
Multidimensional directional steerable filters - Theory

and application to 3D flow estimation

Dimitrios S. Alexiadisa, Nikolaos Mitianoudisa, Tania Stathakib

aDemocritus University of Thrace, Department of Electrical & Computer Engineering,
University Campus Xanthi- Kimmeria 67100 Xanthi, Greece

bImperial College of London, Department. of Electrical & Electronic Engineering,
Exhibition road, SW7 2AZ, London, U.K

Abstract

In this paper, a thorough theoretical analysis on the construction of multi-
dimensional directional steerable filters is given. Steerable filters have been
constructed for up to three dimensions. We extend the relevant theory to
multiple dimensions and construct multi-dimensional steerable filters, as well
as quadrature pairs of such filters. Formulating the multi-dimensional motion
estimation problem in the spatiotemporal frequency domain, it is shown that
motion manifests itself as energy concentration along “motion hyper-planes”
in that domain. Subsequently, using the constucted multi-dimensional filters,
we formulate the “hyper-donut” mechanism, i.e. a mechanism to efficiently
“measure” the “motion energy” on a “motion hyper-plane”. On top of that,
rigorous mathematical analysis on the use of the constructed filters in the
dense flow estimation task is given. Based on the theoretical developments,
a steerable filter-based algorithm is formulated, in its simplest possible form,
for estimating 3D flow in sequences of volumetric or point-cloud data. Ex-
perimental results on simulated and real-world data verify the validity of our
arguments and the effectiveness of the proposed method.

Keywords: steerable filters, multi-dimensional signal processing, frequency
domain, 3D flow estimation

∗Corresponding author, Tel: +30 6944 290233, Fax: +30 25410 79569
Email address: dalexiad@gmail.com; dalexiad@iti.gr (Dimitrios S. Alexiadis)

Preprint submitted to Image and Vision Computing September 10, 2017

*Manuscript
Click here to view linked References

http://eeslive.elsevier.com/imavis/viewRCResults.aspx?pdf=1&docID=10002&rev=1&fileID=407281&msid={3BE23CA3-0C81-49E2-A20D-C6DC2F9CAF20}

1. Introduction

Directional filters have been applied in many computer vision and image
processing tasks, including edge detection, texture analysis, image compres-
sion and 2D motion analysis. In such tasks, similar filters oriented at various
directions, are applied to the input 2D or 3D signal under adaptive control
and the filters’ output is examined as a function of orientation. The most
straightforward approach to compute the responses of a directional filter at
many different orientations is to apply many versions of the same filter that
differ only by a rotation. However, Freeman and Adelson [1, 2] introduced
the notion of “steerable” directional filters, to describe a class of filters in
which a filter at an arbitrary orientation can be interpolated (“steered”) as
a linear combination of a few predefined “basic filters”. This enables the cal-
culation of responses at arbitrary orientations by interpolation between the
basic filter responses, letting one to develop efficient algorithmic solutions.

Since a filter’s output depends on the local phase of the input image, the
design and use of quadrature pairs of oriented steerable filters (i.e. pairs of
filters that are the Hilbert transform of each other, commonly a real-valued
and a complex-valued filter) is also essential, allowing adaptive control over
phase and orientation [1], as well as local phase-independent measurements
of oriented energy [3].

In this work, we provide a thorough theoretical analysis for the con-
struction and use of multi-dimensional steerable directional filters, as well as
quadrature pairs of such filters, generalizing the theory into multiple dimen-
sions. Therefore, in a generic context and from a theoretical point-of-view,
the paper provides a toolbox for multi-dimensional signal processing and
addresses the problem of “structure” analysis in multi-dimensional signals.

From a practical point-of-view, we provide a spatiotemporal framework
for motion (flow) analysis in sequences of multi-dimensional signals. The
problem is handled directly in multiple dimensions. The idea is based on
the fact that motions in a sequence of N -D data manifest as directional
“structures” in the (N + 1)-D space-time domain. This is a generalization of
Adelson and Bergen’s idea [4] that 2D motion appears as a linear structure in
the 3D space-time and can be handled as such. Motivated by the fact that,
according to early studies, human motion perception mechanisms can be
modeled based on frequency domain considerations, we formulate and study
the problem in that domain. It is shown that N -D motion manifests itself as
energy concentration along “motion hyper-planes” in the (N+1)-dimensional

2

frequency domain.
In order to provide an efficient solution to the N -D flow problem, we for-

mulate the “Hyper-donut mechanism” for both simple directional filters and
quadrature pairs, a generalization of the “Donut mechanism” [5, 3]. This
mechanism “samples” the “motion energy” along equally-distributed direc-
tions on a “motion hyper-plane”, enabling the efficient use of steerable filters
in the flow estimation problem. The generalization of relevant theory to mul-
tiple dimensions is not straightforward, due to fact that standard 2D or 3D
operations (e.g. cross product) do not always have a corresponding operation
in multiple dimensions, while direct visualization in multiple dimensions is
not possible.

From an experimentation point-of-view, the problem of 3D flow estima-
tion in sequences of 3D data is addressed. More specifically, we work with
sequences of pure volumetric data, such as medical MRI data, as well as with
sequences of 3D point-clouds to address the problem of 3D scene-flow [6] es-
timation for scene analysis and understanding. The formulated algorithms
are provided in their simplest possible form to show-case the validity of the
developed theory. The proposed algorithms are among the few ones that
handle 3D flow directly in three dimensions. Its efficiency is demonstrated
by extensive experiments.

1.1. Previous relevant work

Steerable filters: Freeman and Adelson in [1, 2] elucidated an elegant the-
ory for steerable filters, constructed 2D and 3D filters and quadrature pairs
from derivatives of Gaussians (DOG filters) and demonstrated their use in
2D image analysis tasks. Three-dimensional Gabor steerable filters have been
applied to the 2D flow estimation problem in [7]. Three-dimensional sepa-
rable DOG steerable filters have been also used in [8] for motion analysis
in video surveillance tasks. Andersson [9] constructed 3D directional cosine
filters of order L ≤ 2 (wide filters) and presented the corresponding ideas for
the construction of quadrature pairs. Simoncelli [5], introducing the “Donut
mechanism” for motion estimation, highlighted the importance of narrow di-
rectional filters for the computation of multiple motions, without however
paying much attention to filters’ steerability. In [3], the theory was gener-
alized towards the construction of 3D steerable directional cosine filters and
quadrature pairs of arbitrary high order (narrow filters). The “Donut mecha-
nism” was also extended for quadrature pairs and the theory was applied for

3

2D motion estimation. In the current work, we generalize the relevant the-
ory towards the construction of N -dimensional, arbitrary narrow, directional
steerable filters and quadrature pairs, as well as we formulate a “Hyper-donut
mechanism” for N -D flow estimation. A small portion of the work on the
construction of N -D directional filters was presented in our preliminary pa-
per [10], where the 3D flow task was also handled by a simple algorithm that
according to our experimental experience is inferior to the one proposed in
this paper.

Three-dimensional flow estimation: Although the problem of 2D flow
estimation in image sequences has been extensively studied during the last
decades [11, 12, 13, 14, 3], only few recent works deal with 3D motion es-
timation directly in 4D data (3D+Time). These few approaches are based
on extending standard well-known differential 2D approaches [11, 12, 13] or
block-based matching. More specifically, in [15, 16] the well-known Horn-
Schunck [11] and Lucas-Kanade [12] methods have been extended in three
dimensions. They are applied in [16] to experiment with gated MRI datasets
and calculate the 3D flow for one synchronized heart beat. The 3D Lucas-
Kanade method has been also applied in [17] for motion analysis in T1-
weighted MRI volume sequences. The same methods, i.e. the 3D local least
squares framework (Lucas-Kanade) and the global regularization framework
(Horn-Schunck) have been employed in [18, 19] to compute the 3D velocity
field from radial velocity measures of a Doppler radar. Three-dimensional
motion estimation was employed in [20] for the 4D medical data compres-
sion task. In that work, motion estimation is performed by 3D block (cube)
matching. However, it is known that block-matching techniques do not nec-
essarily output the actual flow field and are appropriate mainly for compres-
sion tasks. Finally, in [21] a combinational 3D matching (correlation) and
differential method is proposed for 3D motion estimation in “Particle Image
Velocimetry (PIV)” data. However, experimental results on synthetic data
are only presented.

We highlight here that only the above referenced methods are similar to
the proposed one, in the sense that they take the same input (i.e. a sequence
of volumetric data) and output the same kind of data, while they serve
similar tasks (apart from block-matching techniques that serve mainly for
compression). Among the available methods, we selected to compare against
a differential one and specifically the Lucas-Kanade (LK) method, which
is known to outperform the differential Horn-Schunck and region-matching

4

methods in the 2D case [13].
Finally, in this subsection, we have to mention the “range flow” estimation

method [22], which extends standard 2D differential methods for computing
the flow in sequences of depth (partial 3D) images, rather than volume data.

Less relevant methods - Scene-flow: In this paper, we also address the
problem of motion estimation in sequences of 3D point-clouds. This is similar
to the “scene-flow” estimation problem.

The term “scene-flow” was introduced in [6] and refers to the flow that
describes the motion at every surface point of a 3D scene. In that paper, the
scene-flow is recovered from multi-view RGB image sequences. To extract
the scene-flow, the 2D optical flow in each of the input images is estimated
using standard 2D optical-flow techniques and the 3D flow is extracted by
formulating and solving an over-determined system of equations for each
voxel occupied by a surface point. In another work [23], the scene flow is
extracted from multi-view image sequences and used to calculate local 3D
motion descriptors for human action recognition. The 2D optical-flow is
initially estimated in each RGB image and the scene flow is extracted from
its 2D projections. Most of the existing estimation methods, similarly to the
referenced papers, extract the scene-flow from its 2D flow projections, which
is a relatively fast but approximate solution. In addition, the problem of
fusing 2D flows from multiple cameras has to be handled, which for example
requires visibility (occlusion) information. Although such methods compute
initially the flow on the image plane, they require the 3D scene geometry to
be first reconstructed, in order to map the 2D flows onto 3D.

