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Abstract

Image fusion systems aim at transferring “interesting” information from the input
sensor images to the fused image. The common assumption for most fusion ap-
proaches is the existence of a high-quality reference image signal for all image parts
in all input sensor images. In the case that there are common degraded areas in at
least one of the input images, the fusion algorithms can not improve the information
provided there, but simply convey a combination of this degraded information to
the output. In this study, the authors propose a combined spatial-domain method
of fusion and restoration in order to identify these common degraded areas in the
fused image and use a regularised restoration approach to enhance the content in
these areas. The proposed approach was tested on both multi-focus and multi-modal
image sets and produced interesting results.

Key words: Spatial-domain Image Fusion, Image Restoration.
PACS:

1 Introduction

Data fusion is defined as the process of combining data from sensors and
related information from several databases, so that the performance of the
system can be improved, while the accuracy of the results can be also increased.
Essentially, fusion is a procedure of incorporating essential information from
several sensors to a composite result that will be more comprehensive and thus
more useful for a human operator or other computer vision tasks.

Image fusion can be similarly viewed as the process of combining information
in the form of images, obtained from various sources in order to construct
an artificial image that contains all “useful” information that exists in the
input images. Each image has been acquired using different sensor modalities
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or capture techniques, and therefore, it has different features, such as type of
degradation, thermal and visual characteristics. The main concept behind all
image fusion algorithms is to detect strong salient features in the input sensor
images and fuse these details to the synthetic image. The resulting synthetic
image is usually referred to as the fused image.

Let x1(r), . . . , xT (r) represent T images of size M1 ×M2 capturing the same
scene, where r = (i, j) refers to pixel coordinates (i, j) in the image. Each im-
age has been acquired using different sensors that are placed relatively close
and are observing the same scene. Ideally, the images acquired by these sen-
sors should be similar. However, there might exist some miscorrespondence
between several points of the observed scene, due to the different sensor view-
points. Image registration is the process of establishing point-by-point corre-
spondence between a number of images, describing the same scene. In this
study, the input images are assumed to have negligible registration problems
or the transformation matrix between the sensors’ viewpoints is known. Thus,
the objects in all images can be considered geometrically aligned.

As already mentioned, the process of combining the important features from
the original T images to form a single enhanced image y(r) is usually referred
to as image fusion. Fusion techniques can be divided into spatial domain and
transform domain techniques [5]. In spatial domain techniques, the input im-
ages are fused in the spatial domain, i.e. using localised spatial features. As-
suming that g(·) represents the “fusion rule”, i.e. the method that combines
features from the input images, the spatial domain techniques can be sum-
marised, as follows:

y(r) = g(x1(r), . . . , xT (r)) (1)

Moving to a transform domain enables the use of a framework, where the
image’s salient features are more clearly depicted than in the spatial domain.
Let T {·} represent a transform operator and g(·) the applied fusion rule.
Transform-domain fusion techniques can then be outlined, as follows:

y(r) = T −1{g(T {x1(r)}, . . . , T {xT (r)})} (2)

Several transformations were proposed to be used for image fusion, including
the Dual-Tree Wavelet Transform [5,7,12], Pyramid Decomposition [14] and
image-trained Independent Component Analysis bases [10,9]. All these trans-
formations project the input images onto localised bases, modelling sharp and
abrupt transitions (edges) and therefore, describe the image using a more
meaningful representation that can be used to detect and emphasize salient
features, important for performing the task of image fusion. In essence, these
transformations can discriminate between salient information (strong edges
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and texture) and constant or non-textured background and can also evaluate
the quality of the provided salient information. Consequently, one can select
the required information from the input images in the transform domain to
construct the “fused” image, following the criteria presented earlier on.

In the case of multi-focus image fusion scenarios, an alternative approach
has been proposed in the spatial domain, exploiting current error estimation
methods to identify high-quality edge information [6]. One can perform error
minimization between the fused and input images, using various proposed error
norms in the spatial domain in order to perform fusion. The possible benefit
of a spatial-domain approach is the reduction in computational complexity,
which is present in a transform-domain method due to the forward and inverse
transformation step.

In addition, following a spatial-domain fusion framework, one can also ben-
efit from current available spatial-domain image enhancement techniques to
incorporate a possible restoration step to enhance areas that exhibit distorted
information in all input images. Current fusion approaches can not enhance
areas that appear degraded in any sense in all input images. There is a neces-
sity for some pure information to exist for all parts of the image in the various
input images, so that the fusion algorithm can produce a high quality output.
In this work, we propose to reformulate and extend Jones and Vorontsov’s [6]
spatial-domain approach to fuse the non-degraded common parts of the sensor
images. A novel approach is used to identify the areas of common degradation
in all input sensor images. A double-regularised image restoration approach
using robust functionals is applied on the estimated common degraded area
to enhance the common degraded area in the “fused” image. The overall fu-
sion result is superior to any traditional fusion approach since the proposed
approach goes beyond the concept of transferring useful information to a thor-
ough fusion-enhancement approach.

2 Robust Error Estimation Theory

Let the image y(r) be a recovered version from a degraded observed image
x(r), where r = (i, j) are pixel coordinates (i, j). To estimate the recovered
image y(r), one can minimise an error functional E(y) that expresses the
difference between the original image and the estimated one, in terms of y.
The error functional can be defined by:

E(y) =
∫

Ω

ρ (r, y(r), |∇y(r)|) dr (3)
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where Ω is the image support, ∇y(r) is the image gradient. The function ρ(·)
is termed the error norm and is defined according to the application, i.e. the
type of degradation or the desired task. For example, a least square error norm
can be appropriate to remove additive Gaussian noise from a degraded image.
The extremum of the previous equation can be estimated, using the Euler -
Lagrange equation. The Euler-Lagrange equation is an equation satisfied by a
function f of a parameter t which extremises the functional:

E(f) =
∫

F (t, f(t), f ′(t)) dt (4)

where F is a given function with continuous first partial derivatives. The Euler-
Lagrange equation is described by the following ordinary differential equation,
i.e. a relation that contains functions of only one independent variable, and
one or more of its derivatives with respect to that variable, the solution t of
which extremises the above functional [21].

