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ABSTRACT

We propose a new biometric trait based on facial motion am-
plification. The main advantage of the new biometric char-
acteristic is that it does not rely on the visibility of critical
facial features, such as nose, mouth, iris, or eyebrows. This
makes it effective even when the respective areas are covered.
Using the proposed system, facial image sequences are cap-
tured using an ordinary video camera and facial blood flow is
calculated by means of small motion amplification. The cal-
culated blood flow is captured from limited facial areas and
is represented as a template that is suitable for identification
purposes. Experiments on a new database show promising
performance of the proposed approach, and provide evidence
of the discriminatory capacity of the proposed biometric.

Index Terms— Biometrics, Motion Amplification, Facial
Blood Flow

1. INTRODUCTION

The importance of biometric identification has been increas-
ing steadily in the past couple of decades and this trend is un-
likely to diminish soon. Traditional biometric systems, such
as those performing fingerprint, iris, or face recognition, have
evolved significantly over the years and are now widely used
in numerous identification and access control situations due to
their excellent identification capabilities, even when applied
to large databases.

The evolution of traditional biometric methods, however,
has taken place in parallel with the invention of new biometric
modalities, such as palm recognition, vein recognition, or ear
recognition. Such new biometrics either aim to achieve more
effective stand-alone identification or offer superior perfor-
mance through their use in multi-biometric systems [1]. In
this context, each new biometric approach complements ex-
isting biometrics and strengthens the performance of tradi-
tional biometric systems.

The advent of methods for the detection and analysis of
micro movements [2] offers a new direction for devising and
deploying new biometrics. In this paper, we propose the use
of patterns representing Facial Blood Flow (FBF) as a new
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Fig. 1. Block diagram of the proposed person identification
system based on Facial Blood Flow.
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way to identify individuals. Specifically, we examine the dis-
criminatory capacity of Facial Blood Flow (captured in a con-
tactless way) and we try to reach conclusions regarding its
potential use as biometric. Our proposed method does not di-
rectly assess the similarity of facial texture between subjects,
but instead it extracts spatio-temporal blood flow information,
which is used as a distinctive biometric. The proposed method
is tested by observing image sequences depicting small fa-
cial areas, which exhibit variations in blood distribution dur-
ing each heartbeat cycle. Although from the outset it can be
claimed that such an approach will not be able to rival the
current best-performing identification strategies, the proposed
approach has a number of features that make it an excellent
complement to traditional face recognition.

The paper is organized as follows. In Section 2, motion
amplification is outlined as the basis for the extraction of the
new biometric information. In Section 3, blood flows are ex-
tracted from specific facial areas and combined onto a single
feature vector. In Section 4, classification is performed using
a deep neural networks. Experiments are presented in Section
5, in order to show the discriminatory capacity of the new
biometric. Finally, conclusions are drawn in Section 6.

2. MOTION AMPLIFICATION

Video Amplification was initially proposed by Wu et al. [2].
This seminal paper introduced a technique for amplifying
small motions in common videos and make them visible to
the human eye. As an initial example, the authors of [2]
demonstrated that the non-visible flow of blood in the face



Fig. 2. Sample frames showing Facial Blood Flow extracted
using motion amplification.

can be amplified and be observed by the human eye. In
[2], each frame of the video sequence is decomposed into a
Laplacian pyramid, thus constructing a 3D stack. The first
two dimensions contain the Laplacian pyramid decomposi-
tion and the third dimension its evolution over time. Wu et al.
[2] process the temporal evolution of each pixel separately in
order to reveal the hidden motion that exists in the video. Ad-
ditional mathematical insight into this procedure is presented
in [2], [4].

The work in [3] presented extensions of the framework
in [2]. The first extension was to use a complex steerable
pyramid decomposition instead of the Laplacian pyramid de-
composition. In order to improve the motion amplification of
the image’s edges, i.e., amplify the non-visible oscillations of
“still” objects in the scene, they apply the same amplification
procedure, as described earlier, but only on the phase of the
complex steerable pyramid decomposition. This is based on
the observation that the phase of the complex steerable de-
composition, in a similar manner to the Fourier transform,
contains most of the image’s edge information.

In this paper, we use the methods in [2, 3] in order to
capture motion information that can serve as the basis for the
extraction of hidden human features with discriminatory ca-
pacity.

3. FACIAL BLOOD-FLOW BASED IDENTIFICATION

3.1. Video capture and pre-processing

An outline of the proposed system is shown in Fig. 1. The
first step of our method is to capture the subject’s face us-
ing an imaging device. Since we want to monitor blood flow,
this implies a periodical phenomenon of no more than 2 Hz
(60-90 pulses per min is the average heart rate for a resting
person). Thus, a high frame-rate camera is not required for
this experiment. An ordinary camera of 30 fps (i.e. 30 Hz) is
sufficient to capture the facial blood flow, since the Nyquist
frequency is 4 Hz. The second requirement is that the sub-
ject stays as still as possible during the capture. We need to
have two captures of each subject. The first one will be used
for the system’s training, whereas the second will be used for
the system’s testing phase. We also used natural day light in

the capture room, in order to avoid additional oscillations by
artificial light (i.e. oscillations from the mains).