One could additionally associate the 3D flow estimation task with the
problem of registering sequential 3D captures of non-rigidly deforming ob-
jects. Therefore, one might refer here to a class of non-rigid 3D registration
methods, such as [24, 25], which solve for correspondences between points
on a source and a target scan and estimate a warping field that brings the
source scan into alignment with the target one. However, such methods can
handle specific kinds of 3D geometries, while they serve the specific task of
3D scan registration, rather than scene understanding tasks.

Compared to the methods referenced in this paragraph, the proposed
method is more generic in the sense that it is formulated for volumetric input
sequences and therefore it can serve additional tasks, such as flow estimation
in medical 3D image sequences.

5

2. Theoretical developments: Multi-dimensional flow in the fre-
quency domain

2.1. Flow in the frequency domain

Consider a scalar-valued function f0(xs), where xs is the spatial coordi-
nates vector. Let also its evolution with time be denoted as f(xs; t), such
that it equals f0(xs) at time t=0. We consider the general case where f(xs; t)
is a function of the N -dimensional space-time. For N = 3, it corresponds to
a sequence of images and for N = 4 to a sequence of volumes.

In the simplest flow model, we assume that the flow in a small spatio-
temporal neighborhood is approximated by a single translational velocity
vector vo, namely f(xs; t) = f0(xs − vot). Considering the spatial Fourier-
Transform (FT) for each time instance, due to the shift property of FT, it
holds: f̃(ωs; t) = F0(ωs)e

−j ωT
svo t, where ωs denotes the (N -1)-D spatial

frequency vector, j =
√
−1 and F0(ωs) is the spatial FT of f0(xs). Taking

also the temporal FT, it is straightforward to show that:

|F (ωs;ωt)| = |F0(ωs)| δ(ωt + ωT
svo), (1)

where δ denotes the delta function.

Conclusion #1: The energy in the N -D spatiotemporal frequency domain

is concentrated along a hyper-plane through the origin ωt + ωT
svo = 0, or

equivalently
Motion hyper-plane: ωT · [vT

o, 1]T = 0, (2)

where ω = [ωT
s;ωt]

T is the N -D spatiotemporal frequency vector. Similarly,
from now on, x = [xT

s; t]
T is used to denote N -D space-time position.

2.2. Objective function for flow estimation - Rationale behind the use of steer-
able filters

According to Conclusion #1, the estimation of the unknown velocity
vector can be cast as a hyper-plane detection problem in the N -D space.
More specifically, based on (1), an objective function of the form P (v) =∫
ω
|F (ωs;ωt)|2 δ(ωt+ωT

sv) dω is maximized at v equal to the actual velocity.
The rational behind the construction and use of steerable filters is based

on the following facts: i) The calculation of the function P (v), as defined
previously, requires the calculation of an integral (sum) along a hyper-plane
for each candidate velocity; The summation along hyper-planes corresponds

6

to a generalized Hough transform in the N -D space, which is computation-
ally prohibitive - On the other hand the use of steerable filters can lead to
much faster solutions, due to the “steerability” property of filters; ii) Due
to deviations from the translational model assumption, in practice the en-
ergy in the spatiotemporal FT space is concentrated “near” a motion plane
and not “along” the plane. Therefore, it would be beneficial to use a func-
tional that considers the energy around (not along) a motion plane. Using
directional steerable filters and formulating the “(Hyper-)dunut” mechanism,
the energy inside a (hyper-)donut, aligned with the plane, is measured; iii)
Although the filters are constructed in the frequency domain, it is straight-
forward to consider the filters’ responses in the original space-time domain
(via the Parseval’s equation) and subsequently formulate spatiotemporally
local objective functions, appropriate for dense flow-field estimation.

3. Theoretical developments: Multidimensional directional steer-
able filters and quadrature pairs

3.1. Directional steerable filters

3.1.1. Definition of N-D directional filters

Let ω = [ω1, ω2, . . . , ωN]T denote a N -D frequency vector and ω̂ = ω/||ω||
the corresponding unit-normalized vector. A N -D directional filter of order
L, oriented along the unit vector d = [d1, d2, . . . , dN]T in the N -D frequency
domain, is defined by

BL
d (ω) := G

(
||ω||

)
(ω̂T · d)L = G

(
||ω||

)
||ω||−L

(
N∑
n=1

ωndn

)L

, (3)

where G
(
||ω||

)
can be any radial function, which will be ignored in the rest

of the paper (without loss of generality), since it is independent to direction
d. Additionally, for the sake of notational simplicity, we drop the filter’s
order L, wherever it is implied.

By definition, the introduced directional filters present even or odd sym-
metry in the frequency domain, for even or odd L, respectively. Consequently,
they are real- or imaginary-valued in the original space-time domain, respec-
tively. Additionally, the higher the order L of the filter, the narrower the
filter is and consequently its directional selectivity is stronger. In [3], it was
explained ([3], sec. 3.2.) and experimentally demonstrated that the use of

7

narrower filters may lead to more accurate flow estimates in 2D flow, espe-
cially near object boundaries. However, this comes at the cost of increased
computational effort.

In the next paragraph it is shown that a filter defined as in (3), can
be “steered” (interpolated) at an arbitrary orientation from a finite set of
linearly-independent directional basic filters.

3.1.2. Basis filters, steerability and interpolation formulas

According to the multinomial expansion theorem [26], (3) can be ex-
panded as follows:

Bd(ω) = ||ω||−L
∑
p

(
C(p1, p2, . . . , pN ;L)

N∏
n=1

dpnn

N∏
n=1

ωpnn

)
, (4)

where p = [p1, p2, . . . , pN]T contains non-negative integers that sum-up to
L. In other words, the summation runs for all combination of integers
p1, p2 . . . , pN ≥ 0 that sum up to L. The number of monomial terms equals

I0(N ;L) :=

(
L+N − 1
N − 1

)
=

(L+N − 1)!

(N − 1)!L!
=

N−1∏
n=1

(L+ n)

(N − 1)!
, (5)

while the expansion coefficients are given from: C(p1, p2, . . . , pN ;L) := L!
p1!p2!...pN !

.
In order to proceed, for notational simplicity, we define the vector:

c(ω) := ||ω||−L [
p1, .., pN ≥ 0

p1 + .. + pN = L

C(p1, .., pN ;L)
N∏
n=1

ωpnn]T. (6)

Example: For N = 4 and L = 2, we have the vector of length I0(4; 2) = 10

c(ω) := ||ω||−2[ω2
1, 2ω1ω2, 2ω1ω3, 2ω1ω4, ω

2
2, 2ω2ω3, 2ω2ω4, ω

2
3, 2ω3ω4, ω

2
4]T.

Similarly, we define the vector

v(d) := [
p1, .., pN ≥ 0

p1 + .. + pN = L

N∏
n=1

dpnn]T. (7)

Using the above definitions and vector notation, (4) is rewritten as

Bd(ω) = v(d)T · c(ω). (8)

8

Basis filters: Consider I ≥ I0(N ;L) basis filters Bdi
(ω), at the basic orien-

tations di, i = 1, 2, . . . , I. Denote as B(ω) := [Bd1(ω), Bd2(ω), ..., BdI
(ω)]T

the basis filters’ vector. Let also

U := [v(d1)T,v(d2)T, . . . ,v(dI)
T]T (9)

be a matrix of size I × I0(N ;L). Then, using (8) and the above definitions,
the set of basis filters is B(ω) = U · c(ω). Solving for c(ω), we get:

c(ω) = U−1 ·B(ω), (10)

where U−1 is the (pseudo-)inverse of U.

Interpolation formula: Using (10), (8) is written as:

Bd(ω) = v(d)T · U−1 ·B(ω) = t(d) ·B(ω) =
I∑
i=1

ti(d)Bdi
(ω), (11)

where t(d) := v(d)T · U−1 is the interpolation vector of length I. The rank of
matrix U should be at least I0(N ;L) so that U has a (pseudo-)inverse. This
means that in order to have a complete filter basis, it should contain at least
I0(N ;L) filters in indepedent directions.

Conclusion #2: A N -D directional filter of order L, oriented at an ar-

bitrary orientation d, defined as (3), can be interpolated from I ≥ I0(N ;L)
basic directional filters Bdi

(ω), using the interpolation formula (11).
From (5) it is evident that the number of basis filters increases with filter’s

order L and dimensionality N . For the 4D case (N = 4), the minimum
number of basic filters I0(L) is given in the second column of Table 2.

On the selection of basic filters directions: Throughout the strict the-
oretical analysis of previous paragraph, no constraints have been imposed on
the basic unit directions di. Indeed, Conclusion #2 is theoretically valid for
any selection of the basic filters directions. However, intuitively, distributing
the basis filters directions uniformly on the unit hyper-sphere sounds reason-
able, e.g it leads to a rotation-invariant system. A relevant analysis for the
3D case is given in [3], justifying a uniform selection of basic directions on the
unit sphere. Generally, in practical applications one has to take into account
the machine arithmetic precision and quantization noise. As a simple exam-
ple, finite arithmetic precision may lead to singularities in the calculation of
the inverse matrix U−1, if some rows of U (directions di) are close to linearly
dependent.

9

According to the above, we select (approximately) uniformly the basic
filters directions on the unit (hyper-)sphere. More specifically, since the
problem of distributing a number of points “uniformly” on a (hyper-) sphere
can be formulated in various ways, we use the solution to the “hard-spheres
problem” (best packing on the sphere) [27], which maximizes the smallest
distance among the points.

3.1.3. Filter responses and their “steerability”

As in subsection 2.1, we let f(x) denote a N -D spatiotemporal function
and F (ω) the corresponding spatiotemporal FT. Let also bd(x) denote a
directional filter in the original space-time domain, namely the inverse FT of
Bd(ω). The filter’s response in the frequency domain is denoted as Yd(ω) =
Bd(ω)F (ω), while in the original space-time domain it is yd(x) = bd(x) ∗
f(x), where (∗) stands for convolution.

Due to the linearity of FT (or convolution in the original space-time
domain), it is straightforward to show that the interpolation scheme of (11)
holds also for the filter responses, i.e. the response of a directional filter at
an arbitrary orientation can be interpolated from the responses of the basic
directional filters, namely Yd(ω) =

∑I
i=1 ti(d)Ydi

(ω). Hereinafter, whenever
we refer to the steerability of the filters, the same arguments hold for the
responses (and vice-versa).