∂

∂f(t)
F (t, f(t), f ′(t))− d

dt

∂

∂f ′(t)
F (t, f(t), f ′(t)) = 0 (5)

Applying the above rule to derive the extremum of (3), the following Euler-
Lagrange equation is derived:

∂ρ

∂y
−∇

( ∂ρ

∂∇y

)
= 0 (6)

Since ρ(·) is a function of |∇y| and not ∇y, we perform the substitution

∂∇y = ∂|∇y|/sgn(∇y) = |∇y|∂|∇y|/∇y (7)

where sgn(y) = y/|y|. Consequently, the Euler-Lagrange equation is given by:

∂ρ

∂y
−∇

( 1

|∇y|
∂ρ

∂|∇y|∇y(r)
)

= 0 (8)

To obtain a closed-form solution y(r) from (8) is not straightforward. Hence,
one can use numerical optimisation methods to estimate y. Gradient-descent
optimisation can be applied to estimate y(r) iteratively using the following
update rule:

y(r, t) ← y(r, t− 1)− η
∂y(r, t)

∂t
(9)
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where t is the time evolution parameter, η is the optimisation step size and

∂y(r, t)

∂t
= −∂ρ

∂y
+∇

( 1

|∇y|
∂ρ

∂|∇y|∇y(r, t)
)

(10)

Starting with the initial condition y(r, 0) = x(r), the iteration of (10) continues
until the minimisation criterion is satisfied, i.e. |∂y(r, t)/∂t| < ε, where ε is a
small constant (ε ∼ 0.0001). In practice, only a finite number of iterations are
performed to achieve visually satisfactory results [6]. The choice of the error
norm ρ(·) in the Lagrange-Euler equation is the next topic of discussion.

2.1 Isotropic diffusion

As mentioned previously, one candidate error norm ρ(·) is the least-squares
error norm. This norm is given by:

ρ(r, |∇y(r)|) =
1

2
|∇y(r)|2 (11)

The above error norm smooths Gaussian noise and depends only on the image
gradient ∇y(r), but not explicitly on the image y(r) itself. If the least-squares
error norm is substituted in the time evolution equation (10), we get the
following update:

∂y(r, t)

∂t
= ∇2y(r, t) (12)

which is the isotropic diffusion equation having the following analytic solu-
tion [2]:

y(r, t) = G(r, t) ∗ x(r) (13)

where ∗ denotes the convolution of a Gaussian function G(r, t) of standard
deviation t with x(r), the initial data. The solution specifies that the time
evolution in (12) is a convolution process performing Gaussian smoothing.
However, as the time evolution iteration progresses, the function y(r, t) be-
comes the product of the convolution of the input image with a Gaussian of
constantly increasing variance, which will finally produce a constant value.
In addition, it has been shown that isotropic diffusion may not only smooth
edges, but also causes drifts of the actual edges in the image edge, because
of the Gaussian filtering (smoothing) [2,13]. These are two disadvantages that
need to be seriously considered when using isotropic diffusion.
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2.2 Isotropic diffusion with edge enhancement

Image fusion aims at transferring salient features to the fused image. In this
work and in most fusion systems, saliency is interpreted as edge information
and therefore, image fusion aims at highlighting edges in the fused image. An
additional desired property can be to smooth out any possible Gaussian noise.
In order to achieve the above tasks using an error estimation framework, the
objective is to create an error norm that will enhance edges in an image and
simultaneously smooth possible noise. The following error norm, combining
isotropic smoothing with edge enhancement, was proposed in [6]:

ρ(r, y(r, t), |∇y(r, t)|) =
α

2
|∇y(r, t)|2 +

β

2
Jx(r)(y(r, t)− x(r))2 (14)

where α, β are constants that define the level of smoothing and edge en-
hancement respectively that is performed by the cost function, t is the time
evolution and Jx is commonly termed the anisotropic gain function, which
is a Gaussian smoothed edge map. One possible choice for implementing a
Gaussian smoothed edge map is the following :

Jx(r) = κ
∫
|∇x(q)|2G(r− q, σ)d2q (15)

where G(·) is a Gaussian function of zero-mean and standard deviation σ and
κ is a constant. Another choice can be a smoothed Laplacian edge map. The
anisotropic gain function has significantly higher values around edges or where
sharp features are dominant compared to blurred or smooth regions.

Substituting the above error norm into the gradient descent update of (10)
yields the following time evolution equation with anisotropic gain:

∂y(r, t)

∂t
= α∇2y(r, t)− βJx(r)(y(r, t)− x(r)) (16)

The above equation essentially smoothes noise while enhancing edges. The
parameters α and β control the effects of each term. The parameter α controls
the amount of noise smoothing in the image and β controls the anisotropic
gain, i.e. the preservation and enhancement of the edges. For noiseless images,
an evident choice is α = 0 and β = 1. In this case, for short time intervals, the
anisotropic gain function Jx induces significant changes dominantly around
regions of sharp contrast, resulting in edge enhancement.

There is always a possibility that in some regions of interest, the anisotropic
gain function is not high enough and therefore the above update rule can
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potentially degrade the quality of information that is already integrated into
the input image and consequently in the enhanced image. To prevent such
erasing effects, however small might be, John and Vorontsov [6] introduced
the following modified anisotropic gain function:

J(r, t) = Jx(r)− Jy(r, t) (17)

The general update formula to estimate f(r) becomes then:

∂y(r, t)

∂t
= α∇2y(r, t)−Θ(J(r, t))J(r, t)(y(r, t)− x(r)) (18)

where

Θ(J) =





1 , J ≥ 0

0 , J < 0
(19)

The new term Θ(J)J allows only high quality information, interpreted in
terms of edge presence, to transfer to the enhanced image. In the opposite case
that Jx(r) < Jy(r), the information in the enhanced image has better edge
representation than the original degraded image for several r and therefore, no
processing is necessary. In the case of a single input image, the above concept
might not seem practical. In the following section, the proposed concept is
employed in a multiframe input scenario, where the aim is to transfer only high
quality information to the enhanced image y(r). In this case, this positive edge
injection mechanism is absolutely vital to ensure information enhancement.

