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Abstract The problem of underdetermined audio source separation has been ex-
plored in the literature for many years. The instantaneous K-sensors, L-sources
mixing scenario (where K < L) has been tackled by many different approaches,
provided the sources remain quite distinct in the virtual positioning space spanned
by the sensors. In this case, the source separation problem can be solved as a direc-
tional clustering problem along the source position angles in the mixture. The use of
Laplacian Mixture Models in order to cluster and thus separate sparse sources in un-
derdetermined mixtures will be explained in detail in this chapter. The novel Gener-
alised Directional Laplacian Density will be derived in order to address the problem
of modelling multidimensional angular data. The developed scheme demonstrates
robust separation performance along with low processing time.

1 Introduction

Let a set of K sensors x(n) = [x1(n), . . . ,xK(n)]T observe a set of L sound sources
s(n) = [s1(n), . . . ,sL(n)]T . We will consider the case of instantaneous mixing, i.e.
each sensor captures a scaled version of each signal with no delay in transmission.
Moreover, the possible additive noise will be considered negligible. The above in-
stantaneous mixing model can be expressed in mathematical terms, as follows:

x(n) = As(n) (1)

where A represents the K × L mixing matrix and n the sample index. The blind
source separation problem provides an estimate of the source signals s(n) given
the sensor signals x(n). Usually, most separation approaches are semi-blind, which
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implies some knowledge of the source signal’s general statistical structure. A num-
ber of algorithms have been proposed to solve the overdetermined and complete
source separation problem (K ≥ L) with great success. The additional assumption
of statistical independence between the sources led to a group of source separation
algorithms, summarised under the general term Independent Component Analysis
(ICA). Starting from different interpretations of statistical independence, most algo-
rithms perform source separation with great accuracy. An overview of current ICA
and general blind source separation algorithms can be found in tutorial books on
ICA by Hyvärinen et al. [31], Cichocki-Amari [14] and Common et al. [15].

The underdetermined source separation problem (K ≤ L) is more challenging,
since in this case, the estimation of the mixing matrix A is not sufficient for the
estimation of the source signals s(n). This type of mixtures can be encountered in
musical audio mixes. A number of solo instrument recordings are combined linearly
in a stereo (K = 2) or a multichannel (K = 5 or K = 7) mixture , in order to form
a musical score recording. Assuming Gaussian distributions for the sources and a
known mixing matrix A, one could estimate the sources using the pseudo-inverse of
matrix A in a Maximum Likelihood sense [38]. As most speech and audio signals
tend to follow heavy-tailed “nonGaussian” distributions, the above linear operation
is not sufficient to estimate the sources. Therefore, the underdetermined source sep-
aration problem can be divided into two sub-problems: i) estimating the mixing
matrix A and ii) estimating the source signals s(n).

The existence of a unique source estimate for the underdetermined source sep-
aration problem, even in the case that A is known, is always under question, since
it is an ill-conditioned problem that has an infinite number of solutions. Any linear
system with less equations than unknown variables has an infinite number of solu-
tions (source estimates) [34]. However, according to Eriksson and Koivunen [24],
the linear generative model of (1) can have a unique and identifiable solution for
the underdetermined case, provided i) there are no Gaussian sources present in the
mixture, ii) the mixing matrix A is of full row rank, i.e. rank(A) = K and iii) none of
the source variables has a characteristic function featuring a component in the form
exp(Q(u)), where Q(u) is a second-order polynomial or higher. This implies that
this intractable problem may have a non-infinite number of solutions, under several
constraints and probabilistic criteria for the sources.

One probabilistic profile that satisfies the assumptions set above are sparse distri-
butions. Sparsity is mainly used to describe signals that are mostly close to a mean
value with the exception of several large values. Common models that can be used
for approximating sparsity are minimum L0 or L1 norms [38], Mixture of Gaus-
sians (MoG) [18, 46, 6] or factorable Laplacian distributions [28]. The separation
quality for the underdetermined case seems to improve with sparsity, as usually the
performance of source separation algorithms is closely connected with the “non-
Gaussianity” of the source signals [12]. However, in many practical applications,
the source data are not sparse. For example, some musical instrument signals tend
to be less sparse than speech signals in the time-domain. Speech contains a lot of
silent segments that guarantee sparsity (many zero samples), however, this might
not be the case with many instrument signals. Therefore, the assumed sparse mod-
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els are not accurate enough to describe the statistical properties of the signals in
the time-domain. Many natural signals can have sparser representations in other
transform domains, including the Fourier transform, the Wavelet transform and the
Modified Discrete Cosine Transform (MDCT). Since these transformations are lin-
ear, it is equivalent to estimate the generative model and the sources in the transform
domain. There are also alternative methods, where one can generate sparse represen-
tations for a specific dataset [17]. In the following analysis, the MDCT is employed
to provide a sparser representation of audio signals.

The underdetermined source separation problem has been covered extensively
in the literature. Lewicki [38] provided a complete Bayesian approach, assuming
Laplacian source priors to estimate both the mixing matrix and the sources in the
time domain. In [36], Lee et al. applied the previous algorithm to the source sep-
aration problem. Girolami [28] employed the factorable Laplacian distribution and
variational EM to estimate the mixing matrix and the sources. More complete sparse
source models, such as the Student-t distribution, were employed by Févotte et
al. [25]. The parameters of the model, the mixing matrix and the source signals
were estimated using either Markov Chains Monte Carlo (MCMC) simulations [25]
or a Variational Expectation Maximisation (EM) algorithm [13], featuring robust
performance, however, being computationally expensive. Clustering solutions were
introduced by Hyvärinen [30] and Zibulevsky et al. [62], also featuring good re-
sults and lower computational complexity. In this case, the mixing matrix and the
source signals are estimated by performing clustering in a sparser representation of
the signals in the transform domain. Bofill-Zibulevsky [11] presented a shortest path
algorithm based on L1 minimisation that could estimate the mixing matrix and the
sources. O’Grady and Pearlmutter [48] proposed an algorithm to perform separation
via Oriented Lines Separation (LOST) using clustering along lines (Hard-Lost) in
a similar manner to Hyvärinen [30]. In addition, they proposed a soft-thresholding
technique using an EM on a mixture of oriented lines to assign points to more than
one source [47]. Davies and Mitianoudis [18] employed two-state Gaussian Mix-
ture Models (GMM) to model the source densities in a sparse representation and
also the additive noise. An EM-type algorithm was used to estimate the parameters
of the two-state models and perform source coefficients clustering. The latter ap-
proach can be considered a joint Bayesian and clustering approach. A two-sensor
more-sources setup, modelling also some delays between the sensors, was addressed
using the DUET algorithm [61] that can separate the sources, by calculating ampli-
tude differences (AD) and phase differences (PD) between the sensors. An online
version of the algorithm was also proposed [51]. Recently, Arberet et al [5] pro-
posed a method to count and locate sources in underdetermined mixtures. Their
approach is based on the hypothesis that in localised neighbourhoods around some
time-frequency points (t, f ) (in the Short-Time Fourier Transform (STFT) represen-
tation) only one source essentially contributes to the mixture. Thus, they estimate
the most dominant source (the Estimated Steering Vector) and a local confidence
Measure which increases where a single component is only present. A clustering
approach merges the above information and estimates the mixing matrix A. In [58],
Vincent et al used local Gaussian Modelling of minimal constrained variance of the
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Fig. 1 Scatter plot of a two-sensor four-sources mixture in the time domain and in the sparse
MDCT domain. The almost Gaussian-like structure of the time-domain representation is enhanced
using the MDCT and the four sources can be clearly identified in the mixture.
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local time-frequency neighbours assuming knowledge of the mixing matrix A. The
candidate sources’ variances are estimated after minimising the Kullback-Leibler
(KL) divergence between the empirical and expected mixture covariances, assum-
ing that at most 3 sources contribute to each time-frequency neighbourhood and the
sources are derived using Wiener filtering.

The instantaneous mixtures model is rather incomplete in the case of sources
recorded in a real acoustic room environment. Assume the case of a sound source
and a microphone in a room. Previous research has shown that the signal captured
by the microphone can be well represented by a convolution of the source signal
with a high-order FIR filter, modelling the room acoustics between the source and
the sensor [42]. In the case of many sources and sensors, the signal at each sensor
can be modelled by the following equation:

x(n) =

 h11 . . . h1L
. . . . . . . . .
hK1 . . . hKL

∗ s(n) (2)

where ∗ denotes the linear convolution operator and hi j denotes an FIR filter mod-
elling the room impulse response between the i-th microphone and the j-th source.