3.2. Quadrature N-D steerable directional filters

The constructed directional filters are even- or odd-symmetric in the fre-
quency domain, for even or odd order L, respectively. In the 2D case (N = 2),
this means that filters are sensitive (have maximum response) at positions
with either line-like features or step edges, respectively, as with the real
(cosine) and imaginary (sine) part of 2D Gabor filters [1]. In the 3D case
(N = 3), even or odd filters are sensitive to plane-like features or planar step
edges, respectively, and so on. In other words, the response of the filters are
local phase-dependent. In order to enable a local phase-independent analy-
sis, quadrature filter pairs are constructed, i.e. pairs of even-odd filters that
differ in phase by π/2 along the filters direction [28, ch.13]:

Qd(ω) = Qeven
d (ω) +Qodd

d (ω) =

{
2Qeven

d (ω) if ω · d > 0

0 if ω · d ≤ 0.
(12)

In the next subsection, it is shown that steerable quadrature filters of
order M can be constructed as a linear combination of steerable filters of

10

(a) Qeven
d (ω) and Qodd

d (ω)

Mean
x

3
,x

4

{ qeven(x) } Mean
x

3
,x

4

{ qodd(x) }

(b) qeven
d (x) and qodd

d (x)

Figure 1: An example of 4D quadrature pair for M = 4, oriented along d = [0, 1, 0, 0]T.
(a) The pair in the frequency domain. An isosurface of the max-projection onto the 4th
dimension is shown; (b) The pair in the original space-time domain (a zoom around filter’s
center is drawn). The mean-projection onto the 3rd and 4th dimensions is shown.

orders 0 ≤ L ≤M :

Qd(ω) =
M∑
L=0

αM [L]BL
d (ω). (13)

A thorough theoretical analysis on the calculation of the coefficients αM [L] is
given in the next subsection. In case the reader wants to skip the theoretical
details, the values of the coefficients for N = 4 are given in Table 1.

An example of 4D steerable quadrature pairs for M = 4 is depicted in
Figure 1. One can observe the directional selectivity of the filters and the
even/odd symmetry.

11

Table 1: Coefficients aM for the construction of 4D quadrature filters

Order M αM [0] αM [1] αM [2] αM [3] αM [4] αM [5] αM [6]

2 0.1187 0.6920 0.7121
3 0.0265 0.3093 0.7843 0.5371
4 0.0055 0.1076 0.4872 0.7715 0.3946
5 0.0011 0.0323 0.2269 0.6123 0.7006 0.2858
6 0.0002 0.0088 0.0883 0.3562 0.6765 0.6046 0.2050

3.2.1. Calculation of coefficients αM
To find the coefficients αM [L], without loss of generality, we restrict the

analysis for filters oriented along the N -th (last) dimension, i.e along the
vector iN = [0, . . . , 0, 1]T. Then, by filters’ definition and making use of
hyper-spherical coordinates [29, ch. 22] (see Appendix A.1), the filter is
BL

iN
(ω) = ω̂T · iN = cosL(φN−2), where φN−2 represents the last hyper-

spherical angle. Therefore, the quadrature filter to be constructed is of the
form:

QiN (ω) = Q(φN−2) =
M∑
L=0

αM [L] cosL(φN−2). (14)

For notational simplicity in this subsection, we notate φN−2 simply as φ.
According to the surface-integrals theory [29, ch. 22] (see Appendix A.1),
the total energy of the filter QiN (φ) is

E0 = σ(SN−2)

∫ π

0

(
M∑
L=0

αM [L] cosL φ

)2

sinN−2 φ dφ, (15)

where σ(SN−2) is the surface of the SN−2 sphere. The energy in the rear
Fourier half-space, denoted as E1, is given by the same formula but with
integration in the interval [π/2, π]. From the definition (12) of the quadrature
filters, the energy E1 has to be zero. Therefore, we search for the coefficients
αM [L] that minimize E1, given that the total filter’s energy E0 is equal to
unity.

From equation (15), after some manipulations and interchanging summa-

12

tions and integration, we have:

E0 =
M∑
k=0

αM [k]
M∑
l=0

αM [l] R0(k, l), where

R0(k, l) = σ(SN−2)

∫ π

0

cosk+l φ sinN−2 φ dφ. (16)

Although numerical integration methods can be used to calculate the inte-
grals R0(k, l), we derived the analytical closed-form solution for N = 4, which
can be found in Appendix A.2.

One can use vector-matrix notation, to write (16) as follows:

E0 = aT
M R0 aM , (17)

where R0 is the square and symmetric (M + 1) × (M + 1) matrix with ele-

ments R0(k, l) and aM =
[
αM [0], αM [1], . . . , αM [M]

]T
. Following exactly the

same analysis, the energy E1 is written E1 = aT
M R1 aM , where R1 is defined

accordingly, similarly to R0.
We factorize the symmetric matrix R0 using its LDL decomposition, i.e.

R0 = LT D L and (17) is written E0 = aT
M LT D L aM , where D is a diagonal

matrix. The restriction E0 = 1 holds if aM is selected equal to aM = W i,
where W = L−1 D−1/2 and i is any unit vector. Substituting aM into E1 yields
E1 = iT WT R1 W i. This is minimized if i is selected equal to the eigenvector
of WT R1 W with the minimum eigenvalue. Let this eigenvector be denoted as
im. Concluding, the desired vector aM is given from aM = W im.

4. Theoretical developments towards motion estimation

Recalling from subsection 2.1, equation (2), the N -D spatiotemporal
power spectrum of a function that translates with velocity v0 lies on a “mo-
tion (hyper-)plane”, which is perpendicular to the N -D vector [vT

0, 1]T, i.e. it
is perpendicular to the unit vector:

Normal to motion (hyper-)plane: n(v0) =
[vT

0, 1]T√
|v0|2 + 1

. (18)

Therefore, to enable motion estimation, our aim is to introduce an objective
function P (v) that effectively “measures” the energy along candidate “mo-
tion (hyper-)planes” and consequently is maximized at v equal to the actual

13

(a) sk(v), k = 1, . . . ,K

(b) Bsk(v)(ω), k = 1, . . .K (c)
∑K

k=1

(
Bsk(v)(ω)

)2

Figure 2: Illustration of the “(Hyper-)Donut” mechanism in the 3D case (N = 3), for v =
[0, 0]T. The directions of the 3D filters, as well as the “(hyper-)donut”, are perpendicular to
the vector n(v) = [0, 0, 1]T. We use filters of order L = 3. In the 3D case, K(L) = L+1 = 4
[3]. Details: (a) Two vectors, e1 and e2 span the plane perpendicular to n(v). From these
vectors, the equally distributed vectors sk(v) are obtained; (b) The filters Bsk(v)(ω), as
shown, are odd-symmetric in the frequency domain, since L is odd; (c) The sum of the
squared filters forms the “Donut”. In (b), (c) the -3dB isosurface of is shown.

14

velocity v0. Refer also to subsection 2.2 for a discussion on this. The intro-
duced objective function will be referred to as “Max-Steering distribution”.

In order to introduce an efficiently calculable objective function, we ex-
ploit the constructed filters and their steerability property. Towards this
end, we introduce the “Hyper-Donut” mechanism, a generalization of the
“Donut” mechanism [5, 3]. This mechanism, exploiting the directional fil-
ters, aims at “sampling” the energy along equally distributed directions on a
motion plane and subsequently calculating a measure of the energy around
this plane (inside a “donut”). The basic idea for the 3D case is illustrated
in Fig. 2. Since illustrations are difficult in N > 3 dimensions, for easier
understanding of the following concepts, the reader is encouraged to study
the theory initially for N = 3.

4.1. The “Hyper-Donut” Mechanism and “Max-Steering” distribution

Similarly to the 3D case, for a candidate velocity v in the N -D case, one
has to find K unit direction vectors sk(v), k = 1, . . . , K, which are equally
distributed on the corresponding “motion (hyper-)plane”. Towards this, one
has to initially find a set of unit vectors {en(v)}n=1,...,N−1, which spans the
subspace that is perpendicular to n(v), namely it spans the candidate “mo-
tion (hyper-)plane”. For example, with N = 3, two vectors are needed (span
the “motion plane”), as shown in Fig. 2(a), while in the 4D case, three
vectors are needed to span the “motion hyper-plane”.

Let the standard basis of RN be {i1, i2, . . . , iN}. The needed set of vectors
is recursively calculated from

en(v) = ×
(
n(v), e1(v), . . . , en−1(v), in, . . . , iN−2

)
, (19)

where the extended cross-product operator ×(◦, ◦, . . . , ◦) is defined in N
dimensions as the operator that takes N − 1 vectors and produces a new one
which is perpendicular to them [30, ch.4]. In each recursion, the calculated
vector en(v) is perpendicular to all the previous n− 1 vectors and n(v). For
details on the calculation of the extended cross-product ×(◦, ◦, . . . , ◦), refer
to [30, ch.4] or section A.3 of the supplementary-material document.

Since a set {en(v)}n=1,...,N−1 is now available, namely a set of vectors that
spans the (hyper-)plane subspace, one can get K unit vectors sk(v) that are
equally distributed on the “motion (hyper-)plane”, as follows:

sk(v) =
[
e1(v), e2(v), . . . , eN−1(v)

]
· qk, k = 1, 2, . . . , K, (20)

15

Table 2: In the 4D case (N = 4), the number of basic filters I0(L) (second column), the
number of filters K(L) needed to form a “hyper-donut” (third column) and error measures
for the validity of equation (B.1) (5th and 6th column).

Order L I0(L) K(L) const(L) max{|n(ω̂;L)|}
const(L)

20 log
(

std(n(ω̂;L))
const(L)

)
1 4 6 2 0 −∞ dB
2 10 12 2.4 0 −∞ dB
3 20 32 4.57 8 · 10−3 −51.5 dB
4 35 32 3.56 17 · 10−3 −44.7 dB

where qk is the k-th unit direction vector from a collection of vectors that
are “uniformly” distributed on the (N -1)-dimensional hyper-sphere. For in-
stance, with N = 3 and N = 4, the vectors qk are uniformly distributed on
the unit-circle and the unit-sphere, respectively.