3 Fusion with Error Estimation theory

In this section, the authors propose a novel spatial-domain fusion algorithm,
based on the basic formulation of John and Vorontsov. In [6], a sequential
approach to image fusion based on Error Estimation theory was proposed.
Assuming that we have a number of T input frames xn(r) to be fused, one can
easily perform selective image fusion, by iterating the update rule (18) for the
estimation of y(r) using each of input images xn consecutively for a number of
K iterations. In a succession of intervals of K iterations, the synthetic frame
finally integrates high-quality edge areas from the entire set of input frames.

The possibility of data fusion occurring in regions where the anisotropic gain
function is not high enough, can potentially degrade quality information al-
ready integrated into the synthetic frame. To prevent such erasing effects, as
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mentioned in the previous section, a differential anisotropic gain function can
be introduced to transfer only high quality information to the fused image
y(r). The proposed approach by John and Vorontsov can be applied mainly
in the case of a video stream, where the quality of the observed image is en-
hanced, based on previous and forthcoming frames. However, this framework
is not efficient in the case of fusion applications, where the input frames are
simultaneously available for processing and fusion. In this case, a reformula-
tion of the above procedure is needed and is described in full in the following
section.

3.1 A novel fusion formulation based on error estimation theory

Assume there are T images xn(r) that capture the same observed scene. The
input images are assumed to be registered and each image contains exactly
the same scene. This assumption is valid, since in most real-life applications,
the input sensors are arranged in a close-distance array and similar zoom level
in order to minimise the need for registration or the viewpoint transformation
matrix is known. Different parts of the images are blurred using different
amounts and types of blur. The objective is to combine the useful parts of
input information to form a composite (“fused”) image.

The described setup can model a possible out-of-focus scenario of image cap-
ture. We have all witnessed the case, where we want to take a photograph of
an object in a scene and the camera focuses on a background point/object by
mistake. As a result, the foreground object appears blurred in the final image,
whereas the background texture is properly captured. In a second attempt to
photograph the object correctly, the foreground object appears properly and
the background appears blurred. Ideally, we would like to combine the two
images into a new one, where everything would appear in full detail. This is
an example of a real-life application for the fusion of out-of-focus images. The
same scenario can also appear in military surveillance and general surveil-
lance applications, where one would like to enhance the surveillance output,
by combining multiple camera inputs at different focal length.

The fused image y(r, t) can be constructed as a linear combination of the T
input registered images xn(r). The fusion problem is usually solved by finding
the weights wn(r, t) that transfer all the useful information from the input
images xn to the fused image y [10,9].

y(r, t) = w1(r, t)x1(r) + . . . + wT (r, t)xT (r) (20)

where wn(r, t) denotes the nth weight of the image xn at position r. To esti-
mate these weights, we can perform error minimisation using the previously
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mentioned approach of Isotropic Diffusion with edge enhancement. The prob-
lem is now to estimate the weights wn simultaneously, so as to achieve edge
preservation. This cannot be accomplished directly by the scheme proposed
by Jones and Vorontsov.

In other words, we need to estimate the derivative ∂wn/∂t simultaneously, for
all n = 1, . . . , T . We can associate ∂wn/∂t with ∂y/∂t that has already been
derived before.

∂y

∂t
=

∂y

∂wn

∂wn

∂t
= xn

∂wn

∂t
(21)

Therefore, we can use the previous update rule to estimate the contribution
of each image to the fused one:

∂wn(r, t)

∂t
=

1

xn(r)

∂y(r, t)

∂t
(22)

The fusion weight wn(r, t) of each input image can then be estimated using
sequential minimisation with the following update rule ∀n = 1, . . . , T :

wn(r, t + 1) ← wn(r, t)− η
∂wn(r, t)

∂t
(23)

where

∂wn(r, t)

∂t
= − 1

xn(r)
Θ(Jn(r, t))Jn(r, t)(y(r, t)− xn(r)) (24)

and Jn(r, t) = Jxn(r) − Jy(r, t). To avoid possible numerical instabilities, for
those r that xn(r) = 0, a small constant is added to these elements so as to
become nonzero. All weights are initialised to wn(r, t) = 1/T , which represents
the “mean” fusion rule. As this scheme progresses over time, the weights are
adapting and tend to emphasise more the useful details that exist in each
image and suppress the information that is not very accurate. In addition, all
the fusion weights are estimated simultaneously using this scheme. Therefore,
after a couple of iterations the majority of the useful information is extracted
from the input images and transferred to the composite image.

3.2 Fusion experiments of out-of-focus and multimodal image sets using error
estimation theory

In this section, we perform several fusion experiments of both out-of-focus and
multimodal images to evaluate the performance of the proposed approach.
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Petrovic Piella

TopoICA 0.6151 0.9130

Fusion with EE 0.6469 0.9167
Table 1
Performance evaluation of the Diffusion approach and the TopoICA-based fusion
approach using Petrovic [18] and Piella’s [15] metrics.

Most test images were taken from the Image Fusion server [3]. The numerical
evaluation in most experiments was performed using the indexes proposed by
Piella [15] and Petrovic [18].

In the first experiment, the system is tested with an out-of-focus example, the
“Disk” dataset. The ICA-based fusion algorithm, proposed in [10], was em-
ployed as a benchmark to the new proposed algorithm. We used 40 TopoICA
8×8 bases, trained from 10000 patches that were randomly selected from nat-
ural images. Then, the “Weighted Combination” rule was selected to perform
fusion of the input images. On the other hand, for the spatial-domain fusion
scheme, the parameters were set to α = 0 (no visible noise), β = 0.8 and the
learning parameter was set to η = 0.08. The Gaussian smoothed edge map of
(15) was calculated by extracting an edge map using the Sobel mask, which
was subsequently smoothed by a Gaussian 5× 5 kernel of standard deviation
σ = 1. The fusion results of the two methods are depicted in Figure 1. We
notice that the proposed approach produces sharper edges compared to the
ICA-Based method. The difference is more visible around the edges of the
tilted books in the bookcase and the eye on the cover of the book that is
in front of the bookcase. In Figure 2, the convergence rate of the estimation
of one of the fusion weights is shown. The proposed algorithm demonstrates
almost linear convergence, which is expected for a gradient algorithm.

