer’, IEEE International Workshop on Computational Intelligence and Applications
(IWCIA), pp.63—68 [online] https://doi.org/10.1109/IWCIA.2016.7805750.

Yu, Y., Si, X., Hu, C. and Zhang, J. (2019) ‘A review of recurrent neural networks: LSTM cells
and network architectures’, Neural Computation, Vol. 31, No. 7, pp.1235-1270 [online] https:
//doi.org/10.1162/neco_a 01199.

Zaremba, W., Sutskever, 1. and Vinyals, O. (2014) Recurrent Neural Network Regularization, arXiv,
1409.2329 [online] https://arxiv.org/abs/1409.2329.

Zhang, L., Wang, S. and Liu, B. (2018) ‘Deep learning for sentiment analysis: a survey’, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 8, p.e1253 [online] https:
//doi.org/10.1002/widm.1253.

Zhong, X. and Enke, D. (2017) ‘A comprehensive cluster and classification mining procedure for
daily stock market return forecasting’, Neurocomputing, Vol. 267, pp.152—168 [online] https:
//doi.org/10.1016/j.neucom.2017.06.010.

Zhong, X. and Enke, D. (2019) ‘Predicting the daily return direction of the stock market using hybrid
machine learning algorithms’, Financial Innovation, Vol. 5, No. 24 [online] https://doi.org/10.
1186/540854-019-0138-0.

Zhou, B. (2019) Deep Learning and the Cross-Section of Stock Returns: Neural Networks Combining
Price and Fundamental Information, SSRN [online] https://dx.doi.org/10.2139/ssrn.3179281.