4.1.1. The “Hyper-donut” mechanism

We would like to show at this point, that with an appropriate selection
of the number K(L) of vectors qk, it holds:

On motion hyper-plane (∀ω ⊥ n(v)) :

K(L)∑
k=1

(
BL

sk(v)(ω)
)2

=

K(L)∑
k=1

(
ω̂T · sk(v)

)2L

= const(L), (21)

where const(L) is a constant that depends only on the filters’ order L, namely
the outcome of the summation is constant for each ω lying on the candidate
“motion plane”. This would mean that K(L) directional filters, oriented
along the directions sk(v), k = 1, . . . , K(L), can effectively “sample” the
energy along the “motion hyper-plane” and the energy around the motion
plane can be measured by the summation in (21).

In correspondence with the “Donut” mechanism (N=3), given in Fig. 2,
the “Hyper-donut” mechanism in the 4D case (N=4) is pictorially explained
in Figures 3 and 4. As shown, the filters and the corresponding “Hyper-
donut” present “selectivity” to the candidate motion “hyper-plane”.

Equation (21) above has been mathematically proved for N = 3 in [3],
with K(L) = N + 1. For the purposes of this work, we have verified that
(21) holds also for N = 4. Indeed, in the 4D case (N = 4), using the values
K(L) in the third column of Table 2, it was verified that the equality in (21)

16

(a) Bsk(v)(ω), k = 1, . . . ,K. Mean-projections along ω1 (left) and ω4

(right).

(b)
∑K

k=1

(
Bsk(v)(ω)

)2
. Mean-projections along ω1 (left) and ω4 (right).

Figure 3: Illustration of the “Hyper-Donut” mechanism in the 4D case (N = 4), for
v = [0, 0, 0]T. The motion “hyper-plane”, the directions of the 4D filters, as well as the
“hyper-donut”, are perpendicular to the vector n(v) = [0, 0, 0, 1]T. We use filters of order
L = 2. In this case, K(L) = 12. In order to depict the 4D data, mean-projections are
depicted. Details: (a) Two mean-projections of the the K directional filters that lie on
the “motion hyper-plane”; (b) Two mean-projections of the “hyper-donut”, formed by the
filters.

17

(a)
∑K

k=1

(
Bsk(v)(ω)

)2
.

Slice ω2=ω3=0.

(b)
∑K

k=1

(
Bsk(v)(ω)

)2
.

Slice ω2=ω4=0.

Figure 4: Illustration of the “Hyper-Donut” mechanism (continuing from Fig. 3). Here,
two slices of of the “hyper-donut” are given. The “hyper-donut” is “perpendicular” to
n(v) = [0, 0, 0, 1]T and selective to velocity v = [0, 0, 0]T.

holds exactly for L = 1 and L = 2, while it holds approximately for L = 3
and L = 4 up to very small error n(ω̂;L). The values of the relative max
error and the error-to-signal ratio are given in the 5th and 6th column of the
table.

The relevant analysis with respect to the demonstration of equation (21)
are given in Appendix B.1.

4.1.2. The Max-Steering distribution

Given that equation (21) holds and based on the “Hyper-donut” concept,
one can define the “Max-Steering” objective function

P (v) :=
∑
ω

K∑
k=1

∣∣Ysk(v)(ω)
∣∣2 =

∑
ω

K∑
k=1

∣∣Bsk(v)(ω) · F (ω)
∣∣2, (22)

which is theoretically maximized at v equal to the actual velocity. This
objective function is in correspondence with the energy function defined in
subsection 2.2. More specifically, it is a measure of the spatiotemporal energy
inside the “hyper-donut” aligned with the “motion hyper-plane” ωT·[vT, 1]=0.

Using Parseval’s equation, the “Max-Steering” distribution can be rewrit-

18

ten as

P (v) :=
∑
x

K∑
k=1

∣∣ysk(v)(x)
∣∣2 =

∑
x

K∑
k=1

∣∣(bsk(v) ∗ f)(x)
∣∣2, (23)

where (∗) denotes convolution.
Summary : To summarize, the value of the “Max-Steering” distribution for
a candidate velocity v can be calculated as follows: i) Using equations (19)-
(20), calculate K vectors sk(v), that are “equally” distributed on the cor-
responding “motion hyper-plane”; ii) Calculate the responses of the K di-
rectional filters bsk(v)(x), oriented at directions sk(v); iii) Add the squared
responses of the K filters, to measure the spatiotemporal energy around the
candidate “motion hyper-plane”.

According to the above, for each candidate velocity v, one has to find
the responses of K directional filters. Although these responses can be inter-
polated from the I basic responses (as described in paragraphs 3.1.2-3.1.3),
the computational effort increases significantly as the value of K goes high.
Fortunately, as shown in the next paragraph, an interpolation formula holds
also for the Max-Steering distribution.

4.1.3. Steerability of Max-Steering distribution and interpolation formula

It is shown here that P (v) can be interpolated at any velocity v, given a
set of

J(L) = I0(L) ·
(
I0(L) + 1

)
/2 (24)

fixed quadratic terms of the form zi,j :=
∑

x ydi
(x) · ydj

(x), where ydi
(x)

stands for the i-th basis filter response, as defined in paragraph 3.1.3.
We take into account the fact that the filter responses in the original

space-time domain are either pure real or pure imaginary, for even or odd
filters, respectively. Additionally, the interpolation formula (in the original
space-time domain) is used. Then, manipulations on (23) give:

P (v) =

∣∣∣∣∣
K∑
k=1

∑
x

y2
sk(v)(x)

∣∣∣∣∣ =

∣∣∣∣∣
K∑
k=1

∑
x

[I∑
i=0

ti
(
sk(v)

)
· ydi

(x)
]2

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

I∑
i=1

I∑
j=1

Ti,j
(
sk(v)

)
· zi,j

∣∣∣∣∣ , � (25)

where Ti,j(d) := ti(d) · tj(d).

19

4.2. The “Max-Steering” distribution for quadrature filters

In this subsection, we provide an analysis similar to the previous one, but
in terms of the constructed quadrature pairs.

4.2.1. The “Hyper-donut” mechanism (quadrature pairs)

The following notation is used

Qeven
d (ω) :=

M∑
L: even

aM [L](ω̂T · d)L, Qodd
d (ω) :=

M∑
L: odd

aM [L](ω̂T · d)L (26)

to denote the quadrature pair oriented along the unit vector d.
In correspondence to equation (21), one can show that it approximately

holds:

On motion hyper-plane (∀ω ⊥ n(v)) :

K(M)∑
k=1

(
Qeven

sk(v)(ω)
)2

= conste(M),

K(M)∑
k=1

(
Qodd

sk(v)(ω)
)2

= consto(M), (27)

with conste(M) ' consto(M), if the number K(M) is selected as in the
third column of Table 2 and the vectors sk(v) as described in the previous
subsection. Equation (27) can be shown using similar arguments as in the
previous subsection and a demonstration is provided in Appendix B.2.

4.2.2. Max-Steering distribution (quadrature pairs)

Similarly to equation (23), we define the “Max-Steering” distribution for
quadrature pairs as follows:

PQ(v) :=
∑
x

K∑
k=0

∣∣gsk(v)(x)
∣∣2, where gd(x) := (qd∗f)(x) =

M∑
L=0

αM [L]·yLd(x).

(28)
The response of the quadrature filter is denoted by gd(x), while yLd(x) denotes
the response of the directional filter bLd(x) of order L.

20

Using the fact that the even and odd filters of the pair produce real-valued
and imaginary responses, respectively, (28) can be split into two parts, as
follows:

PQ(v) =
∑
x

K∑
k=0

∣∣∣∣∣ ∑
L: even

αM [L]yLsk(v)(x) +
∑
L: odd

αM [L]yLsk(v)(x)

∣∣∣∣∣
2

=
∑
x

K∑
k=0

(∑
L: even

αM [L]yLsk(v)(x)

)2

︸ ︷︷ ︸
P even
Q (v)

−
∑
x

K∑
k=0

(∑
L: odd

αM [L]yLsk(v)(x)

)2

︸ ︷︷ ︸
P odd
Q (v)

.

(29)

4.2.3. Steerability of PQ(v) and interpolation formula

It is shown here that PQ(v) can be interpolated from a fixed set of
quadratic measurements. From the definition of P even

Q (v) in (29), and us-
ing the interpolation formula (in the original space-time domain), it holds:

P even
Q (v) =

∑
x

K∑
k=0

∑
L1,L2: even

αM [L1] αM [L2] yL1

sk(v)(x) yL2

sk(v)(x)

=
K∑
k=0

∑
L1,L2: even

AM [L1, L2]

I(L1)∑
i=0

I(L2)∑
j=0

T
{L1,L2}
i,j

(
sk(v)

)
· z{L1,L2}

i,j , (30)

where

AM [L1, L2] = αM [L1] · αM [L2], T
{L1,L2}
i,j (d) := tL1

i (d) · tL2
j (d) (31)

and z
{L1,L2}
i,j :=

∑
x y

L1
di

(x) · yL2
dj

(x).

Exactly the same analysis can be performed for P odd
Q (v). Taking into

account the fact that z
{L1,L2}
i,j = z

{L1,L2}
j,i only when L1 = L2, the total number

of quadratic measurements is

M∑
L1,L2:Even

J(L1, L2) +
M∑

L1,L2:Odd

J(L1, L2), where

J(L1, L2) =

{
I0(L)·

(
I0(L)+1

)
2 if L1 = L2 = L

I0(L1) · I0(L2) if L1 6= L2.
(32)

21

4.3. Definition of voxelwise “Max-Steering” distributions
The “Max-Steering” objective functions in subsections 4.1 and 4.2 - equa-

tions (23) and (28), respectively - have been defined for the whole space-time
function f(x). Notice that the summation along x was for the whole space-
time domain. In other words, the “Max-Steering” functions, as defined so
far, could serve for the estimation of a single flow vector that describes the
motion of a globally translating scalar function. Practically however, in the
flow estimation problem, one is interested in estimating a dense flow-field,
i.e. flow vector for each space-time location x.