In Table 1, the performance of the proposed method is compared with the
ICA-based method, in terms of the Petrovic and Piella method. The metrics
give slightly higher performance to the proposed methodology. However, we
can observe an improvement in the visual representation of edges using the
proposed method in the particular application of fusion of out-of-focus images.

The estimated fusion weights w1(r), w2(r) are depicted in Figure 3. It is clear
that the weights w1, w2 highlight the position of high-quality information in
the input images. The cost function that is optimised in this case aims at
highlighting edges in the “fused” image. This is essentially what is estimated
by the weight maps w1(r), w2(r). This information can be used to identify
common areas of inaccurate information in the input images. A restoration
algorithm could be applied to these areas and enhance the final information
that is conveyed to the “fused” image.

The next step is to apply the proposed algorithm to a multimodal scenario.
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(a) Input Image 1 (b) Input Image 2

(c) TopoICA Fusion (d) Proposed Scheme

(e) TopoICA Fusion (f) Proposed Scheme

Fig. 1. An out-of-focus fusion example using the “Disk” dataset available by the
Image Fusion server [3]. We compare the TopoICA-based fusion approach and the
proposed Diffusion scheme.

We will use an image pair from the “Dune” dataset of surveillance images from
TNO Human Factors, provided by L. Toet [16] in the ImageFusion Server [3].
We applied the TopoICA-based approach [10] using the “maxabs” fusion rule
and the proposed algorithm on the dataset, using the same settings as in the
previous example. In Figure 4, we plot the fused results of the two methods
and in Table 2, we plot their numerical evaluation using Petrovic and Piella’s
indexes.

According to the performance evaluation indexes, the ICA-based approach
performs considerably better than the proposed approach. The same trend
is also observed in the metrics. However, the proposed approach performs
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Fig. 2. Convergence of the estimated fusion weight w1 using the proposed fusion
algorithm in terms of ||∂w1/∂t||2.

(a) Estimated w1(r) (b) Estimated w2(r)

Fig. 3. The weights w1, w2 highlight the position of high quality information in the
input images.

Petrovic Piella

TopoICA 0.4921 0.7540

Fusion with EE 0.4842 0.6764
Table 2
Performance evaluation in the case of a multimodal example from the Toet database.
The TopoICA-based approach is compared with the proposed fusion approach.

differently to a common fusion approach. It aims at highlighting the edges of
the input images to the fused image, due to the edge enhancement term in
the cost function. This is can be observed directly in Figure 4(d). All edges
and texture areas are highly enhanced in the fused image together with the
outline of the important target, i.e. the hidden man in the middle of the
picture. Consequently, one should also consult the human operators of modern
fusion systems, apart from proposed fusion metrics [15,18], in order to evaluate
efficiently the performance of these algorithms. Perhaps the outlined fusion
result is more appealing to human operators and the human vision system in
general and therefore may be also be examined as a preferred solution.
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(a) Input Image 1 (b) Input Image 2

(c) TopoICA Fusion (d) Proposed Scheme

Fig. 4. Comparison of a multimodal fusion example using the TopoICA method and
the Diffusion approach. Even though the metrics demonstrate worse performance,
the diffusion approach highlights edges giving a sharper fused image.

4 Joint Image Fusion and Restoration

The basic Image Fusion concept assumes that there is some useful information
for all parts of the observed scene at least in one of the input sensors. However,
this assumption might not always be true. This means that there might be
parts of the observed scene where there is only degraded information available.
The current fusion algorithms will fuse all high quality information from the
input sensors and for the common degraded areas will form a blurry mixture
of the input images, as there is no high quality information available.

In the following section, the problem of identifying the areas of common de-
graded information in all input images is addressed. A mechanism is estab-
lished for identifying common degraded areas in an image. Once this part is
identified, an image restoration approach can be applied as a second step in
order to enhance these parts for the final composite “fused” image.

4.1 Identifying common degraded areas in the sensor images

The first task will be to identify the areas of degraded information in the input
sensor images. An identification approach, based on local image statistics, will

13



be pursued to trace the degraded areas.

The “fused” image will be employed, as it emerges from the fusion algorithm.
As mentioned earlier, the fusion algorithm will attempt to merge the areas
of high detail to the fused image, whereas for the areas of degraded informa-
tion, i.e. areas of weak edges or texture in all input images, will not impose
any preference to any of the input images and therefore the estimated fusion
weights will remain approximately equal to the initial weights wi = 1/T . Con-
sequently, the areas of out-of-focus distortion will be described by areas of low
edge information in the fused image. Equivalently, some areas of very low tex-
ture or constant background also need to be excluded, since there is no benefit
in restoring them. These areas can be traced, by evaluating the local standard
deviation of an edge information metric in small local neighbourhoods around
each pixel. The following algorithm for extracting common degraded areas is
described in the following steps:

(1) Extract an edge map of the fused image f , using the Laplacian kernel,
i.e. ∇2f(r, t).

(2) Find the local standard deviations VL(r, t) for each pixel of the Laplacian
edge map ∇2f(r, t), using 5× 5 local neighbourhoods.

(3) Reduce the dynamic range by calculating ln(VL(r, t)).
(4) Estimate VsL(r, t), by smoothing ln(VL(r, t)) using a 15×15 median filter.
(5) Create the common degraded area map A(r) by thresholding VsL(r, t).

The mask A(r) is set to 1, for those r that q minr(VsL(r, t)) < VsL(r, t) <
pmeanr(VsL(r, t)), otherwise is set to zero.