Many methods have been proposed to solve the square (K = L) convolutional
ICA problem. Some of them suggested working directly in the time-domain [35,
57]. Working in the time domain has the disadvantage of being rather computa-
tional expensive, due to calculating many convolutions and the size of the unmixing
filters. Other approaches suggested moving to the STFT domain in order to trans-
form the convolution into multiplication and apply ICA methods for instantaneous
mixtures (i.e. the natural gradient) for each frequency bin [55]. However, there
is an inherent permutation problem in all FD-ICA methods, which does not exist
in time-domain methods. Mitianoudis and Davies [42] proposed a time-frequency
source model for a ML-ICA approach, incorporating a time-varying parameter, aim-
ing to impose frequency coupling between neighboring frequency bins. In addition,
a likelihood ratio test was proposed to address the permutation problem. In [43],
Mitianoudis and Davies described a mechanism to align permutations using sub-
space methods at each frequency bin. This idea was refined and was extended for
underdetermined convolutive mixtures by Sawada et al [52, 4, 53]. Winter et al [60]
estimate the mixing matrix based on hierarchical clustering, assuming sparsity of the
source signals. Sources are then estimated using L1-norm minimization of complex
numbers, using Laplacian source priors. Duong et al [23] model the contribution of
each source to all mixture channels in the time-frequency domain as a zero-mean
Gaussian random variable (r.v.) whose covariance encodes the spatial characteris-
tics of the source. They derive a family of iterative EM algorithms to estimate the
parameters of each model and propose suitable procedures adapted from previous
convolutive approaches to align the order of the estimated sources across all fre-
quency bins.

A more general source separation case can be introduced by using the following
non-linear mixing setup:
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x = f (s) (3)

where f (·) is a general non-linear function, which provides a mapping f : RL→RL.
The solution for this problem forms a new class of source separation algorithms,
termed non-linear BSS. The non-linear problem has a fundamental characteristic
that solutions always exist; however, they are highly non-unique [31]. The general
nonlinear BSS problem can be addressed using Kohonen Self-Organising maps [49].
In [33], Jutten and Karhunen state that one can reduce these great indeterminacies by
constraining the mapping f (·) to a certain set of transformations. Smooth non-linear
mappings, i.e. mappings that preserve independence of the components, such as a
rotation matrix, can be unmixed using multi-layer perceptron (MLP) networks. In
the Post non-linear (PNL) model, the nonlinear mapping has the following structure:

xi(n) = fi(
L

∑
j=1

ai js j(n)), i = 1, . . . ,K (4)

where the nonlinear functions fi(·) are assumed to be invertible. Such models may
appear in array processing, satellite and microwave communications. A separation
method for PNL models generally consists of two stages [31]: a) a nonlinear stage,
where the functions fi are inverted, b) a linear stage, where the linearised mixture is
separated using an ordinary linear instantaneous ICA algorithm. In addition, there
are other special nonlinear mixing cases, that can be linearised using another nonlin-
ear mapping function g(·) (see [33]). Recently, Duarte et al [22] introduced a blind
compensation scheme of the nonlinear distortion introduced in PNL mixtures, by
using a semi-blind cost function to estimate the parameters of a known inverting
function. Nevertheless, further exploration of nonlinear mixtures separation goes
beyond the scope of this chapter.

In this chapter, instantaneous underdetermined source separation is examined
in the form of a directional clustering problem. Clustering is performed with the
application of density mixture models, which are trained on the directional data
using the EM algorithm. We examine three cases of candidate densities based on the
Laplacian distribution, which is well-suited to model sparse data. The directionality
of the source separation data led to the introduction of a wrapped-Laplacian density
and finally a generalised directional Laplacian density, a closed-form expression
that can model multidimensional directional data.

2 Underdetermined Source Separation as a directional
clustering problem

Let us assume a two-sensor instantaneous mixing approach. In Fig. 1(a), one can
see the scatter plot of the two sensor signals, in the case of two sensors and four
sources. The four sources are 7 sec of speech, accordion, piano and violin signals.
In the time-domain representation, no directions of the input sources are visible
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in the mixture. Consequently, the separation problem seems very difficult to solve.
To get a sparser representation of the data, the MDCT or the Short-Time Fourier
Transform (STFT) can be applied on the observed signals. The MDCT is a linear,
real transform that has excellent sparsifying properties for most audio and speech
signals. The harmonic content of most speech and musical instrument signals can
be represented by harmonically related sinusoidals with great accuracy (excluding
transient and percussive parts in audio and unvoiced segments in speech). Conse-
quently, using a transformation that projects the audio data on sinusoidal bases will
most probably result into a more compact and sparse representation of the origi-
nal data. The MDCT is more preferable than the STFT, since it is real and retains
all the required sinusoidal signal structure. The need for sparser representations in
underdetermined source separation and audio analysis in general is discussed more
rigorously in [29, 50, 17, 37, 10]. When the sources are sparse, smaller coefficients
are more probable, whereas all the signal’s energy is concentrated in few large val-
ues. Therefore, the density of the data in the mixture space shows a tendency to
cluster along the directions of the mixing matrix columns [62]. Observing the scat-
ter plot in Fig. 1(b), it is clear that the angular difference between the two sensors
can be used to identify and separate the sources in the mixture. That is to say, the
two-dimensional (2D) problem can be transformed to a one-dimensional (1D) prob-
lem, as the main important parameter is the angle θn of each point.

θn = atan
x2(n)
x1(n)

(5)

Using the directional differences between the two sensors is equivalent to mapping
all the observed data points on the unit-circle. Extending this to a general multi-
channel scenario, one can map K-dimensional points x(n) to the K-D unit sphere,
by dividing with the vector’s norm ||x||. In Fig. 2(a), we plot the histogram of the
observed data angle θn in the previous example.1 The strong “superGaussian” char-
acteristics of the individual components in the MDCT domain are preserved in the
angle representation θn. Then, the vectors xnorm(n) contain only directional infor-
mation in a polar reference system.

xnorm(n) =
x(n)
||x(n)||

(6)

We can also define the magnitude rn of each point x(n), as follows:

rn = ||x(n)||=
√

x1(n)2 + . . .+ xK(n)2 (7)

1 A π-periodicity is valid for the observed phenomenon, since data in (π/2,3π/2) are symmetrical
to the ones in (−π/2,π/2) (See Fig. 1(b)). Hence, the use of the atan function instead of the
extended atan2 function is justified. For the rest of the analysis, we will assume that θn takes values
between (0,π) rather than (−π/2,π/2). This implies that data in the 4th quadrant (−π/2,0) are
mapped with odd symmetry to the 2nd quadrant (0,π/2). This is performed in order to facilate the
derivations of the Generalised Directional Laplacian Distribution and does not alter anything in the
actual data.
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Fig. 2 Histograms of angle θn in the four sources example of Fig. 1. The four sources are identi-
fiable in the original histogram (a), however, keeping only the most “superGaussian” components
(b), we can facilitate the separation process, as the directions of arrival are more clearly identifiable.
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We can observe that points that are close to the origin have a more Gaussian struc-
ture and thus do not contribute to the desired “superGaussian” profile. Consequently,
we can use a “reduced” representation of the original data in order to estimate the
columns of the mixing matrix more accurately. In Fig. 2(b), we can see a histogram
of those points n, whose magnitude rn is above a threshold, e.g. rn > 0.1. Compar-
ing with the original histogram of Fig. 2(a), the four components are more clearly
identifiable in this reduced representation, which can facilitate the estimation of the
columns of the mixing matrix, i.e. the directions of arrival for each source. In this
representation, we will present three models based on the Laplacian density, that
can be applied to cluster and separate the sources.