In correspondence to equation (23), one could define the distribution

P (x; v) =
∑K

k=1

∣∣ysk(v)(x)
∣∣2, i.e. drop the the summation along x. This

“voxelwise” distribution could serve for dense flow estimation at each space-
time location x. However, in practice, in order to gain robustness against
noise and override the “blank-wall” problem at “textureless” regions (regions
with poor power spectrum), it is preferable to locally integrate the objective
function measurements. Therefore, the following voxelwise distribution is
defined for the needs of the proposed algorithmic developments:

P (x; v) :=
∑

xn∈ℵ(x)

W (x− xn)
K∑
k=1

∣∣ysk(v)(xn)
∣∣2, (33)

where ℵ(x) denotes a small space-time neighborhood around x and W (x) a
N -D smooth window function, centered around zero. The described modi-
fication in the definition of the “Max-Steering” distribution, does not affect
the mathematical analysis in previous subsections. Therefore, using the in-
terpolation formula of (25), P (x; v) can be interpolated from a fixed set of
quadratic terms of the form

zi,j(x) :=
∑

xn∈ℵ(x)

W (x− xn) ydi
(xn) ydj

(xn). (34)

Using the same arguments, in correspondence to equation (28), one can
define the “Max-Steering” distribution for quadrature pairs:

PQ(x; v) :=
∑

xn∈ℵ(x)

W (x− xn)
K∑
k=0

∣∣gsk(v)(xn)
∣∣2, (35)

which can be interpolated from the fixed set of quadratic terms

z
{L1,L2}
i,j (x) :=

∑
xn∈ℵ(x)

W (x− xn) yL1
i (xn) yL2

j (xn). (36)

22

4.4. Additional issues

4.4.1. Necessity of pre-filtering

It is well-known that natural input signals, such as 2D images or 3D
volumes, present low-frequency characteristics, i.e. the largest portion of
their energy is concentrated in low-frequency components. Following the
theoretical analysis of section 2, this means that |F0(ωs)| will contain mainly
low-frequency components. Therefore, the energy in the spatiotemporal FT
of the input sequence F (ω), although distributed along a “motion hyper-
plane”, it will be mainly concentrated around DC (zero frequency). In other
words, the “motion hyper-plane” will be “weak” and its detection may be
problematic. Therefore, the enhancement of medium- and high-frequency
components can assist the proposed methodology. For this reason, in the
algorithms presented in the next section, a band-pass pre-filtering step is
applied. More specifically, a pre-filter of the form Gb(ω) = G(ω)Gh(ωs) is
applied to the input sequence, where

G(ω) = exp
(
ωT Σ ω

)
(37)

is a N -D low-pass separable Gaussian filter, i.e. with a diagonal covariance Σ,
whereas Gh(ωs) = ||ωs|| is a (hyper-)cylindrical high-pass spatial derivative-
like filter. In the above definitions, the frequency vector ω is considered
normalized in the interval [−1, 1]N . The use of such a pre-filter is in accor-
dance with [3], where the 2D flow estimation task is handled. Additionally, it
is generally in accordance with the 2D flow estimation literature, where the
medium frequency components (edges, corners, etc.) are assumed to contain
the most descriptive information for motion.

5. Algorithmic developments

In this section we describe the proposed algorithm for 3D flow estimation
in sequences of volume data, based on the theoretical developments of previ-
ous sections for N = 4. The described algorithm is the simplest one that can
be formulated based on our theoretical developments, since our major objec-
tive is to show-case the validity and usefulness of the developed theory. In
subsection 5.2, a few more sophisticated alternatives for specific algorithmic
parts are given.
Input: A sequence of discrete volumetric data, i.e a 4D scalar function
f(x) constitutes the input of the proposed algorithm, where x = [xT

s; t]
T =

[x, y, z, t]T is the discrete 4D space-time vector.

23

Output: The output of the algorithm is a flow field v(xs), which is assigned
to the middle sequence’s frame t = Nt/2, where Nt is the number of input
frames.

We additionally describe how the method is applied to sequences of 3D
point-clouds.

5.1. 3D Flow estimation algorithm

The overall algorithm is split into a number of sequentially applied algo-
rithmic parts, described in the subsequent paragraphs 5.1.1-5.1.5.

5.1.1. Algorithm #A0: Preparation (off-line)

Given any sequence of specific volume size and number of input volume
frames, this algorithmic part (preparation) has to be performed only once.
It can be summarized as follows.

Input information: a) Size Nx×Ny ×Nz of input volumes and number of
input frames Nt; b) Filters order L (for simple directional filters) or M (for
quadrature filters).

Algorithmic steps:

1. Construction of pre-filters: Based on subsection 4.4.1, construct a band-
pass pre-filter Gb(ω). The diagonal Gaussian covariance matrix Σ =
diag

[
σωx , σωy , σωz , σωt

]
in equation (37) is selected with σωx = σωy = σωz .

Considering the frequency normalized in [-1,1], appropriate values used in
all our experiments are σωx = 0.7 and σωt = 1.

2. Construction of steerable basis: Construct a 4D steerable filter basis of
order L, in the frequency domain, i.e. filters Bdi

(ω) at the basic orienta-
tions di, i = 1, 2, . . . I0(L). The minimum number of required basic filters
is given by (5). The selection of basic filters orientations is discussed in
subsection 3.1.2.

3. Given the basic filters orientations di, calculate and store the matrix U−1,
according to equations (7) and (9).

4. If quadrature filters of order M are going to be used, repeat steps 2 and 3
for all L ≤M . Additionally, consider the necessary coefficients αM , given
in Table 1.

24

5. Find a collection of K unit vectors qk, which are “uniformly” distributed
on the sphere. The appropriate number K(L) (or K(M)) of such vectors is
given in the third column of Table 2. We solve the “hard-spheres problem”
(best packing on the sphere) [27] to “uniformly” distribute points on the
sphere, as explained in subsection 3.1.2.

5.1.2. Algorithm #A1: Pre-filtering and initial computations

This algorithmic part consists of the computation of a number of convo-
lutions. All necessary convolutions are computed in the 4D spatiotemporal
FT domain as products. A high computational gain is achieved with this,
due to the existence of very fast FFT implementations [31, 32]. Notice that
frequency-domain product corresponds to circular convolution. To handle
this finite-size boundary effect, extension of the input volume boundaries
could be employed (e.g. zero-padding or repetition of boundary voxels), as
in [3]. However, since the spatial extent of the proposed directional filters is
actually small, practically this step is omitted. The presented experimental
results were obtained without such boundary handling.

Input: A sequence of discrete volume data f(x) = f(xs; t).

Algorithmic steps:

1. Take the 4D spatiotamporal FT of the input f(x), to obtain F (ω), i.e.
the input in the spatiotemporal frequency domain.

2. Apply the 4D band-pass filter Gb(ω) to enhance medium-frequency com-
ponents: F (ω)← Gb(ω)F (ω) .

3. Multiply F (ω) with each basic filter Bdi
(ω) , to obtain the basic responses

Ydi
(ω) = Bdi

(ω)F (ω), i = 1, 2, . . . , I0(L).

4. Apply 4D IFT to each Fi(ω) to get the basic responses ydi
(x) = bdi

(x) ∗
f(x) in the original space-time domain.

5. If quadrature filters of order M are going to be used, repeat steps 3 and
4 for all orders L ≤M .

5.1.3. Algorithm #A2: Calculation of “voxelwise” quadratic terms

Algorithmic steps:

Case A - Usage of simple filters :

25

• For a specific filters’ order L, calculate the “voxelwise” quadratic terms
zi,j(xs), defined in (34), for all combinations of i, j = 1, 2, . . . , I0(L). The
total number of quadratic terms is given by equation (24).

Notice that the notation zi,j(x) in (34) has changed here to zi,j(xs). The
reason is that the quadratic terms are calculated for each voxel xs but only
for t = Nt/2, since we are interested in estimating a motion field only for
the central frame.

Case B - Usage of quadrature filters :

• Calculate the “voxelwise” quadratic terms z
{L1,L2}
i,j (xs), defined in (36), for

all combinations of even orders L1, L2 = 0, 2, . . . ,M and combinations of
odd orders L1, L2 = 1, 3, . . . ,M . For the total number of the quadratic
terms, see equation (32).

Spatiotemporal integration window : The calculations of zi,j(xs) or z
{L1,L2}
i,j (xs)

in equations (34) or (36), respectively, involve the spatiotemporal integration
window W (x). In this work we use a spatiotemporal 4D Gaussian window
of size Wx × Wy × Wz voxels times Nt frames. For all our experiments,
the Gaussian standard deviation is set equal to 0.5 · [Wx,Wy,Wz] in space,
and equal to 0.2Nt in time. In the presented experiments, the selection of
window’s spatial size is done intuitively, based on the size of the voxels.
For example: a) In the experiment with medical MRI data of subsection
6.2.2, where the voxel size is 2.74 × 2.74 × 4 mm3, the integration window
size is selected equal to 11 × 11 × 5 voxels that corresponds to a region of
approximate size 30 × 30 × 20 mm3; b) For the real-world human motion
sequence in subsection 6.3.2, where the voxel size is 2 × 2 × 2 cm3, the
integration window size is set to 11 × 11 × 9 voxels that corresponds to a
region of approximate size 22 × 22 × 18 cm3.

5.1.4. Algorithm #A3: Initial flow-field estimation by sparse grid search

In this algorithmic step, an initial coarse flow-field is extracted. Us-
ing brute search on a sparse 3D grid of candidate velocities v, the velocity
that maximizes the “Max-Steering” objective function P (xs; v) in (33) (or
PQ(xs; v) in (35)) is found for each voxel xs. The selection of the 3D velocity
search grid is based on: a) if exists, any available information for the mini-
mum and maximum expected speeds; b) the search step should be at most
0.5 voxels/frame (i.e. to have at least half-voxel estimation accuracy). A

26

smaller search step is preferable, to ensure that the found maximum is close
to the global maximum of P (xs; v). On the other hand, since brute search
in the 3D space is computationally expensive, one should avoid using dense
search grids. Fortunately, in practice, the function P (xs; v) is quite regular,
in the sense that it does not present several and complex local minima.

Input information: A sparse 3D grid of candidate velocities.

Algorithmic steps:

For each candidate velocity v:

1. Find the vectors sk(v), k = 1, 2, . . . , K according to the analysis of sub-
section 4.1 and more specifically using equation (20). The collection of
the K unit vectors qk, precalculated in the last step of Algorithm #0, is
used.

2. For each k = 1, 2, . . . , K, calculate the interpolation vectors t
(
sk(v)

)
ac-

cording to the analysis of subsection 3.1.2.