Essentially, we create an edge map, as described by the Laplacian kernel. The
Laplacian kernel was chosen because it was already estimated during the fu-
sion stage of the framework. The next step is to find the local activity in
5 × 5 neighbourhoods around each pixel in the edge map. A metric of local
activity is given by the local standard deviation. A pixel of high local activity
should be part of an “interesting” detail in the image (edge, strong texture
etc), whereas a point of low local activity might be a constant background
or weak texture pixel. We can devise a heuristic thresholding scheme in order
to identify these areas of weak local activity, i.e. possible degraded areas in
all input images for fusion. The next step is to reduce the dynamic range of
these measurements, using a logarithmic nonlinear mapping, such as ln(·). To
smooth out isolated pixels and connect similar areas, we perform median fil-
tering of the log-variance map. Consequently, the common degraded area map
is created by thresholding the values of the log-variance map with a heuristic
threshold set to q minr(VsL(r, t)) < VsL(r, t) < pmeanr(VsL(r, t)), where p, q
are constants. The aim is to avoid high quality edge/texture and constant
background information. The level of detail along with the level of constant
background differ for different images. In order to identify the common de-
graded area with accuracy, the parameters p, q need to be defined manually for
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) VsL(r) (e) Degraded area map

Fig. 5. If there exist blurry parts in all input images, common Image Fusion al-
gorithms cannot enhance these parts, but will simply transfer the degraded in-
formation to the fused image. However, this area of degraded information is still
identifiable

each image. The parameter q defines the level of background information that
needs to be removed. In a highly active image, q is usually set to 1, however,
other values have to be considered for images with large constant background
areas. The parameter p is the upper bound threshold to discriminate between
strong edges and weak edges, possibly belonging to a common degraded area.
Setting p around the mean edge activity, we can find a proper threshold for
the proposed system. Values that were found to work well in experiments
were q ∈ [0.98, 1] and p ∈ [1, 1.1]. Some examples of common degraded area
identification using the above technique are shown in Figures 5, 6.

4.2 Image restoration

A number of different approaches for tackling the image restoration prob-
lem have been proposed in the literature, based on various principles. For
an overview of image restoration methods, one can always possibly refer to
Kundur and Hatzinakos [8] and Andrews and Hunt [1]. In this study, the
double-weighted regularised image restoration approach in the spatial domain
is pursued, that was initially proposed by You and Kaveh [19], with addi-
tional robust functionals to improve the performance in the case of outliers.
The restoration problem is described by the following model:

y(r) = h(r) ∗ f(r) + d(r) (25)
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) VsL(r) (e) Degraded area map

Fig. 6. Another example of degraded area identification in “fused” images.

where ∗ denotes 2D convolution, h(r) the degradation kernel, f(r) the esti-
mated image and d(r) possible additive noise.

4.2.1 Double weighted regularised image restoration

Conventional double weighted regularization for blind image restoration [1]
estimates the original image by minimizing the cost function Q(h(r), f(r)) of
the following quadratic form:

Q(h(r), f(r)) =
1

2
||A1(r) (y(r)− h(r) ∗ f(r)) ||2

︸ ︷︷ ︸
residual

+
λ

2
||A2(r) (Cf ∗ f(r)) ||2

︸ ︷︷ ︸
image regularisation

+
γ

2
||A3(r) (Ch ∗ h(r)) ||2

︸ ︷︷ ︸
blur regularisation

(26)

where || · || represents the L2-norm. The above cost function has three dis-
tinct terms. The residual term, the first term on the right-hand side of (26),
represents the accuracy of the restoration process. This term is similar to a
second-order error-norm (least-squares estimation), as described in a previous
paragraph. The second term, called the regularising term, imposes a smooth-
ness constraint on the recovered image and the third term acts similarly to the
estimated blur. Additional constraints must be imposed, including the non-
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negativity and finite-support constraint for both the blurring kernel and the
image. Besides, the blurring kernel must always preserve the energy, i.e. all the
coefficients should sum to 1. The regularization operators Cf and Ch are high-
pass Laplacian operators applied on the image and the PSF respectively. The
functions A1, A2 and A3 represent spatial weights for each optimisation term.
The parameters λ and γ control the trade-off between the residual term and
the corresponding regularising terms for the image and the blurring kernel.

One can derive the same cost function through a Bayesian framework of es-
timating f(r) and h(r). To illustrate this connection, we assume that the
blurring kernel h(r) is known and the aim is to recover f(r). A Maximum-A-
Posteriori (MAP) estimate of f(r) is given by performing maxf log p(y, f |r) =
maxf log p(y|f, r)p(f |r), where r denotes the observed samples. Assuming Gaus-
sian noise for d(r), we have that p(y|f, r) ∝ exp (−0.5a||y(r)− h(r) ∗ f(r)||2).
Assuming smoothness for the image profile, one can employ the image prior
p(f |r) ∝ exp (−0.5b||Cf ∗ f(r)||2), which has been widely used by the engi-
neering community [11] in setting constraints on first or second differences,
i.e. restricting the rate of changes in an image (a, b are constants that can
determine the shape of the prior). Using the proposed models, one can derive
a MAP estimate by optimising a function that is the same as the first two
terms of (26), illustrating the connection between the two approaches.

To estimate f(r) and h(r), the above cost function needs to be minimised.
Since each term of the cost function is quadratic, it can simply be optimized by
applying alternating Gradient Descent optimisation [1]. This implies that the
estimates for the image and the PSF can be estimated alternatively, using the
gradients of the cost function with respect to f(r) and h(r). More specifically,
the double iterative scheme can be expressed, as follows:

• At each iteration, update:

f(t + 1) = f(t)− η1
∂Q(h(t), f(t))

∂f(t)
(27)

h(t + 1) = h(t)− η2
∂Q(h(t), f(t + 1))

∂h(t)
(28)

• Stop, if f and h converge.

The terms η1 and η2 are the step size parameters that control the conver-
gence rates for the image and Point Spread Function (PSF) (blurring kernel)
respectively. After setting the initial estimate of the image as the degraded
image, and the PSF as a random mask, the cost function is differentiated with
respect to the image first, while the PSF is kept constant, and vice versa. The
required derivatives of the cost function are presented below:
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∂Q(h, f)

∂f
=−A1(r)h(−r) ∗ (y(r)− h(r) ∗ f(r))

+ λ
(
A2(r)C

T
f ∗ (Cf ∗ f(r))

)
(29)

∂Q(h, f)

∂h
=−A1(r)f(−r) ∗ (y(r)− h(r) ∗ f(r))

+ γ
(
A3(r)C

T
h ∗ (Ch ∗ h(r))

)
(30)

where the superscript T denotes the transpose operation. Substituting (29)
and (30) into (27) and (28) yields the final form of the algorithm (27) and
(28), where the corresponding functions are iterated until convergence.