3 Identification using Laplacian Mixtures Models

A model, that is commonly used in the literature to model sparse data, is the Lapla-
cian density function. The definition for the Laplacian probability density function
(pdf) is given by the following expression:

L (θ ,k,m) = ke−2k|θ−m| (8)

where m defines the mean and k > 0 controls the “width” (approximate standard
deviation) of the distribution. In a similar fashion to Mixtures of Gaussians (MoG),
one can employ Laplacian Mixture Models (LMM) in order to model a mixture of
“heavy-tailed signals”. A Laplacian Mixture Model of K Laplacians can thus be
defined, as follows:

p(θ) =
K

∑
i=1

αiL (θ ,ki,mi) =
K

∑
i=1

αikie−2ki|θ−mi| (9)

where αi, mi, ki represent the weight, mean and width of each Laplacian respec-
tively and all weights should sum up to one, i.e. ∑K

i=1 αi = 1. The EM algorithm is
employed to train the parameters of the mixture model. A complete derivation of an
EM algorithm was presented by Dempster et al. [19] and has been employed to fit a
MoG on a training data set [9]. Assuming N training samples for an 1D r.v. θn and
Laplacian Mixture densities (9), the log-likelihood of these training samples takes
the following form:

I(αi,ki,mi) =
N

∑
n=1

log
K

∑
i=1

αiL (θn,ki,mi) (10)

Introducing unobserved data items that can identify the components that “gener-
ated” each data item, we can simplify the log-likelihood of (10) for Laplacian Mix-
tures, as follows:
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J(αi,ki,mi) =
N

∑
n=1

K

∑
i=1

(logαi + logki−2ki|θn−mi|)p(i|θn) (11)

where p(i|θn) represents the probability of sample θn belonging to the ith Laplacian
of the LMM. In a similar fashion to MoGs, the updates for p(i|θn) and αi can be
given by the following equations:

p(i|θn) =
αiL (θn,mi,ki)

∑K
i=1 αiL (θn,mi,ki)

(12)

α+
i ←

1
N

N

∑
n=1

p(i|θn) (13)

The updates for mi and ki are estimated by setting ∂J(αi,ki,mi)/∂mi = 0 and
∂J(αi,ki,mi)/∂ki = 0 respectively. Following some derivation (see [44]), we get
the following update rules:

m+
i ←

∑N
n=1

θn
|θn−mi| p(i|θn)

∑N
n=1

1
|θn−mi| p(i|θn)

(14)

k+i ←
∑N

n=1 p(i|θn)

2∑N
n=1 |θn−mi|p(i|θn)

(15)

The four update rules are iterated until convergence. Enhancing the sparsity in the
angle representation θn will increase EM’s convergence speed and will provide more
accurate estimates for the sources’ angles. Therefore, we train the LMM with a
subset of those data points n that satisfy rn > B, where B is a threshold.

Once the LMM is trained, the centre of each Laplacian mi should represent a
column of the mixing matrix A in the form of [cos(mi) sin(mi)]

T . Each wrapped
Laplacian should model the statistics of each source in the transform domain and
can be used to perform underdetermined source separation.

The main issue with LMMs is that they attempt to model a circular r.v. (angles)
using a pdf that has infinite support. The Laplacian density, as described in (8), is
valid ∀ θ ∈ (−∞,+∞). However, the range of θn is not only bounded to the (0,π)
interval but the two boundaries are actually connected. Assume that you have a con-
centration of points close to π . The EM algorithm will attempt to fit a Laplacian
around this cluster, however, assuming a linear support on θ . As a result, the al-
gorithm can not attribute points that belong to the same cluster, but are close to 0,
due to the assumed linear support. Therefore, the algorithm can not model densities
with mi close to 0 or π with great accuracy. To alleviate the problem, the estimated
centres mi can be rotated, so that the affected boundary (0 or π) is mapped to the
middle of the centres mi that feature the greatest distance (see [44]). This can offer
a heuristic but not complete solution to the problem.
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4 Identification using Mixtures of Wrapped Laplacian Models

To address this problem in a more elegant manner, we examine the use of an ap-
proximate wrapped-Laplacian distribution to model the π periodicity that exists in
atan(·). The observed angles θn of the input data can be modelled, as a Laplacian
wrapped around the interval (0,π).

Definition 1. A wrapped-Laplacian can be described by the following additive
model

Lw(θ ,k,m) =
1

2T −1

T

∑
t=−T

ke−2k|θ−m−πt| =
1

2T −1

T

∑
t=−T

L (θ −πt,k,m) (16)

where T ∈ Z+ denotes the number of ordinary Laplacians with mean m and width
k that participate in the wrapped version.

The above expression models the wrapped Laplacian by an ordinary Laplacian and
its periodic repetitions by π (see Fig. 3). This is an extension of the wrapped Gaus-
sian distribution proposed by Smaragdis and Boufounos [56] for the Laplacian case.
The addition of the wrapping of the distribution aims at mirroring the wrapping of
the observed angles at ±π . In theory, the model should have T → ∞ components,
however, it seems that a small range of values for T can successfully approximate the
full wrapped probability density function in practice. In a similar fashion to LMMs,
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Fig. 3 An example of the Wrapped Laplacian for T = [−1,0,1] k = 0.01 and m = π/4.

one can introduce Mixture of wrapped Laplacians (MoWL) in order to model a
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mixture of angular or circular sparse signals. A Mixture of wrapped Laplacians can
thus be defined, as follows:

p(θ) =
K

∑
i=1

αiLw(θ ,ki,mi) =
K

∑
i=1

αi
1

2T −1

T

∑
t=−T

kie−2ki|θ−mi−πt| (17)

where αi, mi, ki represent the weight, mean and width of each Laplacian respec-
tively and all weights should sum up to one, i.e. ∑K

i=1 αi = 1. We can derive the EM
algorithm, based on the previous analysis. Assuming N training samples for θn and
a Mixture of wrapped Laplacians densities (17), the log-likelihood of these training
samples θn takes the following form:

I(αi,ki,mi) =
N

∑
n=1

log
K

∑
i=1

αiLw(θn,ki,mi) (18)

One can introduce the probability p(i|θn) of sample θn belonging to the ith wrapped
Laplacian of the MoWL and the probability p(t|i,θn) of sample θn belonging to the
tth individual Laplacian of the ith wrapped Laplacian Lw(ki,mi). The updates for
p(t|i,θn), p(i|θn) and αi can be then given by the following equations:

p(t|i,θn) =
L (θn−πt,mi,ki)

∑T
t=−T L (θn−πt,mi,ki)

(19)

p(i|θn) =
αiLw(θn,mi,ki)

∑K
i=1 αiLw(θn,mi,ki)

(20)

αi←
1
N

N

∑
n=1

p(i|θn) (21)

mi←
∑N

n=1 ∑T
t=−T

θn−πt
|θn−πt−mi| p(t|i,θn)p(i|θn)

∑K
n=1 ∑T

t=−T
1

|θn−πt−mi| p(t|i,θn)p(i|θn)
(22)

ki←
∑N

n=1 p(i|θn)

2∑N
n=1 ∑T

t=−T |θn−πt−mi|p(t|i,θn)p(i|θn)
(23)

Once the MoWL is trained, the centre of each wrapped Laplacian mi should rep-
resent a column of the mixing matrix A in the form of [cos(mi) sin(mi)]

T . Each
wrapped Laplacian should model the statistics of each source in the transform do-
main and can be used to perform underdetermined source separation. This approach
addresses the problem of modelling directional data in a more elegant manner, how-
ever, the cost of training two EM algorithms makes this approach less attractive.
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5 A complete solution using the Generalised Directional
Laplacian Distribution

The previous two efforts do not offer a closed form solution to the problem and they
can not be easily expanded to more than two sensors. The proposed multidimen-
sional Directional Laplacian model offers a closed form solution to the modelling
of directional sparse data and can also address the general K×L underdetermined
source separation problem, which is rarely tackled in the literature. There exist dis-
tributions that are periodic by definition and can therefore offer closed-form models
for circular or directional data.

The von Mises distribution (also known as the circular normal distribution) is a
continuous probability distribution on the unit circle [32, 27]. It may be considered
the circular equivalent of the normal distribution and is defined by:

p(θ) =
ek cos(θ−m)

2πI0(k)
,∀ θ ∈ [0,2π) (24)

where I0(k) is the modified Bessel function of the first kind of order 0, m is the
mean and k > 0 describes the “width” of the distribution. A generalisation of the
previous density is the p-dimensional (p-D) von Mises-Fisher distribution [21, 40].
A p-D unit random vector x (||x|| = 1) follows a von Mises-Fisher distribution, if
its probability density function is described by:

p(x) ∝ ekmT x ,∀||x|| ∈S p−1 (25)

where ||m|| = 1 defines the centre, k ≥ 0 and S p−1 is the p-D unit hypersphere.
Since the random vector x resides on the surface of a p-D unit-sphere, x essentially
describes directional data. In the case of p = 2, x models data that exist on the unit
circle and thus can be described only by an angle. In this case, the von Mises-Fisher
distribution is reduced to the von-Mises distribution of (24). The von Mises-Fisher
distribution has been extensively studied and many methods have been proposed to
fit the distribution or its mixtures to normally distributed circular data [8, 32, 40, 21].

5.1 A Generalised Directional Laplacian model

Assume a r.v. θ modelling directional data with π-periodicity. The periodicity of
the density function can be amended to reflect a “fully circular” phenomenon (2π),
however, for the rest of the paper we will assume that θ ∈ [0,π), since it is re-
quired by the source separation application. From the definition of the von-Mises
distribution in (24), one can create a Laplacian structure simply by introducing a | · |
operator in the superscript of the exponential. This action introduces a large concen-
tration around the mean, which is needed to describe a sparse or Laplacian density.
Values far away from the mean are smoothed out by the exponential. Additionally,



14 Nikolaos Mitianoudis

we have to perform some minor amendments to the phase shift and also invert the
distribution in order to impose the desired shape on the derived density.