3. Compute the interpolation coefficients Ti,j
(
sk(v)

)
= ti

(
sk(v)

)
· tj
(
sk(v)

)
.

If quadrature filters of order M are used, calculate the interpolation co-
efficients T

{L1,L2}
i,j

(
sk(v)

)
, for all combinations of even orders L1, L2 =

0, 2, . . . ,M and combinations of odd orders L1, L2 = 1, 3, . . . ,M . Addi-
tionally, compute the coefficients AM [L1, L2] = αM [L1] · αM [L2].

4. Compute the “voxelwise” “Max-Steering” objective function

• Case A - Usage of simple filters : P (xs; v) which is defined in (33), using
the interpolation formula of equation (25).

• Case B - Usage of quadrature filters : PQ(xs; v) which is defined in (35),
using the interpolation scheme of (30).

For each voxel xs:

5. Find which candidate velocity v minimizes the objective function P (xs; v)
(or PQ(xs; v) for quadrature filters).

Output: An approximate 3D flow-field v̂(xs).

27

5.1.5. Algorithm #A4: Final flow-field estimation by downhill simplex opti-
mization

Given the initially estimated 3D flow-field of the previous algorithmic
part, here the flow-field is refined towards high accuracy, by the use of iter-
ative downhill simplex optimization [33, ch. 10]. In other words, for each
voxel xs, the exact maximum of P (xs; v) (or PQ(xs; v) for quadrature filters)
is iteratively searched, beginning from the initial estimate.

Input information: An approximate 3D flow-field v̂(xs).

Algorithmic steps:

For each voxel xs:

• Starting from v̂(xs), iterate using downhill simplex optimization towards
the minimization of −P (xs; v) (or −PQ(xs; v) for quadrature filters). In
each iteration (and for each simplex vertex [33, ch. 10], i.e. for each
examined velocity) the steps 1-4 of Algorithm #A3 are executed.

Output: The final estimated 3D flow-field v(xs).
Providing details of the downhill simplex optimization method (or Nelder-

Mead method) is beyond the scope of this paper and the reader is referred
to [33, ch. 10]. With respect to the optimization parameters used in our
experiments, we mention that the initial simplex size is 0.1, the tolerance for
termination is 10−5 and the maximum number of iterations is 500.

We note here that there is no special reason for choosing the Nelder-Mead
method in this algorithmic step. As stated, in practice, the “Max-steering”
distribution is quite regular, in the sense that it does not present several
and complex local minima, and smooth. We expect that the use of other
faster local optimization approaches, such as gradient-descent or Levenberg-
Marquardt, would produce similar results, since the initial estimates provided
by Algorithm #A3 are close to the actual velocities.

5.2. Algorithmic alternatives

In Algorithm #A3 one has to ensure that the search grid is dense enough
on one hand and on the other hand the search limits are adequately large.
This means that the number of candidate velocities (size of search grid) may
be quite large, resulting into high memory and computational requirements.
Therefore, an efficient alternative to the Algorithmic step #A3 would be

28

the employment of global stochastic optimization methods, e.g. particle-
based sequential Monte-Carlo methods [34] such as Interacting Simulated
Annealing [35].

The spatiotemporal summation in equations (34) or (36) involve an inte-
gration window, which is fixed and independent to the local volume content
(Algorithm #A2). According to the “generalized aperture problem” [14],
the window (“aperture”) on one hand has to be adequately large in order to
constrain motion and on the other hand it should be small enough, so that
not to contain multiple motions; otherwise, estimation errors or flow-field
over-smoothing may occur at object boundaries (motion discontinuities). To
override such problems, local content-based adaptive windows could be used
or guided image (volume in our case) filtering ideas [36].

5.3. Application to 3D point-cloud sequences

To use sequences of 3D point clouds in our underlying 3D flow estimation
framework, a volumetric function has to be constructed from each input point
cloud. There are various ways to realize this. For example, in various 3D
surface reconstruction methods [37, 38], a volume function F (xs) is generated
from a set of input point-normals. This function is (almost) zero near the
surface implicitly defined by the input points, negative outside and positive
inside the surface. In other words, each voxel is assigned a value that depends
on its distance from the actual 3D surface, imposed by the input point cloud.

However, in this work, we preferred to use the simplest possible approach.
A binary (0/1) volumetric function is constructed, with zeros and ones indi-
cating empty and occupied voxels, respectively. This simple scheme, apart
from keeping the proposed method as simple as possible and therefore show-
cases the validity of our arguments, keeps the requirements on the input to
their minimum. For example, this approach does not need the calculation
of the 3D surface normals and obviously does not need connectivity (mesh)
information.

5.3.1. Algorithm #B: 3D flow estimation in sequences of point-clouds

Input: A sequence of Nt consecutive point clouds, where each point-cloud
is a set of N(t) points pn(t), n = 1, 2, . . . , N(t). This means that the number
of input points can very for frame to frame.

Input information: Wanted size of the voxels. In the experiments of sub-
section 6.3, the voxel size is selected based on the moving object’s size and

29

its details. For example, for the real-world sequences with a moving human
in subsection 6.3.2 (approx. height 180cm), the voxel size is selected equal to
2 × 2 × 2 cm3. Whereas, for the artificial “Armandillo” sequence (see sub-
section 6.3.1), which was generated from a small creature object (of approx.
height 180mm), the voxel size is selected much smaller, equal to 2 × 2 × 2
mm3.

Output: A flow field v(pn) on a per-point basis, i.e. a velocity vector for
each input point pn. Notice again that the output estimated filed is assigned
to the central frame of the sequence t = Nt/2.

Algorithmic steps:

1. The 3D bounding box for all input point clouds is initially found. The
bounding box is then uniformly discretized into Nx×Ny×Nz cubic voxels,
based on the wanted voxel size.

2. Iterating for all input points pn(t) a voxel is indicated as “occupied (i.e.
F (xs; t) is set to unity) if it contains at least one 3D point, otherwise it
is indicated as “empty” (i.e. F (xs; t) remains zero). Additionally, in this
step, we keep track of the voxel xs to which a point pn(t) belongs in.
Formally, a mapping pn(t)↔ xs[n; t] is constructed.

3. Apply the overall Algorithm #A, described in the previous subsection 5.1,
in order to estimate the voxelwise flow-field v(xs). However, the algorith-
mic parts #A3, #A4 and #A5 should be executed only for the “occopied”
voxels. With respect to #A2, the “voxelwise” quadratic terms zi,j(xs) can
be calculated only at the neighborhoods ℵ(xs) of each “occopied” voxel,
as dictated by (34).

4. Having the mapping pn(t) ↔ xs[n; t], each point pn(t) for t = Nt/2 is
assigned the corresponding flow-vector v(xs). This results into the output
pointwise flow-field v(pn).

We note here that there are more sophisticated approaches to perform the
last step. For example, the flow-vectors assigned to a 3D point pn could be
calculated as the weighted average of the estimated flow-vectors v(xs) in the
neighborhood of pn and using Euclidean distance-based weights. However, as
mentioned, we prefer to keep the proposed algorithms as simple as possible.

30

5.4. Notes on the computational effort and memory requirements

The computational effort of the proposed approach depends mainly on
three parameters: a) The filters’ order L; b) the size of the integration window
ℵ(xs), used in (34) and c) obviously the input volume size. The most time-
consuming algorithmic part of the overall approach is Algorithm #A2, which
requires the calculation of a number of “voxel-wise” quadratic terms, as in
(34). The number J(L) of these terms is given from (24) and it is a quadratic
function of I0(L), which is given in the 2nd column of Table 2. Namely, we
have J(1) = 10, J(2) = 55 and J(3) = 210 quadratic terms for L=1, 2 and 3
respectively, and so on. Additionally, the computational effort for calculating
each “voxel-wise” quadratic term is linearly proportional to the size of the
integration window, while the size of each term is equal to the size of the
input volume.

The effort for steps Algorithm #A3 and Algorithm #A4, which target
the calculation of “Max-steering distribution” for each candidate velocity,
is proportional to the number of directions K(L) (see eq. (33)), which is
given in the 3rd column of Table 2. Thus, the effort for these parts are also
affected by filter’s order L. Finally, specifically considering Algorithm #A3,
its computational time is proportional to the size NU = NUx×NUy ×NUz of
the used sparse 3D search-grid of velocities. Actually, Algorithm #A3 is not
time-consuming, compared to Algorithm #A2 and Algorithm #A4; thus the
overall approach is only slightly affected by the size of this search-grid.

With respect to the memory requirements, these are high. Specifically,
the storage of J(L) “voxelwise” quadratic terms is needed, each of size equal
to that of the input volume. Additionally, in our implementation NU “vow-
elise Max-steering distributions” have to be stored. Thus, large volume sizes
and/or filters’ order and/or dense search grids are practically prohibitive.
This constitutes a practical limitation of the proposed algorithm, given that
a straightforward implementation is used.

The above analysis stands also when using quadrature pairs. Coarsely,
based on the theoretical analysis, the use of quadrature filters doubles the
computation effort and the memory requirements.

Finally, as explained in Algorithm #B (subsection 5.3), when the ap-
proach is applied to point-clouds, the algorithmic parts #A3, #A4 and #A5
are executed only for the “occupied” voxels. Thus, the computational effort
is reduced. Additionally, the effort could be reduced in #A2, as explained,
calculating the quadratic terms only at the neighborhoods of the “occupied”

31

voxels. This could also reduce the memory requirements. However, our im-
plementation does not take advantage of the above fact.

6. Experimental Results

In this section, we present the experimental results of the proposed method
on both pure volumetric data (subsection 6.2) and 3D point-cloud data (sub-
section 6.3). Evaluation is performed quantitatively when the ground-truth
(GT) is known, qualitatively otherwise. Apart from estimation accuracy, the
computational performance is also investigated. The proposed algorithm was
implemented in C++. The reported execution times refer to a laptop PC,
with an Intel(R) Core (TM) i7-4510U CPU, at 2.00GHz, 16GB RAM and a
64-bit operating system.

Appropriate values for most of the proposed algorithm’s parameters and
commonly used values for all the experiments were given in section 5. Values
for other parameters are given separately for each experiment. The proposed
algorithm, is fed with Nt=5, 6 or 7 consecutive frames and the estimated
motion field is associated with the central frame.