No human being can stand perfectly still for more than
a few seconds, and even then, there are still small motions
that can affect the result, especially after a large amplification.
Given these conditions, the motion amplification will amplify
these motions, thus increasing the noise of the final signal, or
even destroying the result, because of very large motions. So,
the next step in our system is to attenuate these larger motions,
without much affecting the result. This is achieved by using
motion amplification with a negative amplification factor «,
in the range of [-1,0). This way, the motions not related to
the blood movements are attenuated, but not removed [3]. In
our approach, we used the MATLAB code provided by [3] for
phase-based attenuation.

3.2. Facial Blood Flow Amplification

Once the large motions have been attenuated, the next step
is to amplify the blood-flow in the face. This is performed
using the Eulerian Video Magnification method by Wu et al.
[2]. We used an amplification factor a = 350 for this task.
Through this process, we obtain a sequence of images F rep-
resenting blood flow in the subject’s face. To reduce the com-
putational complexity, we formed a grayscale version of that
image sequence, whereby pixel intensity is proportional to
blood flow in the subject’s face. The frequencies that are am-
plified by the system are between 1 and 2 Hz, which were
chosen to match the average normal human heart rate. In this
way, unwanted micro-movements are not amplified. Finally,
since we are interested only in the blood flow and not in the
actual video content, the output of this stage keeps only the
amplification that is added to the original video. Some RGB
frames from a typical amplified Facial Blood Flow video are
shown in Fig. 2.

3.3. Extraction of facial regions of interest

It is computationally inefficient to process the whole ampli-
fied video extracted from the previous stage. In addition, sev-
eral features of people’s face may hinder the view of facial
blood-flow. These features may include possible facial hair,
such as a beard and a moustache. Moreover, other features,
such as the eyes and consequently eye-flickering, may also
confuse the recognizer. For this reason, we focus only on
feature regions where blood flow is visible and easily identi-
fiable. Thus, we agreed on using the areas of the two cheeks
and the forehead. These areas are usually covered by human
skin and possible hair on the forehead can be removed tem-
porarily for identification.

To automatically locate these regions of interest, the first
step is to detect the face area in the motion-attenuated video.
This is performed using the algorithm of Zhu and Ramadan
[5]. The next step is to identify several keypoints/landmarks



in the human face. To achieve this, we fitted an Active Ap-
pearance Model (AAM) [6]. The AAM matches a set of stan-
dard points/landmarks on the face. This is performed for all
video frames. In our study, we used the robust implementa-
tion of AAM fitting by Bulat and Tzimiropoulos [7]. Once we
know the position of several face landmarks (see Fig. 4(b)),
we can approximately define the position of three areas of in-
terest. The first one is a lower part of the forehead. The other
two are parts of the cheeks, one left and one right. To keep
the algorithm simple, we defined these three regions as rect-
angles of fixed dimensions. In our experiments, the forehead
region was selected to be a rectangle of dimensions 70 x 100,
while the left and right cheek regions were selected to be rect-
angles of dimensions 50 x 50. The exact position of the fore-
head region is determined with reference to key-points on the
eyebrows and the nose. The position of the cheek regions is
determined by correlating key-points on the lower-eyes and
nose. An example of the detected regions of interest is shown
in Fig. 4(c).
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Fig. 3. Convolutional neural network for template classifica-
tion.

3.4. Construction of Facial Blood Flow (FBF) templates

For recognizing, we define a template 7", which is constructed
by averaging consecutive blood flow images JF representing
blood flow in a short period of time. In this work we consid-
ered sequences of 1 second, as this will allow us to capture at
least one heart cycle. For region 7, with r = 1, 2, 3, we define
template 7, as

1 N
T, = N;H(x,w (1)

where (2, y) denotes pixel spatial coordinates and JF,. denotes
the blood flow region r at time ¢,¢ = 1,..., N. The number
N of frames used for the construction of the template was
chosen so as to correspond to 2 seconds. The 3 regions 7,. are
collated to form a single template image 7 (see Fig. 4(e)).

4. PERSON IDENTIFICATION USING FCNS AND
CNNS

The template images (see Fig. 4(e)) constructed in the pre-
vious stage are input to a supervised classifier. In this work,
we experiment with deep Fully Connected Neural Network
(FCN) and Convolutional Neural Network (CNN) classifiers
[8].