Definition 2. The following probability density function models directional Lapla-
cian data over [0,π) and is termed Directional Laplacian Density (DLD):

p(θ) = c(k)e−k|sin(θ−m)| ,∀ θ ∈ [0,π) (26)

where m∈ [0,π) defines the mean, k > 0 defines the width (“approximate variance”)
of the distribution, c(k) = 1

πI0(k)
and I0(k) = 1

π
∫ π

0 e−k sinθ dθ .

The normalisation coefficient c(k) = 1/πI0(k) is derived from the fundamen-
tal normalisation property of probability density functions [41]. Examples of (26)
and more details on the special 1D DLD case can be found in [41]. The next
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Fig. 4 The proposed Directional Laplacian Density (DLD) for various values of k.

step is to derive a generalised definition for the Directional Laplacian model. To
generalise the concept of 1D DLD in the p-D space, we will be inspired by the
p-D von Mises-Fisher distribution [21, 40]. The von Mises-Fisher distribution is
described by p(x) ∝ ekmT x (see (25)). Since ||x|| = ||m|| = 1, the inner prod-
uct mT x = cosψ , where ψ is the angle between the two vectors x and m (see
Fig. 5). Following a similar methodology to the 1D-DLD, we need to formu-
late the term −k|sinψ| in the superscript of the exponential. We can then derive
|sinψ | =

√
1− cos2 ψ =

√
1− (mT x)2. Thus, the superscript of the generalised

DLD can be given by −k
√

1− (mT x)2.

Definition 3. The following probability density function models p-D directional
Laplacian data and is termed Generalised Directional Laplacian Distribution (DLD):
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p(x) = cp(k)e−k
√

1−(mT x)2
,∀ ||x|| ∈S p−1 (27)

where m defines the mean, k ≥ 0 defines the width (“approximate variance”) of the

distribution, cp(k) =
Γ ( p−1

2 )

π
p+1

2 Ip−2(k)
, Ip(k) = 1

π
∫ π

0 e−k sinθ sinp θdθ and Γ (·) represents

the Gamma function2.

x
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Fig. 5 Generalising the Directional Laplacian density in S p−1.

The normalisation coefficient cp(k) is calculated in Appendix 1. In the case of p= 2,
the generalised DLD is reduced to the one dimensional DLD of (26), verifying the
validity of the above model. The generalised DLD density models “directional”
data on the half-unit p-D sphere, however, it can be extended to the unit p-D sphere,
depending on the specifications of the application. In Fig. 6, an example of the
generalised DLD is depicted for p = 3 and k = 5. The centre m is calculated using
spherical coordinates m = [cosθ1 cosθ2; cosθ1 sinθ2; sinθ1] for θ1 = 0.2 and θ2 =
2.

5.2 Generalised Directional Laplacian Density samples generation

To generate 1D Directional Laplacian data, we employed the inversion of the cumu-
lative distribution method [20]. Inversion methods are based on the observation that
continuous cumulative distribution functions (cdf) range uniformly over the interval
(0,1). Since the proposed density is bounded between [0,π), we can evaluate the cdf
of the Directional Laplacian density with uniform sampling at [0,π) and approxi-
mate the inverse mapping using spline interpolation. Thus, uniform random data in
the interval (0,1) can be transformed to 1D Directional Laplacian random samples,
using the described inverse mapping procedure.

2 Note that for n positive integer, we have that Γ (n) = (n−1)!
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Fig. 6 The proposed Generalised Directional Laplacian Distribution for k = 5 and p = 3.

To simulate 2-D Directional Laplacian random data (p = 3), we sampled the 2-
D density function for specific m, k. The bounded value space (θ1,θ2 ∈ [0,π)) is
quantised into small rectangular blocks, where the density is assumed to be uni-
form. Consequently, we generate a number of uniform random samples for each
block. The number of samples generated from each block is different and defined
by the overall DL density. The required 3-D unit-norm random vectors are produced
using spherical coordinates with unit distance and angles θ1,θ2 from the random 2-
D Directional data. The above procedure can be extended for the generation of p-D
directional data.

5.3 Maximum Likelihood Estimation of parameters m, k

Assume a population of p-D angular data X = {x1, . . . ,xn, . . . ,xN} that follow a p-D
Directional Laplacian Distribution. To estimate the model parameters using Maxi-
mum Likelihood Estimation (MLE), one can form the log-likelihood and estimate
the parameters m, k that maximise it. For the Generalised DLD density, the log-
likelihood function can be expressed, as follows:

J(X,m,k) = N log
Γ ( p−1

2 )

π
p+1

2 Ip−2(k)
− k

N

∑
n=1

√
1− (mT xn)2 (28)
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Alternate optimisation is performed to estimate m and k. The gradients of J along
m and k are calculated in Appendix 2. The update for m is given by gradient ascent
on the log-likelihood via:

m+←m+η
N

∑
n=1

mT xn√
1− (mT xn)2

xn (29)

m+←m+/||m+|| (30)

where η defines the gradient step size. Since the gradient step does not guaran-
tee that the new update for m will remain on the surface of S p−1, we normalise
the new update to unit norm. To estimate k, a numerical solution to the equation
∂J(X,m,k)/∂k = 0 is estimated. From the analysis in Appendix 2, we have that

Ip−1(k)
Ip−2(k)

=
1
N

N

∑
n=1

√
1− (mT xn)2 (31)

To calculate k analytically from the ratio Ip−1(k)/Ip−2(k) is not straightforward.
However, after numerical evaluation, it can be demonstrated that the ratio Ip−1(k)/Ip−2(k)
is a smooth monotonic 1−1 function of k. In Fig. 7, the ratio Ip−1(k)/Ip−2(k) is es-
timated for uniformly sampled values of k ∈ [0.01,30] and p= 2,3,4,5,6. Since this
ratio is not dependent on data, one can create a look-up table for a variety of k values
and use interpolation to estimate k from an arbitrary value of Ip−1(k)/Ip−2(k). This
look-up table solution is more efficient compared to possible iterative estimation
approaches of k and generally accelerates the model’s training.
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5.4 Mixtures of Generalised Directional Laplacians

One can employ Mixtures of Generalised Directional Laplacians (MDLD) in order
to model multiple concentrations of directional generalised “heavy-tailed signals”.

Definition 4. Mixtures of Generalised Directional Laplacian Distributions are de-
fined by the following pdf:

p(x) =
K

∑
i=1

aicp(ki)e−ki
√

1−(mT
i x)2

,∀ ||x|| ∈S p−1 (32)

where ai denotes the weight of each distribution in the mixture, K the number of
DLDs used in the mixture and mi, ki denote the mean and the “width” (approximate
variance) of each distribution.

The mixtures of DLD can be trained using the EM algorithm. Following the previous
analysis in [9], one can yield the following simplified likelihood function:

L (ai,mi,ki) =
N

∑
n=1

K

∑
i=1

(
log

aiΓ ( p−1
2 )

π
p+1

2 Ip−2(k)
− k
√

1− (mT x)2

)
p(i|xn) (33)

where p(i|xn) represents the probability of sample xn belonging to the ith Directional
Laplacian of the mixture. In a similar fashion to other mixture model estimation, the
updates for p(i|xn) and αi can be given by the following equations:

p(i|xn)←
aicp(ki)e−ki

√
1−(mT

i x)2

∑K
i=1 aicp(ki)e−ki

√
1−(mT

i x)2
(34)

ai←
1
N

N

∑
n=1

p(i|xn) (35)

Based on the derivatives calculated in Appendix 2, it is straightforward to derive the
following updates for mi and ki, as follows:

m+
i ←mi +η

N

∑
n=1

ki
mT xn√

1− (mT xn)2
xn p(i|xn) (36)

m+
i ←m+

i /||m
+
i || (37)

To estimate ki, in a similar fashion to the previous MLE, the optimisation yields:

Ip−1(ki)

Ip−2(ki)
=

∑N
n=1

√
1− (mT

i xn)2 p(i|xn)

∑N
n=1 p(i|xn)

(38)

The training of this mixture model is also dependent on the initialisation of its pa-
rameters, especially the means mi [45]. In Appendix 3, the standard K-Means al-
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gorithm is reformulated in order to tackle p-D directional data. The proposed p-D
Directional K-Means is used to initialise the means mi of the DLDs in the gener-
alised DLD mixture EM training. A Directional K-Means already exists in the liter-
ature [7], however, the proposed p-D Directional K-Means in Appendix 3 employs
a distance function more relevant to sparse directional data.
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Fig. 8 Examples of fitting a Generalised MDLD model on 2000 randomly generated 1D (left) and
2D (right) Directional Laplacian data.