Comparative results are also given using the 3D extension [15] of the
well-known Lucas-Kanade (LK) method [13], which is shortly described in
paragraph 6.1.1 below.

6.1. Prerequisites

6.1.1. The 3D Lucas-Kanade method

We implemented and experimented with the 3D extension of the LK flow
estimation method [13], as this is described in [15]. Briefly, the velocity
is estimated by minimizing the function:

∑
xn∈ℵ(xs)W

2(xs − xn)
(
Fx(xn)T ·

v + Ft(xn)
)
, where Fx(xn) = ∇F (xn) is the spatial gradient and Ft(xn) the

temporal derivative of the volume sequence F (xs; t) at the frame of inter-
est. ℵ(xs) denotes a cubic neighborhood around voxel xs and W (xs) a 3D
Gaussian window. The standard deviation of this window was set 0.5 times
the window’s radius in all the experiments. The velocity is estimated by
setting up and solving (in the least-square sense) an over-determined system
of linear equations. The differentiations for the calculation of spatial and
temporal gradients was preformed using Simoncellis derivative filters [39], as
suggest in [15]. The method was implemented in C++ using Eigen1, a library

1http://eigen.tuxfamily.org/

32

optimized for matrix operations, e.g. for solving linear systems. As with the
proposed method, in the case of point-clouds as input, a sequence of binary
volumes is constructed and the method is applied only for the “occupied”
voxels.

6.1.2. Evaluation metric

When the GT flow field is known, the Mean Angular Error MAE [13] is
used as an evaluation metric, generalized for the N -D case. Given the GT
velocity vector vo and the corresponding estimated vector v, the Angular
Error (AE) is given from AE = cos−1

(
s(v)T ·s(vo)

)
, where s(v) is given from

(18) and is actually the normalized homogenous-coordinates representation
of v. The MAE is obtained as the mean of Angular Errors for all motion
vectors. When dealing with point-cloud sequences, the AE is calculated on
a per-vertex (instead of a per-voxel) basis, since the GT motion is known for
each vertex.

Additionally, although 2D slices of the estimated motion field (or the
corresponding AE) are plotted, the given MAE values correspond to the
field in the whole volume.

6.2. Volume sequence data

6.2.1. Artificial data

To serve the need of experimenting using data with known ground-truth
(GT), three artificial volumetric sequences were generated.

Sequence #1: Uniformly translating volume: The specific sequence
contains six frames and the volume size is Nx×Ny×Nz = 32×64×16 voxels.
It consists of a single object, which translates uniformly with a velocity equal
to v = [1, 1, 0]T voxels/frame. A slice z = Nz/2 of this translating sequence
is depicted in Figure 5(a). The volumetric object is a zero-mean, spatially-
uncorrelated (white) Gaussian-distributed random pattern, smoothed with a
low-pass Gaussian filter G(ωs) with σωs = [0.3, 0.3, 0.3]T. In other words, the
volumetric object is a spatially-correlated random 3D signal with Gaussian
power spectrum.

The described “noiseless” volume sequence, is corrupted by Additive spa-
tiotemporally White Gaussian Noise (AWGN), with controllable power (stan-
dard deviation). A frame with noise standard deviation (std) equal to 0.08
is shown in Figure 5(a). A cross-section (slice) of the motion field, obtained
by applying the proposed method (with simple filters of order L = 3) to the

33

MAE = 1.12 deg

(a) (b)

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

AWGN std

M
A

E
 (

de
gr

ee
s)

 L = 1
 L = 2
 L = 3

(c)

5 10 15 20

10

15

20

25

LK window size

M
A

E
 (

de
gr

ee
s)

Without
With prefiltering

(d)

(e) (f)

Figure 5: Sequence #1: (a) In all diagrams, a slice (z = Nz/2) of the data is given. From
left to right: Sixth frame of the noiseless volume sequence, the same frame with AWGN of
std=0.08, and the estimated flow field for the noisy sequence, using filters of order L = 3;
(b) Angular Error (AE) of the 3D LK method for two different integration window radii
(10 and 20 pixels); (c) MAE of the proposed method with various filter orders, with respect
to noise power; (d) MAE of the 3D LK method for the noiseless sequence, with respect to
the integration window size; (e) Execution time (C code) of the proposed method, with
respect to the filters order; (f) Execution time (Matlab code) of the 3D LK method, with
respect to the LK window radius.

34

specific noisy sequence, is given at the right of Figure 5(a). The correspond-
ing MAE is low, equal to 1.12o. Only the initial grid-based search part of the
method is applied, using init search-grid 7 × 7 × 3 and a small integration
window of 3× 3× 3 voxels.

The objective of this experiment is multi-fold. Initially, the robustness
of the method against noise, with respect to the filters’ order, is studied. In
the diagram of Figure 5(c), the MAE error with respect to the noise level is
plotted for different filters’ order L. The results were obtained by carrying
out 10 experiments per noise level. As can be verified, the larger the filter
order the more robust the method is. For filters of order L = 3, the MAE
errors remain below 3o, even for strong noise.

Secondly, we study the execution time of the method with respect to the
filters’ order L. The mean execution time with respect to L is depicted in the
diagram of Figure 5(e). For filters of order L = 1, the execution time is below
1sec, whereas for L = 3 the execution time is higher than 10sec. For relevant
notes on the computational effort, the reader is referred to subsection 5.4.

Thirdly, we study the performance of the 3D LK method and perform
comparisons with the proposed method. The parameter that affects the LK
method is the integration window size. The blue dashed line in the diagram of
Figure 5(d) shows the MAE error with respect to the radius of the integration
window. The specific results are for the noiseless sequence. One can observe
that the MAE of 3D LK method converges to approximately 18o as the
window radius increases. The MAE remains in high levels, regardless of the
window size. The existence of high-frequency components in the moving 3D
signal may affect the method’s accuracy. For signals with high-frequency
components, the 1st-order approximation of Taylor expansion to derive the
flow constraints in the LK method, does not hold. In other words, the use
of only the 1st derivatives (gradients) is not enough. Therefore, to have
a more fair comparison, we applied a spatial Gaussian low-pass pre-filter
in the frequency domain G(ωs) with σωs = [0.15, 0.15, 0.15]T. The specific
values were found after trial-and-error for minimizing the MAE error. The
corresponding MAE errors with respect to the integration window radius are
plotted with the green line in the diagram of Fig. 5(d). As can be verified, the
error becomes significantly smaller, but the LK method still performs worse
than the proposed method. The distribution of the errors, i.e. the Angular
Error, is given for a 2D slice in Fig. 5(b). As expected, since the velocity is
constant for the whole volume, the error is almost uniformly distributed, with
slightly higher errors at the boundaries when a small integration window is

35

used.
The computational time of the 3D LK implementation is given in the

diagram of Figure 5(f) and it can be verified that it increases with the in-
tegration window size. The computational time of the proposed method is
of the same order of magnitude with that of the LK method. This indicates
that the proposed method is quite fast given the high amount of data in four
dimensions.

Sequence #2: Two-objects volume: The sequence consists of six frames
of volumes with size 32 × 64 × 16 voxels. The slice z = Nz/2 of the mid-
dle frame is given in Figure 6(a). The sequence contains a “background”
random-pattern object, with exactly the same characteristics as in the pre-
vious experiment, as well as an “occluding” ellipsoid random-pattern object
(its const-z slices are circles). The X,Y,Z axes of the ellipsoid are 20, 20
and 10 voxels, respectively, while its random pattern has a power spectrum
similar to that of the background. However, it has a mean value equal to 3.5
times its standard deviation. This introduces a strong “edge” at the bound-
aries of the two objects. The two objects move with different velocities,
introducing a “strong” motion discontinuity. The ellipsoid object translates
with a velocity equal to [0,−1, 0]T upwards and the background moves with
velocity [1, 1, 0]T voxels/frames.

Applying the proposed method with quadrature filters of order M = 3,
the obtained flow-field has a MAE equal to 6.48o and is depicted at the left of
Figure 6(b). For the specific results, down-hill optimization was not used, the
initial velocity search-grid is 9×9×3 and an integration window of 5×5×5
voxels..As can be verified also from the illustration at the right of Figure
6(b), the estimation error is concentrated mainly at the object boundaries
(motion discontinuities). For comparison, the 3D LK method is also applied
with a window radius equal to 8 voxels. To assist LK method, a spatial
Gaussian low-pass pre-filter was applied, with the same characteristics as in
the previous experiment. The estimation results are given in Figure 6(c).
The estimation error is high and mainly at the object boundaries, i.e. at
the motion discontinuity. One can notice from the diagram of Figure 5(c)
that a radius equal to 8 is a reasonable selection, otherwise the error would
be higher at the smooth motion regions. The validity of this selection is
demonstrated also from the diagram in Fig. 7(a), which shows the MAE vs
the windows integration radius. Additionally, the AE for the central slice,
using various integration windows, is given in Fig. 7(b).

36

(a)

MAE = 6.48 deg AE (deg)

0

20

40

60

80

100

120

(b)

MAE = 24.759 AE (deg)

0

20

40

60

80

100

120

(c)

1 2 3 4
5

5.5

6

6.5

7

Filter order L or M

M
A

E
 (

de
g)

No downhill optimization

Simple
Quadrature

(d)

1 2 3
5

5.5

6

6.5

7

Filter order L or M

M
A

E
 (

de
g)

With downhill optimization

Simple
Quadrature

(e)

;

(f)

;

(g)

Figure 6: Sequence #2: In all diagrams, a slice (z = Nz/2) of the data is given. (a)
Third frame of the volume sequence; b) The estimated flow field and the distribution of
the error, using quadrature filters of order M = 3; c) The corresponding results of the 3D
LK method; (d)-(g) MAE and execution time of the proposed method without and with
downhill optimization.

37

(a) 3D Lucas-Kanade MAE with respect to integration window

(b) 3D Lucas-Kanade AE for integration windows radius 3, 5, 7, 9, 11, 13 pixels

Figure 7: Sequence #2 - Experimental results for LK method: (a) MAE with respect
to integration window; (b) the corresponding error distribution for different integration
windows.