4.2.2 Robust functionals to the restoration cost function

There exist several criticisms regarding the conventional double regularisa-
tion restoration approach. One is the non-robustness of the least squares es-
timators employed in the traditional residual term, once the assumption of
Gaussian noise does not hold [20]. Moreover, the quadratic regularising term
penalises sharp gray-level transitions, due to the linearity of the derivative of
the quadratic function. This implies that sudden changes in the image are fil-
tered, and thus, the image edges are blurred. To alleviate this problem, we can
introduce robust functionals in the cost function, in order to rectify some of
the problems of this estimator. Therefore, the original cost function becomes:

Q(h(r), f(r)) =
1

2
||A1(r)ρn (y(r)− h(r) ∗ f(r)) ||2

+
λ

2
||A2(r)ρf (Cf ∗ f(r)) ||2

+
γ

2
||A3(r)ρd (Ch ∗ h(r)) ||2 (31)

Three distinct robust kernels ρn(·), ρf (·) and ρd(·) are introduced in the new
cost function and are referred to as the robust residual and regularizing terms
respectively. The partial derivatives of the cost function take the following
form:

∂Q(h, f)

∂f
=−A1(r)h(−r) ∗ ρ′n (y(r)− h(r) ∗ f(r))

+ λ
(
A2(r)C

T
f ∗ ρ′f (Cf ∗ f(r))

)
(32)
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∂Q(h, f)

∂h
=−A1(r)f(−r) ∗ ρ′n (y(r)− h(r) ∗ f(r))

+ γ
(
A3(r)C

T
h ∗ ρ′d (Ch ∗ h(r))

)
(33)

Robust estimation is usually presented in terms of the influence function
l(r) = ∂ρ/∂r. The influence function characterises the bias of a particular
measurement on the solution. Traditional least squares kernels fail to elimi-
nate the effect of outliers, with linearly increasing and non-bounded influence
functions. On the other hand, they also tend to over-smooth the image’s de-
tails, since such edge discontinuities lead to large values of smoothness error.
Thus, two different kernel types are investigated, in order to increase the ro-
bustness and reject outliers in the context of the blind estimation.

To suppress the effect of extreme noisy samples (“outliers”) that might be
present in the observations, the derivative of an ideal robust residual term
should increase less rapidly than a quadratic term in the case of outliers. One
candidate function can be the following:

ρ′n(x) =
1

1 + (x
θ
)2υ

(34)

Obviously, the specific function associated with the residual term assists in
suppressing the effect of large noise values in the estimation process, by setting
the corresponding influence function to small values. Optimal values for the θ
and υ parameters have been investigated in [4]. These parameters determine
the “shape” of the influence function and as a consequence the filtering of
outliers.

In order to find a trade-off between noise elimination and preservation of
high-frequency details, the influence functional for the image regularising term
must approximate the quadratic structure at small to moderate values and
alternatively deviate from the quadratic structure at high values, so that the
sharp changes will not be greatly penalised. One possible formulation of the
image regularising term is expressed by the absolute entropy function shown
below, which reduces the relative penalty ratio between large and small signal
deviations, compared with the quadratic function [20]. Hence, the absolute
entropy function produces sharper boundaries than the quadratic one, and
therefore can be employed for blind restoration.

ρf (x) = (|x|+ e−1)ln(|x|+ e−1) (35)

ρ′f (x) =
1

2
sgn(x)

(
ln(|x|+ e−1) + 1

)
(36)

For simplicity, the robust functional for the stabilising term of the Point Spread
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Function (PSF) is kept the same as the image regularising term (ρ′d(x) =
ρ′f (x)). The actual PSF size can still be estimated at a satisfactory level. The
PSF support is initially set to a large enough value. The boundaries of the
assumed PSF support are trimmed at each iteration in a fashion which is
described later, until it reduces to a PSF support that approximates the true
support. [19].

4.3 Combining image fusion and restoration

In this section, we propose an algorithm that can combine all the previous
methodologies and essentially perform fusion of all the parts that contain
valid information in at least one of the input images and restoration of those
image parts that are found to be degraded in all input images.

The proposed methodology consists of splitting the procedure in several indi-
vidual parts:

(1) The first step is to use the proposed fusion update algorithm of section
3.1 to estimate the fused image y(r). In this step, all useful information
from the input images has been transferred to the fused image and the
next step is to identify and restore the areas where only low quality
information is available. In other words, this step ensures that all high
quality information from the input images has been transferred to the
fused image. The result of this step is the fused image y(r).

(2) The second step is to estimate the common degraded area, using the pre-
vious methodology based on the Laplacian edge map of the fused image
y(r). More specifically, this step aims at identifying possible corrupted
areas in all input images that need enhancement in order to highlight
more image details that were not previously available. This will produce
the common degraded area mask A(r).

(3) The third step is to estimate the blur h(r, t) and the enhanced image
f(r, t), using the estimated mask of the Common Degraded area as A(r)
and the produced fused image y(r). This step is essentially enhancing
only the common degraded area and not the parts of the image that
have been identified to contain high quality information. The restoration
is performed as described in the previous section, however, the updates
for f(r, t) and h(r, t) are influenced only by the common degraded area.
More specifically, the update for the enhanced image of (27) becomes

f(r, t + 1) = f(r, t)− η1A(r)
∂Q(h(r, t), f(r, t))

∂f(r, t)
(37)

In a similar manner the update for the Point Spread Function (PSF)
needs to be influenced only by the common degraded area, i.e. in (33)
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f(r) is always substituted by A(r)f(r).

4.4 Examples of joint image fusion and restoration

In this section, three synthetic examples are constructed to test the perfor-
mance of the joint fusion and restoration approach. The proposed joint ap-
proach is compared to the performance of the Error-Estimation based fusion
and the previously proposed ICA-based Image fusion approach. Three natural
images are employed and two blurred sets were created from each of these
images. These image sets are created so that: i) a different type/amount of
blur is used in the individual images, ii) there is an area that is blurred in
both input images, iii) there is an area that is not blurred in any of the input
images. We have to note that in this case, the ground truth image needs to
be available, to evaluate these experiments efficiently. The enhanced images
will be compared with the ground truth image, in terms of Peak Signal-to-
Noise Ratio (PSNR) and Image Quality Index Q0, as proposed by Wang and
Bovik [17]. In these experiments, the fusion indexes proposed by Petrovic and
Xydeas [18] and Piella [15], cannot be used since they measure the amount
of information that has been transferred from the input images to the fused
image. Since the proposed fusion-restoration approach aims at enhancing the
areas that have low quality information in the input images, it makes no sense
to use any evaluation approach that employs the input images as a comparison
standard. The images used in this experimental section can be downloaded 1

or requested by email from the authors.