6 Source Separation using hard or soft thresholding

Once the Mixture Model is trained, optimal detection theory and the estimated in-
dividual Laplacians can be emploed to provide estimates of the sources. The centre
of each Laplacian mi should represent a column of the mixing matrix A in the form
of [cos(mi) sin(mi)]

T . Each Laplacian should model the statistics of each source in
the transform domain. Thus, using either a hard or a soft decision threshold, we can
perform underdetermined source separation. The same strategy can hold for either
of the three proposed Laplacian Mixture Models.

6.1 Hard thresholding

The hard thresholding (“Winner takes all”) strategy attributes each point of the scat-
ter plot of Fig. 1(b) to only one of the sources. This is performed by setting a
hard threshold at the intersections between the trained Laplacians. Consequently,
the source separation problem becomes an optimal decision problem. The decision
thresholds θ opt

i j between the i-th and the j-th neighbouring Laplacians depend on
the type of mixture model (LMM, MoWL or MDLD). Threshold formulas for the
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LMM and MoWL can be found in [44, 45] respectively. Using these thresholds, the
algorithm can attribute the points with mopt

i j < θn < mopt
jk to source j, where i, j,k are

neighbouring Laplacians (sources). Fig. 9(a) depicts the fitted Laplacian Mixture
Model, in a two sensors - four audio sources (voice, piano, accordion and violin)
example and the hard thresholds imposed using the above equation. The points that
belong to each of the four clusters, shown in Fig. 9(a), are attributed and are used to
reconstruct each source.

In the case of the 1D-MDLD, it is possible to derive the thresholds where two
neighbouring DLDs intersect and therefore apply a hard thresholding strategy to
cluster the audio data. In the case of an p-D MDLD, it is not straightforward to
derive the intersecting hyperplanes between two neighbouring DLDs, therefore, in
this case we resort to the soft-thresholding technique.

6.2 Soft thresholding

Observing the histograms of Fig. 2, we can attribute points that are distant from the
centre of the 2D representation to each source with great confidence. In contrast,
there exist points that can not be attributed to either source with great confidence.
These points may belong to more than one source. One can then relax the hard
threshold strategy, by allowing points belonging to more than one source simulta-
neously. A “soft-thresholding” strategy can attribute points that constitute a chosen
ratio q (i.e. 0.7−0.9) of the density of each Laplacian (any of the three models) to
the corresponding source (see Fig. 9). Hence, the ith source can be associated with
those points θn, for which p(θn) ≥ (1− q)αiki, where p(θn) is given by the corre-
sponding density model. A large value for q allows more points to belong to more
than one Laplacian. A small value for q imposes stricter criteria for the points to
belong to a Laplacian and essentially becomes a hard thresholding approach. This
scheme can be effective, only if the estimated Laplacians are concentrated around
each mi. In the opposite case, there will be components that will dominate the pdf
and therefore be attributed with more points than it should and therefore they would
contain contamination from other sources. In Fig. 9(b), we can see the four sources
in the previous 1D example, as classified by the soft thresholding strategy. The dif-
ferent colours represent different clusters, i.e. different sources. We can see that
several points are attributed to both the first and the second sources and both the
third and fourth sources by the soft classification scheme.

6.3 Source Reconstruction

Having attributed the points x(n) to the L sources, using either the “hard” or the
“soft” thresholding technique, the next step is to reconstruct the sources. Let Si ⊑ N
represent the point indices that have been attributed to the ith source and mi the
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Fig. 9 A two-sensors four-sources scenario, separated using LMM. In (a), the four trained Lapla-
cians are depicted along with the actual density function and the imposed hard thresholds. Applying
soft thresholds, the classification shown in (b) is achieved, which allows some overlapping between
adjacent sources.
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corresponding mean vector, i.e. the corresponding column of the mixing matrix.
We initialise ui(n) = 0,∀ n = 1, . . . ,N and i = 1, . . . ,L. The source reconstruction is
performed by substituting:

ui(Si) = mT
i x(Si) ∀ i = 1, . . . ,L (39)

In the case that we need to capture the multichannel image of the separated source,
the result of the separation is a multichannel output that is initialised to ui(n) = 0,∀
n = 1, . . . ,N. The source image reconstruction is performed by:

ui(Si) = x(Si) ∀ i = 1, . . . ,L (40)

7 Experiments

In this section, we verify the validity of the above derived MLE algorithms and
demonstrate the density’s relevance and performance in underdetermined audio
source separation. We can see that the proposed MDLD model improves the LMM
and MoWL modelling efforts in terms of stability, speed and performance and of-
fers a fast alternative to state-of-the-art algorithms with reasonable separation per-
formance.

We will use Hyvärinen’s clustering approach [30], the MoWL algorithm [45]
and the “GaussSep” algorithm [58] for comparison. We prefered not to benchmark
the LMM model, because the other two models (MoWL and MDLD) tackle data’s
directionality more efficiently. After fitting the MDLD with the proposed EM algo-
rithm, separation will be performed using hard or soft thresholding, as described
earlier. In order to quantify the performance of the algorithms, we estimate the
Signal-to-Distortion Ratio (SDR), the Signal-to-Interference Ratio (SIR) and the
Signal-to-Artifact Ratio from the BSS EVAL Toolbox v.3 [26]. The input signals
for the MDLD, MoWL and Hyvärinen’s approaches are sparsified using the MDCT,
as developed by Daudet and Sandler [16]. The frame length for the MDCT analysis
is set to 32 msec for the speech signals and 128 msec for the music signals sam-
pled at 16 KHz, and to 46.4 msec for the music signals at 44.1 KHz. We initialise
the parameters of the MoWL and MDLD as follows: αi = 1/K and ci = 0.001,
T = [−1,0,1] (for MoWL only) and ki = 15 (for the DLD only). The centres mi
were initialised in either case using the Directional K-means step, as described in
Appendix 3. We used the “GaussSep” algorithm, as publicly available by the au-
thors3. For the estimation of the mixing matrix, we used Arberet et al’s [5] DEMIX
algorithm4, as suggested in [58]. The number of sources in the mixture was also
provided to the DEMIX algorithm, as it was provided to all other algorithms. The

3 MATLAB code for the “GaussSep” algorithm is available from
http://www.irisa.fr/metiss/members/evincent/software.
4 MATLAB code for the “DEMIX” algorithm is available from
http://infoscience.epfl.ch/record/165878/files/.
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“GaussSep” algorithm operates in the STFT domain, where we used the same frame
length with the other approaches and a time-frequency neighbourhood size of 5 for
speech sources and 15 for music sources.

Table 1 The proposed MDLD approach is compared for source estimation performance (K = 2)
in terms of SDR (dB), SIR (dB) and SAR(dB) with GaussSep, WMoL and Hyvärinen’s approach.
The measurements are averaged for all sources of each experiment.

SDR (dB) SIR (dB) SAR (dB)
MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva

Latino1 6.38 5.51 5.72 0.89 18.63 8.96 18.59 9.61 6.93 9.20 6.26 3.63
Latino2 3.21 4.71 2.10 0.89 11.50 8.87 11.28 9.61 4.95 9.20 3.85 3.63
Groove 0.22 0.39 -0.43 -0.08 9.48 3.62 9.60 8.88 2.12 7.37 1.00 1.83
Dev2Male3 3.04 6.22 2.11 -3.10 13.69 12.14 13.30 4.73 4.10 8.04 3.33 2.72
Dev2Female3 4.68 5.70 3.86 -1.85 15.28 11.45 16.58 5.02 5.41 7.51 4.61 3.13
Dev2WDrums 9.59 16.57 10.16 0.63 19.77 23.83 19.98 7.57 10.55 17.68 10.54 5.54
Dev1WDrums 4.96 16.54 3.81 6.86 13.88 20.94 12.38 16.75 6.37 19.30 5.20 7.73
Average 4.58 7.96 3.91 0.6 14.61 12.83 13.82 8.88 5.78 11.19 4.97 4.03

7.1 Two-microphone examples

We tested the algorithms with the Groove, Latino1 and Latino2 datasets, avail-
able by BASS-dB [59], and sampled at 44.1 KHz. The “Groove” dataset features
four widely spaced sources: bass (far left), distorted guitar (center left), clean gui-
tar (center right) and drums (far right). The two “Latino” datasets features four
widely spaced sources: bass (far left), drums (center left), keyboards (center right)
and distorted guitar (far right). We also used a variety of test signals from the
Signal Separation Evaluation Campaigns SiSEC2008 [1] and SiSEC2010 [2]. We
employed two audio instantaneous mixtures from the “dev1” and “dev2” data
sets (“Dev2WDrums” and “Dev1WDrums” sets - 3 instruments at 16KHz) and
two speech instantaneous mixtures from the “dev2” data set (“Dev2Male3” and
“Dev2Female3” sets - 4 closely located sources at 16 KHz). We used the devel-
opment (dev) datasets instead of the test data sets, in order to have all the source
audio files for proper benchmarking.