We examined three FCN and one CNN architecture. Al-
though in all architectures the number of neurons in the input
layer is equal to the number of pixels on the FBF template,
the rest of these architectures differ. Specifically, FCN1 is a
shallow architecture, consisting of 3 layers with 200, 100 and
29 neurons each. The last layer is the classification softmax
layer with 29 outputs, equal to the number of classes (people)
in the experiment. FCN2 is a deeper architecture consisting of
5 layers with 200, 200, 100, 50 and 29 neurons each. Finally,
FCN3 consists of 6 layers with 500, 500, 500, 250, 100 and
29 neurons. All three networks feature a Dropout mechanism
before the last layer with p = 0.5. All neurons use the ReLU
activation function. The CNN architecture consists of 3 con-
volutional stages (16, 32 and 32 3 x 3 filters respectively) and
1 FCN stage (512 neurons). All convolutional stages feature
the ReLU activation function, a 2 x 2 Max-Pooling stage and
a dropout layer with p = 0.25. The FCN stage uses the ReLU
and a dropout layer with p = 0.5. The last layer is a softmax
classification layer.

For all architectures, we used the Adam optimizer [9] with
the categorical cross-entropy loss function, since we deal with
more than 2 output classes [8]. The learning rate was set to
1 = 0.01 and the networks were trained for 800 epochs.

5. EXPERIMENTAL EVALUATION

5.1. Dataset

To evaluate the effectiveness of Facial Blood Flow (FBF) as
a biometric trait, we recorded a new dataset, under recording
conditions that took into account possible problems arising
during the subsequent motion amplification. For the record-
ing of facial image sequences, we used a GoPro Hero 4 Black
camera with 1280 x 720 resolution and 30 frames per sec-
ond. A total of 29 subjects were recorded in a room with
natural light, which helped avoid oscillations from artificial
light sources. The subjects were seated on a chair at a fixed
distance from the camera and were instructed to stay as mo-
tionless as possible during the recording. For each subject,
we conducted two almost consecutive 20-second recordings,
which were used for training purposes. For testing, we cap-
tured another 20-second recording from each subject after an
hour. The compiled database is summarized in Table 1.

Table 1. Description of the new dataset.

Database I

Number of subjects 29
Frame-rate (fps) 30
Resolution 1280 X 720
Sequence duration (seconds) 20
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Fig. 4. (a) Original face, (b) AAM fit on face (c) Detection of the proposed facial regions of interest, (d) Blood flow represen-
tation for the entire face, constructed from motion-amplified face images in a period of 2 seconds, (e) Template 7 containing
only the collated regions of interest (forehead and two cheeks, yellow-box regions).

5.2. Experiments

We implemented the Movement Motion Attenuation and the
Facial Blood Flow Amplification stages based on the code
provided by [2] and [3] respectively. The face isolation and
AAM fitting stages were based on the method in [7]. We
implemented the four DNN architectures in Python using
TensorFlow, Keras and an NVidia Titan X Pascal GPU. The
two systems were trained using the training dataset for 800
epochs. We consequently used the testing dataset for assess-
ing the system’s performance.

Since to the best of our knowledge there are no other
works exploring the use of FBF as a biometric, we cannot
conduct a straightforward comparison of our system to other
systems. Therefore, we focus on investigating the inherent
discriminatory capacity of FBF and its potential use as a bio-
metric trait. To this end, we first measure the performance
of our methodology using only the forehead patch. Subse-
quently, we use data from all three facial regions shown in 4,
which do not include critical features, such as nose, mouth,
iris, or eyebrows.

Results are summarized in Table 2. As seen, between
the four architectures, the deepest CNN architecture (CNN)
yields the best results, which implies that spatial informa-
tion is important. Between the FCN architectures, the shallow
FCN1 exhibits the best performance. Interestingly, identifica-
tion performance is very promising even when only the fore-
head data are used. When all three areas are used, the best
recognition rate achieved is 93.84%. These results demon-
strate that Facial Blood Flow (FBF) has discriminatory capac-
ity that can be used for person identification. Although FBF
information from the forehead alone can act as a basic dis-
criminator, the additional contribution from the other two fa-
cial regions yields significantly increased performance, which
is impressive, considering that no facial texture was used and
no conventional facial features were taken into account in the
classification stage.

Considering that the proposed system is rather simple, it is
expected that improvements in the system’s various process-
ing stages will result in reliable performance even in cases

when smaller facial patches are used. This methodology can
potentially lead to biometric systems that can operate reliably
even when important parts of the face are covered. This will
result in effective facial recognition technology that does not
rely on the availability of critical facial data.

Table 2. Recognition Accuracy for the four classification ar-
chitectures using forehead data only or using all three areas.

Architecture || Forehead | Three areas |

FCN1 68.63 % 87.96 %
FCN2 72.55 % 84.59 %
FCN3 60.22 % 85.15%
CNN 71.43 % 93.84 %

6. CONCLUSIONS

We proposed a new biometric trait based on facial motion
amplification. Using the proposed system, facial image se-
quences were captured using an ordinary video camera and
facial blood flow was calculated by means of small motion
amplification. The calculated blood flow was captured from
limited facial areas and was represented as a template that is
suitable for identification purposes. Experiments on a new
dataset showed the promising performance of the proposed
system and provided evidence of the discriminatory capacity
of the proposed biometric.
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