There were several parameters that were manually set in the proposed fusion-
restoration approach. For the Fusion part, we set α = 0 (noise free examples
1-2) or α = 0.08 (noisy example 3), β = 0.8, the learning parameter was set
to η = 0.08. The Gaussian smoothed edge map of (15) was again calculated
by extracting an edge map using the Sobel mask, which was subsequently
smoothed by a Gaussian 5 × 5 kernel of standard deviation σ = 1. For the
common degraded area identification step, a separate set of values for p, q will
be given for each experiment. For the restoration step, we followed the basic
guidelines proposed by You and Kaveh [19]. Hence, the regularisation matrices
Cf , Ch were set, as follows:

Cf =




0 −0.25 0

−0.25 1 −0.25

0 −0.25 0




, Ch =




2 −1

−1 0


 (38)

1 http://www.commsp.ee.ic.ac.uk/∼nikolao/Fusion Restoration.zip
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Some parameters were fixed to λ = 0.1, γ = 10, η1 = 0.25, η2 = 0.00001. The
functions A1(r) and A3(r) were fixed to 1, whereas A2(r) was adaptively esti-
mated for each iteration step, to emphasize regularisation on low-detail areas
according to local variance (as described in [19]). For the robust functionals,
we set v = 2 and θ ∈ [1.5, 3] was set accordingly for each case. The estimate
kernel h(r) was always initialised to 1/L2, where L×L is its size. All elements
of the kernel were forced to be positive along the adaptation and sum to 1,
so that the kernel does not perform any energy change. This is achieved by
performing the mapping h(r) ← |h(r)|/ ∑

r |h(r)|. The size L was usually set
in advance, according to the experiment. If we need to estimate the size of the
kernel automatically, we can assume initially a “large” size of kernel L. There
is a mechanism to reduce the effective size of the kernel along the adaptation.
The variance (energy) of a smaller (L−1)× (L−1) kernel is always compared
to the variance (energy) of the L×L kernel. In the case that the smaller kernel
captures more than 85% of the total kernel variance, its size becomes the new
estimated kernel size in the next step of the adaptation. For the ICA-based
method, the settings described in Section 3.2 were used.

In Figure 7, the first example with the “leaves” dataset is depicted. The two
artificially created blurred input images are depicted in Figures 7 (a), (b). In
Figure 7(a), Gaussian blur is applied on the upper left part of the image and in
Figure 7(b) motion blur is applied on the bottom right part of the image. The
amount of blur is randomly chosen. It is obvious that the two input images
contain several areas of common degradation in the image centre and several
areas that were not degraded at the bottom left and the top right of the im-
age. In Figure 7(c), the result of the fusion approach using Isotropic Diffusion
is depicted. As expected, the fusion algorithm manages to transfer all high
quality information to the fused image, however, one area in the centre of the
image still remains blurred since there is no high quality reference in any of
the input images. Therefore, the output remains blurred in the fused image
in the common degraded area. The common degraded area can be identified
by the algorithm as depicted in the previously illustrated Figure 5 (e), using
p = 1.07 and q = 1. In Figure 7 (d), we can see the final enhanced image, after
the restoration process has been applied on the common degraded area for
L = 5. An overall enhancement to the whole image quality can be witnessed
with a significant edge enhancement compared to the original fused image.
In Figure 7 (e), (f), a focus on the common degraded area in the fused and
the fused/restored image can verify the above conclusions. In Figure 8, we
plot the convergence of the restoration part of the common degraded area, in
terms of the update for the restored image f(r) and the update for the esti-
mated blurring kernel h(r). In addition, the estimated kernel is also depicted
in Figure 8. The estimated kernel follows our intuition of a motion blur kernel
around 20o, blurred by a Gaussian kernel. In Table 3, the performance of the
TopoICA-based fusion scheme, the fusion scheme based on Error Estimation
and the fusion+restoration scheme are evaluated in terms of Peak Signal-to-
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration
Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration (Af-
fected Area)

Fig. 7. Overall fusion improvement using the proposed fusion approach enhanced
with restoration. Experiments with the “leaves” dataset.

Noise Ratio (PSNR) and the Image Quality Index Q0, proposed by Wang
and Bovik [17]. The visible edge enhancement in the common degraded area,
provided by the extra restoration step is also confirmed by the two metrics.

Similar conclusions follow the next example with the “pebbles” dataset in
Figure 9. The two artificially created blurred input images are depicted in
Figures 9 (a), (b). In Figure 9(a), Gaussian blur is applied to the upper left part
of the image and in Figure 9(b) Gaussian blur of different variance (randomly
chosen) is applied to the bottom right part of the image. Again, the two
input images contain an area of common degradation in the image centre and
several areas that were not degraded in the bottom left and the top right
of the image. In Figure 9(c), the result of the fusion approach using Isotropic
Diffusion is depicted. As expected, the fusion algorithm manages to transfer all
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Fig. 8. Convergence of the restoration part and the final estimated h(r) for the
common degraded area in the “leaves” example. The directivity of the estimated
mask indicates the estimation of motion blur.

high quality information to the fusion image except for the area in the centre of
the image that still remains blurred. This common degraded area was properly
identified by the proposed algorithm, using p = 1.05 and q = 1, as depicted
in Figure 6 (e). In Figure 9 (d), the final enhanced image is depicted after the
restoration process that has been applied on the common degraded area for
L = 3. On the whole, the image quality has been enhanced compared to the
original fused image. In Figure 9 (e), (f), a focus on the common degraded area
in the fused and the fused/restored image can verify the above conclusions.
The visible achieved enhancement of the new method is also supported by the
PSNR and Q0 measurements that are described in Table 3. The two methods
based on error estimation also outperformed the ICA-based transform-domain
method, as depicted in Table 3.