In Table 1, we can see the results for the four methods in terms of SDR, SIR and
SAR. For simplicity, we averaged the results for all sources at each experiment. The
reader of the paper can visit the following url5 and listen to the described separation
results. The proposed MDLD approach seems to outperform our previous separation
effort MoWL and Hyvärinen’s algorithm in terms of all the performance indexes.

5 http://utopia.duth.gr/∼nmitiano/mdld.htm
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The proposed MDLD approach is not susceptible to bordering effects, since it is
circular by definition and avoids shortcomings of our previous offerings. Compared
to a state-of-the-art method, such as “GaussSep”, our method is better in terms of
the SIR index but is falling behind in terms of the SDR and SAR indexes. The
SIR index reflects the capability of an algorithm to remove interfence from other
sources in the mixture. The SAR index refers to the audible artifacts that remain in
the separated signals, due to the overlapping of several points in the time-frequency
space (even in the MDCT representation) in the underdetermined mixture that are
incorrectly attributed to either source. In this sense, our algorithm seems to perform
slightly better compared to “GaussSep” in terms of removing “crosstalk” from other
sources, but there seem to be more audible artifacts after separation in our approach
compared to “GaussSep”. This is due to the fact that the “GaussSep” segments the
time-frequency representation in small localised neighbourhoods and performs local
Gaussian Modelling so as to separate and filter sources from those areas that sepa-
ration is more achievable. Instead, our approach simply clusters all time-frequency
points according to the fitted DLD using hard thresholds (or soft-thresholds in the
case K > 2).

Table 2 Running time comparison with GaussSep and MoWL approaches. The measurements are
in seconds.

MDLD Gaussep MoWL
Groove 2.39 224.21 20.46
Latino1 1.27 122.02 5.48
Latino2 1.28 129.09 3.59
Dev2Male3 2.31 72.64 19.67
Dev2Female3 2.33 75.92 16.09
Dev2WDrums 2.07 56.79 8.55
Dev1WDrums 1.55 54.06 11.88
Average 1.88 104.96 12.24
Dev3Female3 9.56 1021.31 -
Example(3×5) 4.04 1598.7 -
Example(4×8) 9.393 2359.1 -
Average 7.66 1659.70 -

Another important issue is to compare the processing time of the three best per-
forming algorithms. All experiments were conducted on an Intel Core i5-460M
(2.53 GHz) with 4GB DDR3 SDRAM running Windows Professional 64-bit and
MATLAB R2012b. Our MATLAB implementations of the MDLD and MoWL al-
gorithms were not optimised in terms of execution speed. In Table 2, the typical
running time in seconds is summarised for each experiment and method. The first
observation is that the MDLD approach is faster compared to the MoWL approach.
As it was previously mentioned, employing a mixture of wrapped Laplacians to
solve the “circularity” problem entails the running of two EM algorithms: one for
the wrapped Laplacians and one for the mixture of wrapped Laplacians. This seems
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to delay the convergence of the algorithm. Instead, MDLD requires the training
of one EM algorithm for the mixture and it seems to converge faster compared to
MoWL. The second observation is that there is an important difference between the
processing time of the MDLD approach and the “GaussSep” algorithm. As previ-
ously mentioned, the “GaussSep” algorithm is more complicated in structure thus
justifying its long running time. Nevertheless, the proposed MDLD approach of-
fers a very fast underdetermined source separation alternative with high SIR perfor-
mance that can be used in environments where processing time is important. The
third observation is that the processing time for the “GaussSep” algorithm scales
significantly with the duration of the signals and the number of sources, i.e. the
“Groove”, “Latino1”, “Latino2” (44.1KHz - 4 sources) require more time than the
Dev2Male3 and Dev2Female3 sets (16KHz - 4 sources) and the Dev2WDrums and
Dev1WDrums sets (16KHz - 3 sources). Instead, MDLD’s running time seems to be
closer to the avarage in most cases, maybe slightly deteriorating with the complexity
of the source separation problem.

Table 3 The sources’ position angles that were used in the 3×5 and the 4×8 example.

3×5
s1 s2 s3 s4 s5

θ1 0o −87o −60o 0o 45o

θ2 85o 0o −60o 0o 45o

4×8
s1 s2 s3 s4 s5 s6 s7 s8

θ1 −75o −30o 0o 50o 10o 80o −45o 0o

θ2 70o 30o −20o 50o −70o 0o 15o −70o

θ3 80o 20o 10o −50o 0o −10o −25o −35o

Table 4 The proposed MDLD approach is compared for source estimation performance (K = 3,4)
in terms of SDR (dB), SIR (dB) and SAR(dB) with the GaussSep approach. The measurements are
averaged for all sources of each experiment.

SDR (dB) SIR (dB) SAR (dB)
MDLD GaussSep MDLD GaussSep MDLD GaussSep

Dev3Female3 6.02 16.93 23.84 22.43 6.17 18.40
Example 3×5 3.91 9.94 17.92 15.21 4.17 11.68
Example 4×8 2.24 -18.63 16.4 -17.58 2.52 9.39
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7.2 Underdetermined source separation examples with more than
two mixtures

In this section, we employ the described generalised DLD approach to perform sep-
aration of 3×L and 4×L mixtures. The 2-mixtures setup, that dominates the lit-
erature, may also arise from the fact that most audio recordings and CD masters
are available as stereo recordings (2 channels is equivalent to 2 mixtures), where
we need to separate the instruments that are present. Nowadays, the music indus-
try is moving towards multichannel formats, including the 5.1 and the 7.1 surround
sound formats, which implies more than 2 channels will be available for process-
ing. In this section, we will attempt to perform separation of the Dev3Female3 set
from SiSEC2011 [3] and a 3×5 (3 mixtures - 5 sources) and a 4×8 (4 mixtures -
8 sources) scenario using the male and female voices from Dev3. Our MDLD ap-
proach will be compared to the “GaussSep” algorithm that is able to work with
multi-channel data. We used the same frame length and time-frequency neigh-
bourhood sizes for both algorithms as previously. The MDLD was initialised as
described in the previous section. After fitting the model, we employed the soft-
thresholding scheme, as it was described in [44]. Since it was not straightforward to
calculate the intersection surfaces between the individual p-D DLDs, we employed
a soft-thresholding scheme, as described earlier, using a value of q = 0.8.

For the 3×5 example, we centred the 5 speech sources around the angles shown
in Table 3 which were mixed using the following mixing matrix:

A3×L =

 cosθ2 cosθ1
cosθ2 sinθ1

sinθ2

 (41)

For the 4× 8 example, we centred eight audio sources around the angles shown in
Table 3 which were mixed using the mixing matrix:

A4×L =


cosθ3 cosθ2 cosθ1
cosθ3 cosθ2 sinθ1

cosθ3 sinθ2
sinθ3

 (42)

The separation results for the three experiments in terms of SDR, SIR and SAR
can be summarised in Table 4. The reader can listen to the audio results from the
following url (See Footnote 5). In the case of K = 3 mixtures, both algorithms man-
aged to perform separation in either case. Similarly to the K = 2 case, “GaussSep”
featured higher SDR and SAR performances, whereas the proposed MDLD algo-
rithm featured higher SIR performance. The image is completely different in the
case of K = 4 mixtures, where MDLD manages to separate all 8 sources in contrast
to “GaussSep” that fails to perform separation. This might be due to fact that the
sparsest ML solution in the optimisation of [58] is restricted to vectors with K ≤ 3
entries, i.e. 3 sources present at each point. In contrast, the proposed MDLD al-
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gorithm is designed to operate for any arbitrary number of sensors K, without any
constraint.

In Table 2, we can see the processing times for the two algorithms for the three
experiments. The MDLD processing time has increased slightly but still remains
relatively fast, requiring an average of 7.66 secs to perform separation. This im-
plies that the computational complexity of the proposed MDLD algorithm does not
scale considerably with the number of sources L and sensors K. In contrast, the
“GaussSep” algorithm’s processing has increased considerably with K. The process-
ing time seems to scale up dramatically with increasing K and number of estimated
sources L. For K = 3, it required an average of 1310 sec and for K = 4, it required
2359 sec which is almost the double processing time for K = 3. Thus, it appears
that the proposed MDLD algorithm is capable of offering a faster and more stable
multichannel solution to the underdetermined source separation problem, featuring
higher SIR rates, compared to a state-of-the-art approach.

The main aspiration for future work behind these experiments is to combine the
speed and stability of the MDLD approach with the low-artifact separation quality,
proposed by Vincent et al [58]. It might be possible to import this time-frequency
localised source separation framework, where the source clusters can be modeled
by mixtures of MDLDs. A more intelligent fuzzy clustering algorithm may com-
bine the information from the MDLD priors to attribute points to multiple sources,
overcoming the artifacts that arise from the partitioning of the time-frequency space.

8 Conclusions - Possible Extensions

In this chapter, the problem of underdetermined instantaneous source separation is
addressed. Since the data can have sparse representations in a transform domain, it
is rational to use mixtures of heavy-tailed distributions, such as the Laplacian distri-
bution, to model each source’s distribution in the mixture environment. As the main
concentrations of data appear on the directions spanned by the columns of the mix-
ing matrix, the source separation problem is transformed to an angular clustering
problem. In other words, data that need to be processed are directional, that the use
of Laplacian distributions with infinite support is not efficient for sources near 0,
or π directions. The first improvement was to wrap the ordinary Laplacian distribu-
tion and create a Wrapped Laplacian distribution. Training mixture of the Wrapped
Laplacian Distribution is computationally expensive due to the concurrent estima-
tion of two EM algorithms. The existence of closed-form directional Gaussian mod-
els inspired the introduction of a Laplacian directional model. Building on previous
work on directional Gaussian models (i.e. the von-Mises and the vonMises-Fisher
densities) to propose a novel generalised Directional Laplacian model for mod-
elling multidimensional directional sparse data. Maximum Likelihood estimates of
the densities’ parameters were proposed along with an EM-algorithm that handles
the training of DLD mixtures. The proposed algorithms were tested and demon-
strated good performance in modelling the directionality of the data. The proposed
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algorithm can also provide a solution for the general multichannel underdetermined
source separation problem (K ≥ 2), offering fast and stable performance and high
SIR compared to state-of-the-art methods [58].

Possible extensions is to adapt this technique for a convolutive mixture scenario,
where using the Short-Time Fourier Transform, we transform the convolutive mix-
tures into multiple complex instantaneous mixtures. Source separation-clustering
for each frequency bin can be performed using a modified version of the proposed
algorithm for complex numbers and permutation alignment can be performed us-
ing Time-Frequency Envelopes or Direction-of-Arrival methods as proposed by
Mitianoudis and Davies [42, 43] or Sawada et al [54]. The speed of the proposed
MDLD algorithm can be a very positive feature for FD-BSS, since these methods
need to solve many complex instantaneous source separation problems simultane-
ously.

Another possible direction is to adapt the proposed technique for underdeter-
mined PNL mixtures. Once the mixtures have been linearised by the blind com-
pensation method of Duarte et al [22], it is always possible to use the proposed
technique to unmix the PNL mixtures in the linear stage. The speed of the proposed
MDLD algorithm may expedite the blind estimation of the inverse non-linear func-
tion of PNL mixtures.

Appendix 1

Calculation of the normalisation parameter for the Generalised DLD
To estimate the normalisation coefficient cp(k) of (27), we need to solve the

following equation: ∫
x∈S p−1

cp(k)e−k
√

1−(mT x)2
dx = 1 (43)

Following equation (B.8) and in a similar manner to the analysis in Appendix B.2
in [21], we can rewrite the above equation as follows:

cp(k)
∫ π

0
dθp−1

∫ π

0
e−k
√

1−cos2 θ1 sinp−2 θ1dθ1

p−1

∏
j=3

∫ π

0
sinp− j θ j−1dθ j−1 = 1 (44)

Following a similar methodology to Appendix B.2 in [21], the above yields:

cp(k)π
∫ π

0
e−k sinθ1 sinp−2 θ1dθ1

π
p−3

2

Γ ( p−1
2 )

= 1 (45)

Using the definition of Ip(k), we can write
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cp(k)Ip−2(k)
π

p+1
2

Γ ( p−1
2 )

= 1⇒ cp(k) =
Γ ( p−1

2 )

π
p+1

2 Ip−2(k)
(46)

Appendix 2

Gradient updates for m and k for the MDDLD
The first order derivative of the log-likelihood in (28) for the estimation of m are

calculated below:

∂J(X,m,k)
∂m

= −k
N

∑
n−1

−2mT xn

2
√

1− (mT xn)2
xn

= k
N

∑
n=1

mT xn√
1− (mT xn)2

xn (47)

Before we estimate k from the log-likelihood (28), we derive the following prop-
erty:

∂
∂k

I0(k) =−
1
π

∫ π

0
e−k sinθ sinθdθ =−I1(k) (48)

The above property can be generalised as follows:

∂ p

∂kp I0(k) = (−1)p 1
π

∫ π

0
sinp θe−k sinθ dθ = (−1)pIp(k) (49)

The first order derivative of the log-likelihood in (28) for the estimation of k is then
calculated below:

∂J(X,m,k)
∂k

= N
Ip−1(k)
Ip−2(k)

−
N

∑
n=1

√
1− (mT xn)2 (50)

Appendix 3

A Directional K-Means algorithm
Assume that K is the number of clusters, Ci, i = 1, . . . ,K are the clusters, mi

are the cluster centres and X = {x1, . . . ,xn, . . . ,xN} is a p-D angular dataset lying
on the half-unit p-D sphere. The original K-means [39] minimises the following
non-directional error function:

Q =
N

∑
n=1

K

∑
i=1
||xn−mi||2 (51)
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where || · || represents the Euclidean distance. Instead of using the squared Euclidean
distance for the p-D Directional K-Means, we introduce the following distance func-
tion:

Dl(xn,mi) =
√

1− (mT
i xn)2 (52)

The novel function Dl is similarly monotonic as the original distance but emphasizes
more on the contribution of points closer to the cluster centre. In addition, Dl is
periodic with period π . The p-D Directional K-Means can thus be described as
follows:

1. Randomly initialise K cluster centres mi, where ||mi||= 1
2. Calculate the distance of all points xn to the cluster centres mi, using Dl .
3. The points with minimum distance to the centres mi form the new clusters Ci.
4. The clusters Ci vote for their new centres m+

i . To avoid averaging mistakes with
directional data, vector averaging is employed to ensure the validity of the addi-
tion. The resulting average is normalised to the half-unit p-D sphere:

m+
i =

1
ki

∑
xn∈ki

xn (53)

m+
i ←m+

i /||m
+
i || (54)

5. Repeat steps 2), 3), 4) until the means mi have converged.

References

1. SiSEC 2008: Signal Separation Evaluation Campaign. URL http://sisec2008.wiki.irisa.fr/tiki-
index.php

2. SiSEC 2010: Signal Separation Evaluation Campaign. URL http://sisec2010.wiki.irisa.fr/tiki-
index.php

3. SiSEC 2011: Signal Separation Evaluation Campaign. URL http://sisec.wiki.irisa.fr/tiki-
index.php

4. Araki, S., Sawada, H., Mukai, R., Makino, S.: Underdetermined blind sparse source separation
for arbitrarily arranged multiple sensors. Signal Processing 87, 1833–1847 (2007)

5. Arberet, S., Gribonval, R., Bimbot, F.: A robust method to count and locate audio sources in
a multichannel underdetermined mixture. IEEE Trans. on Signal Processing 58(1), 121–133
(2010)

6. Attias, H.: Independent factor analysis. Neural Computation 11(4), 803–851 (1999)
7. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the Unit Hypersphere using von

Mises-Fisher Distributions. Journal of Machine Learning Research 6, 1345 – 1382 (2005)
8. Bentley, J.: Modelling circular data using a mixture of von Mises and uniform distributions.