The third experiment demonstrates the capability of the proposed system to
handle noisy cases as well. Two images were artificially created by blurring the
upper left and down right respectively of an airplane image (British Airways -
BA747) with randomly chosen Gaussian blur kernels. Additive white Gaussian
noise of standard deviation 0.03 (input signals normalised to [0, 1]) was also
added to both images, yielding an average SNR=27dB. As previously, there
exists an area in the middle of the image, where the imposed degradations
overlap, i.e. there is no ground truth information in any of the input images.
The denoising term of the fusion step was activated by selecting α = 0.08.
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Fused Fused Fused +

TopoICA Error Est. Restored

PSNR Q0 PSNR Q0 PSNR Q0

(dB) (dB) (dB)

Leaves 17.65 0.9727 25.740 0.9853 25.77 0.9864

Pebbles 21.27 0.9697 25.35 0.9713 25.99 0.9755

noisy 17.35 0.9492 24.18 0.9757 24.41 0.9770

BA747

Porto 21.33 0.9860 22.94 0.9897 23.37 0.9907

Noisy 19.71 0.9768 20.55 0.9818 20.62 0.9821

Porto
Table 3
Performance evaluation of the fused with Isotropic diffusion and the combined fusion
- restoration approach in terms of PSNR (dB) and Q0.

In Figure 10(c), the result of the fusion approach using Isotropic Diffusion is
depicted. As previously, the algorithm managed to perform fusion of the areas
where valid information is available in the input images, and also suppress
the additive Gaussian noise. The common degraded area was identified using
p = 1 and q = 0.99. These images contain large areas of constant background,
whereas the two previous images contained a lot of textural detail. In this
case, it is essential to avoid these large areas of constant background to be
estimated as part of the common degraded area, and therefore, we choose
q = 0.99 instead of 1 as previously. The restoration step was applied with
L = 3, offering an overall enhancement in the visual quality and the actual
benchmarks, compared to the error-estimation fusion approach and the ICA-
based fusion approach. The calculated metrics suggest that there is limited
significant improvement, because the enhancement in the relatively small com-
mon degraded area is averaged with the rest of the image. However, one can
observe that there is obvious visual enhancement in the final enhanced image,
especially in the common degraded area.

Another final example demonstrates the capability of the proposed system to
handle noisy cases and more complicated scenes. Two images were artificially
created by blurring the foreground object (statue in Porto-Portugal) along
with some adjacent area and another area surrounding the statue with ran-
domly chosen Gaussian blur kernels. A noiseless and a noisy example were
created with additive white Gaussian noise of standard deviation 0.04 and
0.05 respectively(input signals were again normalised to [0, 1]). As previously,
there exists an area surrounding the statue, where the imposed degradations
overlap. In Figure 11, the noiseless example is depicted along with the results
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration
Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration (Af-
fected Area)

Fig. 9. Overall fusion improvement using the proposed fusion approach enhanced
with restoration. Experiments with the “pebbles” dataset.

of the fusion with error estimation approach, the combined fusion-restoration
approach and the Topographic ICA with the “max-abs” rule. The common
degraded area was identified using p = 0.92 and q = 1. In the restoration step,
the kernel size was chosen to be L = 5. In Figure 12, the corresponding results
in the case of additive noise are depicted. The denoising term of the fusion
step was activated by selecting α = 0.08. As previously, the algorithm man-
aged to perform fusion of the areas where valid information is available in the
input images, and also suppress the additive Gaussian noise. The calculated
performance indexes in Table 3 verify again the obvious visual enhancement
in the final enhanced image, especially in the common degraded area.
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration (Affected
Area)

Fig. 10. Overall fusion improvement using the proposed fusion approach enhanced
with restoration. Experiments with the “British Airways (BA747)” dataset.

5 Conclusions

The problem of image fusion, i.e. the problem of incorporating useful infor-
mation from various modality input sensors into a composite image that en-
hances the visual comprehension and surveillance of the observed scene, was
addressed in this study. More specifically, a spatial-domain method was pro-
posed to perform fusion of both multi-focus and multi-modal input image sets.
This method is based on error estimation methods that were introduced in the
past for image enhancement and restoration and are solely performed in the
spatial domain. In the case of multi-focus image sets scenarios the proposed
spatial-domain framework seems to match the performance of several current
popular transform-domain methods, as for example, the wavelet transform
and the trained ICA technique. The proposed methodology exhibits also in-
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(a) Input Image 1 (b) Input Image 2

(c) Ground Truth (d) TopoICA fusion

(e) Fusion Scheme (f) Fusion + Restoration Scheme

Fig. 11. Overall fusion improvement using the proposed fusion approach enhanced
with restoration and comparison with the TopoICA fusion scheme. Experiments
with the “Porto” dataset.
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(a) Input Image 1 (b) Input Image 2

(c) Ground Truth (d) TopoICA fusion

(e) Fusion Scheme (f) Fusion + Restoration Scheme

Fig. 12. Overall fusion improvement using the proposed fusion approach enhanced
with restoration and comparison with the TopoICA fusion scheme. Experiments
with the “noisy-Porto” dataset.
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teresting results in the case of multi-modal image sets, producing outputs with
distinctively outlined edges compared to transform-domain methods.

More specifically, a combined method of fusion and restoration was proposed
as the next step from current fusion systems. By definition, fusion systems
aim only at transferring the “interesting” information from the input sensor
images to the fused image, assuming there is proper reference image signal
for all parts of the image in at least one of the input sensor images. In the
case that there exist common degraded areas in all input images, the fusion
algorithms cannot improve the information provided there, but simply convey
this degraded information to the output. In this study, we proposed a mech-
anism of identifying these common degraded areas in the fused image and
use a regularised restoration approach to enhance the content in this area.
In the particular case of multi-focus images, the proposed approach managed
to remove the blur and enhance the edges in the common degraded area,
outperforming current transform-based fusion systems.

There are several potential applications of the proposed system. Military tar-
geting or surveillance units can benefit from a combined fusion and restoration
platform to improve their targeting and identification performance. Commer-
cial surveillance appliances can also benefit from a multi-camera, multi-focus
system that fuses all input information into a composite image with wide
and detailed focus. In addition, there are several other applications such as
increasing the resolution and quality of pictures taken by commercial digital
cameras.
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