Simon Fraser University, MSc thesis (2006)
9. Bilmes, J.: A gentle tutorial of the EM algorithm and its application to parameter estima-

tion for Gaussian Mixture and Hidden Mixture Models. Tech. rep., Department of Electrical
Engineering and Computer Science, U.C. Berkeley, California (1998)

10. Blumensath, T., Davies, M.: Sparse and shift-invariant representations of music. IEEE Trans-
actions on Audio, Speech and Language Processing 14(1), 50–57 (2006)

11. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representa-
tions. Signal Processing 81(11), 2353–2362 (2001)



Underdetermined Audio Source Separation using Laplacian Mixture Modelling 31

12. Cardoso, J.F.: Blind signal separation: statistical principles. Proceedings of the IEEE 9(10),
2009–2025 (1998)

13. Cemgil, A., Févotte, C., Godsill, S.: Variational and stochastic inference for bayesian source
separation. Digital Signal Processing 17, 891913 (2007)

14. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley and Sons
(2002)

15. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Anal-
ysis and Applications. Academic Press (2010). 856 pages

16. Daudet, L., Sandler, M.: MDCT analysis of sinusoids: explicit results and applications to
coding artifacts reduction. IEEE Trans. on Speech and Audio Processing 12(3), 302 – 312
(2004)

17. Davies, M., Daudet, L.: Sparse audio representations using the mclt. Signal Processing 86(3),
358–368 (2006)

18. Davies, M., Mitianoudis, N.: A simple mixture model for sparse overcomplete ICA. IEE
proceedings in Vision, Image and Signal Processing 151(1), 35–43 (2004)

19. Dempster, A.P., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM
algorithm. J. of the Royal Statistical Society, ser. B 39, 1–38 (1977)

20. Devroye, L.: Non-Uniform Random Variate Generation. New York: Springer-Verlag (1986)
21. Dhillon, I., Sra, S.: Modeling Data using Directional Distributions. Tech. rep., Technical

Report TR-03-06, University of Texas at Austin, Austin, TX (2003)
22. Duarte, L., Suyama, R., Rivet, B., Attux, R., Romano, J., Jutten, C.: Blind compensation of

nonlinear distortions: Application to source separation of post-nonlinear mixtures. IEEE Trans
on Signal Processing 60(11), 5832–5844 (2012)

23. Duong, N., Vincent, E., Gribonval, R.: Under-determined reverberant audio source separa-
tion using a full-rank spatial covariance model. IEEE Trans. Audio, Speech, and Language
Processing 18(7), 1830–1840 (2010)

24. Eriksson, J., Koivunen, V.: Identifiability, separability, and uniqueness of linear ica models.
IEEE Signal Processing Letters 11(7), 601–604 (2004)

25. Févotte, C., Godsill, S.: A bayesian approach to blind separation of sparse sources. IEEE
Trans. on Audio, Speech and Language Processing 14(6), 2174–2188 (2006)

26. Févotte, C., Gribonval, R., Vincent, E.: BSS EVAL Toolbox User Guide. Tech. rep., IRISA
Technical Report 1706, Rennes, France, April 2005, http://www.irisa.fr/metiss/bss eval/

27. Fisher, N.: Statistical Analysis of Circular Data. Cambridge University Press (1993)
28. Girolami, M.: A variational method for learning sparse and overcomplete representations.

Neural Computation 13(11), 2517–2532 (2001)
29. Gribonval, R., Nielsen, M.: Sparse decomposition in unions of bases. IEEE Trans. Information

Theory 49(12), 3320–3325 (2003)
30. Hyvärinen, A.: Independent Component Analysis in the presence of Gaussian Noise by Max-

imizing Joint Likelihood. Neurocomputing 22, 49–67 (1998)
31. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, New

York (2001). URL http://www.cis.hut.fi/projects/ica/book/. 481+xxii pages
32. Jammalamadaka, S., Sengupta, A.: Topics in Circular Statistics. World Scientific (2001)
33. Jutten, C., Karhunen, J.: Advances in nonlinear blind source separation. In: Proc. of 4th Int.

Symp. on Independent Component Analysis and Blind Signal Separation (ICA2003), pp. 245–
256. Nara, Japan (2003)

34. Kreyszig, E.: Advanced Engineering Mathematics. Wiley (1998)
35. Lee, T.W., Bell, A.J., Lambert, R.: Blind separation of delayed and convolved sources. In:

Advances in Neural Information Processing Systems, vol. 9, pp. 758–764. MIT Press (1997)
36. Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources

than mixtures using overcomplete representations. IEEE Signal Processing Letters 4(5) (1999)
37. Lewicki, M.: Efficient coding of natural sounds. Nature Neuroscience 5(4), 356–363 (2002)
38. Lewicki, M., Sejnowski, T.: Learning Overcomplete Representations. Neural Computation

12, 337–365 (2000)



32 Nikolaos Mitianoudis

39. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–
297. Berkeley, California (1967)

40. Mardia, K., Kanti, V., Jupp, P.: Directional Statistics. Wiley (1999)
41. Mitianoudis, N.: A Directional Laplacian Density for Underdetermined Audio Source Separa-

tion. In: 20th International Conference on Artificial Neural Networks (ICANN). Thessaloniki,
Greece (2010)

42. Mitianoudis, N., Davies, M.: Audio source separation of convolutive mixtures. IEEE Trans.
Audio and Speech Processing 11(5), 489 –497 (2003)

43. Mitianoudis, N., Davies, M.: Permutation alignment for Frequency Domain ICA using sub-
space beamforming methods. In: Proc. Int. Workshop on Independent Component Analysis
and Source Separation (ICA2004), pp. 127–132. Granada, Spain (2004)

44. Mitianoudis, N., Stathaki, T.: Batch and Online Underdetermined Source Separation using
Laplacian Mixture Models. IEEE Transactions on Audio, Speech and Language Processing
15(6), 1818–1832 (2007)

45. Mitianoudis, N., Stathaki, T.: Underdetermined Source Separation using Mixtures of Warped
Laplacians. In: International Conference on Independent Component Analysis and Source
Separation (ICA). London, UK (2007)

46. Moulines, E., Cardoso, J.F., Gassiat, E.: Maximum likelihood for blind separation and de-
convolution of noisy signals using mixture models. In: Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP’97), pp. 3617–3620. Munich, Germany (1997)

47. O’Grady, P., Pearlmutter, B.: Hard-LOST: Modified K-Means for oriented lines. In: Proceed-
ings of the Irish Signals and Systems Conference, pp. 247–252. Ireland (2004)

48. O’Grady, P., Pearlmutter, B.: Soft-LOST: EM on a mixture of oriented lines. In: Proc. Inter-
national Conference on Independent Component Analysis 2004, pp. 428–435. Granada, Spain
(2004)

49. Pajunen, P., Hyvärinen, A., Karhunen, J.: Nonlinear blind source separation by self-organizing
maps. In: Proc. Int. Conf. on Neural Information Processing, pp. 1207–1210. Hong Kong
(1996)

50. Plumbley, M., Abdallah, S., Blumensath, T., Davies, M.: Sparse representations of polyphonic
music. Signal Processing 86(3), 417–431 (2006)

51. Rickard, S., Balan, R., Rosca, J.: Real-time time-frequency based blind source separation. In:
Proc. ICA2001, pp. 651–656. San Diego, CA (2001)

52. Sawada, H., Araki, S., Makino, S.: A two-stage frequency-domain blind source separation
method for underdetermined convolutive mixtures. In: IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA 2007), pp. 139–142 (2007)

53. Sawada, H., Araki, S., Makino, S.: Underdetermined convolutive blind source separation via
frequency bin-wise clustering and permutation alignment. IEEE Trans. Audio, Speech, and
Language Processing 19(3), 516–527 (2011)

54. Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the
permutation problem of frequency-domain blind source separation. IEEE Trans. Speech and
Audio Processing 12(5), 75–87 (2004)

55. Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocom-
puting 22, 21–34 (1998)

56. Smaragdis, P., Boufounos, P.: Position and trajectory learning for microphone arrays. IEEE
Trans. Audio, Speech, and Language Processing 15(1), 358–368 (2007)

57. Torkkola, K.: Blind separation of delayed and convolved sources. In: S. Haykin (ed.) Unsu-
pervised Adaptive Filtering, Vol. I, pp. 321–375. Wiley (2000)

58. Vincent, E., Arberet, S., Gribonval, R.: Underdetermined instantaneous audio source separa-
tion via local gaussian modeling. In: 8th Int. Conf. on Independent Component Analysis and
Signal Separation (ICA), pp. 775–782. Paraty, Brazil (2009)

59. Vincent, E., Gribonval, R., Fevotte, C., Nesbit, A., Plumbley, M., Davies, M., Daudet,
L.: BASS-dB: the blind audio source separation evaluation database. URL http://bass-
db.gforge.inria.fr/BASS-dB/



Underdetermined Audio Source Separation using Laplacian Mixture Modelling 33

60. Winter, S., Kellermann, W., Sawada, H., Makino, S.: Map based underdetermined blind
source separation of convolutive mixtures by hierarchical clustering and l1-norm minimiza-
tion. EURASIP J. Adv. Signal Process. 1 (2007)

61. Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency masking.
IEEE Trans. Signal Processing 52(7), 1830–1847 (2004)

62. Zibulevsky, M., Kisilev, P., Zeevi, Y., Pearlmutter, B.: Blind source separation via multinode
sparse representation. Advances in Neural Information Processing Systems 14, 1049–1056
(2002)