38

The MAE of the proposed method with respect to the filter order is de-
picted in Figure 6(d), for both simple filters (blue bars) and quadrature pairs
(red bars). A significant fact can be observed: In the previous experiment,
the MAE error decreased as the filter order was increased. This does not hold
in the current experiment for the simple filters case. For example, filters of
order L = 1 perform better than filters of order L = 2. This can be justified
by the fact that the response of the simple filters are local phase-dependent,
as explained in subsection 3.2. As can be verified from the same diagram,
the performance improves with the use of quadrature filters and the MAE
reduces as the filters’ order M increases.

The diagram of Figure 6(e) presents the experimental results after the
application of the downhill optimization step. As expected, the estimation
improves. The diagrams of Figure 6(f),(g) show the execution time of the
algorithm with and without downhill optimization of the algorithm, respec-
tive. The scale of the vertical axis is logarithmic. The computational time is
doubled with the use of quadrature pairs, as approximately expected by the
analysis of subsection 4.2.3. The same diagrams reveal that unfortunately
the computation effort increases significantly as the filters order goes high,
as explained in subsection 5.4.

Sequence #3: “Lenna”-“Barbara” volume:
Since the LK method is affected by the existence of high-frequency com-

ponents, a volume sequence was created with the use of natural images, the
well-known “Lenna” and “Barbara”. The sequence consists of Nt = 7 frames
of volumes with size 73 × 73 × 17 voxels. The central xy-slice (z = 9) for
three different frames is given in Fig. 8(a), while two additional slices for
the last frame are given in Fig. 8(b). As can be seen, the volume consists of
a “background” object, “Lenna”, and an ellipsoid “occluding” object, “Bar-
bara”. The major axes of this ellipsoid are 30 × 30 × 15 pixels. While the
“Barbara” object moves with a constant speed 1.5 voxels/frame towards left,
the motion field of the background object is not spatially constant. It is zero
at the boundaries and the Uy speed changes sinusoidally with Y , so that it
is equal to 2 voxels/frame at the center. The central slice of the motion field
is depicted in Fig.8(c).

The results of the proposed method are given in Figs. 9 and 10, along with
comparative results. In Fig. 9(a) the results of the 3D LK method are given.
Specifically, the MAE and the execution time with respect to integration
window radius are given. The corresponding results of the proposed method

39

(a) Middle xy-slice (z = 9) at frames t=1,4,7.

(b) Two additional xy-slices (z=3 and z=5) at frame t=7.

(c) Ground-Truth motion (Vx and Vy) for the middle xy-slice.

Figure 8: Sequence #3 (“Lenna”-“Barbara”): (a),(b) Slices of the volume sequence at
different frames; (b) Ground-truth motion.

40

(a) 3D Lucas-Kanade results.

(b) Proposed method results with respect to integration window.

(c) Proposed method results with respect to init search region.

Figure 9: Sequence #3 (“Lenna”-“Barbara”) - Experimental results: (a) 3D LK results
- MAE and execution time vs Integration window radius; (b) Proposed method’s results
with respect to integration window, for search region size 9×9×5; (c) Proposed method’s
results with respect to search region size (NU ×NU × 5), for fixed integration window of
size 11× 11× 11 voxels. In the MAE graphs (left), the vertical lines represent 1/4 times
the standard deviation of the Angular Errors.

41

(a) 3D Lucas-Kanade AE for different integration windows and error distributions

(b) Proposed method AE (after optimization) for different integration windows
and error distributions

(c) Prop. method for different search regions (without optimization)

Figure 10: Sequence #3 (“Lenna”-“Barbara”) - Experimental results: (a) AE of 3D LK
method with integration window radius 7pixels (left) and 15pixels (right); (b) AE of the
proposed method (after optimization) for integration window of size 9pixels (left) and
17pixels (right). The search region is 9× 9× 5; (c) Proposed method’s results for search
region sizes NU ×NU × 5, with NU=5 (left) and NU=11 (right). The integration window
is of size 11 × 11 × 11 pixels. In each subfigure, the distribution of the errors is given in
the middle column.

42

after optimization, using low-order filters (L=1) and init search region of size
9 × 9 × 5 are given in 9(b). Additionally, to study the method’s accuracy
with respect to the init search region, the integration window size was fixed
to 11 × 11 × 11 voxels and the search region NU × NU × 5 was varied with
NU = 5, . . . , 11. The corresponding results are given in Fig. 9(c). In the
left diagram of Fig. 9(c), the MAE for init search-only is also plotted. In
all diagrams, the vertical lines reflect the standard deviation of the Angular
Errors.

Finally, Fig. 10 depicts the distributions of the AEs, both spatially and
as a probability density (histogram), for the LK method (Fig. 10(a)) and
proposed one, with and without the optimization part (Figs. 10(b),(c), resp).
In each case, two different integration windows are used (left and right).

The conclusions can be summarized as follows: a) With various param-
eters selections, in almost all cases the proposed method performs better,
requiring a slightly higher computational effort; b) The computational ef-
fort increases for both methods with the integration window size; c) The
init-search part of the proposed method (Algorithm #3) is affected by the
selection of the search grid, but not significantly. As expected, the denser
the search-grid, the more accurate and slower the algorithm is; (d) However,
given that the search-grid was dense enough so that Algorithm #3 found a
velocity close to the actual one, then the proposed method after Algorithm
#4 (optimization) results into more-or-less the same motion-field, regard-
less of the density of the init search-grid. Actually, the denser the initial
search-grid was, the faster the optimization algorithm converged (see Fig.
9(c)-right), since the initial solution was closer to the final one; (e) From Fig
10, it can be seen that the proposed method presents some outlier estimates
(e.g. observe the histograms at the AE bin 70). Such outliers could be easier
detected and removed by some post-processing algorithm.

6.2.2. Real-world medical data (4D MRI)

A real-world medical data (4D MRI) sequence is used in this experiment.
The sequence can be found at [40, 41] and contains 14 consecutive volumes
of the liver and the gall bladder, during one breathing cycle. The temporal
resolution is 362msec and each volume consists of 166 × 195 × 25 voxels of
size 1.37 × 1.37 × 4 mm3.

The sequence was down-sampled by a factor of 2 along X and Y, i.e. the
volume resolution became 83× 98× 25 voxels of size 2.74 × 2.74 × 4 mm3.
A const-z cross-section for two frames is depicted in Figure 11(a). As can be

43

t=1 z=6 t=7 z=6

(a) Slice Z = Nz/4

Flow t=4, z=6 Flow t=10, z=6

(b) Proposed t = 4 and t = 10

V
X
 t=4, z=6

−1.5

−1

−0.5

0

0.5

1

1.5

V
Y
 t=4, z=6

−1.5

−1

−0.5

0

0.5

1

1.5

(c) Proposed t = 4

V
X
 t=10, z=6

−1.5

−1

−0.5

0

0.5

1

1.5

V
Y
 t=10, z=6

−1.5

−1

−0.5

0

0.5

1

1.5

(d) Proposed t = 10

Figure 11: Sequence #4: In all diagrams, a slice (z = Nz/4) of the data is given. (a)
Frames 1 and 7 of the volume sequence; (b) Estimated X-Y flow for t = 4 and t = 10.
(c),(d) Estimated VX , VY for t = 4 and t = 10. The results were obtained by the proposed
method.

44

(a) LK t = 4 and t = 10, (6× 6× 6)

(b) LK t = 4, (6× 6× 6)

(c) LK t = 10, (6× 6× 6)

Figure 12: Sequence #4: In all diagrams, a slice (z = Nz/4) of the data is given. (a)
Estimated X-Y flow for t = 4 and t = 10. (c),(d) Estimated VX , VY for t = 4 and t = 10.
The results were obtained by the LK method with an integration window size of 6× 6× 6.

45

(a) LK t = 4 and t = 10, (14× 14× 7)

(b) LK t = 4, (14× 14× 7)

(c) LK t = 10, (14× 14× 7)

Figure 13: Sequence #4: In all diagrams, a slice (z = Nz/4) of the data is given. (a)
Estimated X-Y flow for t = 4 and t = 10. (c),(d) Estimated VX , VY for t = 4 and t = 10.
The results were obtained by the LK method with an integration window size of 14×14×7.

46

seen, the occupied part (not completely black) of the volume function moves
mainly towards bottom and slightly towards left until frame 7. At frame 8
the dominant motion changes direction and the volume moves towards its
initial position until frame 14, where a new cycle begins.

The proposed methodology was applied using Nt = 6 consecutive frames
and the estimated field is assigned to the middle frame of each subsequence.
Simple filters of order L = 2 are used and the downhill optimization step
is employed. The algorithm required 56 sec for the initial velocity search
(a search grid of size 5 × 7 × 3 was used) and 277 additional seconds for
downhill optimization. The computation time is high, but reasonable given
the large volume size and the filter order L = 2.

The flow estimation results of the proposed method for frames t=4 and
t=10 are given in Figure 11(b)-(d), respectively. Although quantitative anal-
ysis cannot be performed, qualitatively the results are sensible. It seems that
the method “captured” the actual motion, although there are some errors at
the boundaries of the volume (black regions), where there is lack of “texture”.
The estimated field is smoothly varying at the smooth volume regions, while
it is not over-smoothed at object boundaries.

The corresponding estimation results of the LK method with two different
integration windows (6 × 6 × 6 and 14 × 14 × 7) are given in Figs. 12 and
13. The comparison with the proposed method is qualitatively difficult. The
LK method also “captured” well the object’s motion and presents only a few
outliers. However, when using a small integration window, the estimated
flow-field is not quite smooth and the method fails at some points in the
textured object’s interior. On the other hand, using the larger integration
window, the motion field is over-smoothed at the object boundaries. In both
cases, the LK method seems to produce smaller velocity estimates and does
not “capture” well very large velocities, e.g. at the top-right of the object.

More details about the specific sequence and additional results can be
found in section A.1 of the supplementary-material document.

6.3. Point-cloud sequence data

In this section, to assist inspection of the results, the directions of the
motion vectors are encoded using a colormap, i.e. each motion vector is
plotted with a color that depends on vector’s direction in a (θ,φ) spherical
representation. A HSV colormap of 8 × 8 distinct colors is constructed and
used to encode the (θ,φ)-directions of the vectors. Additionally, in paragraph

47

Table 3: Armadillo1 sequence: Experimental comparative results and execution times.

Sequence: “Armadillo1” Volume resolution: 65× 75× 63

Method Overall MAE Mean execution time
Proposed init-search (L=1) 11.21o 8.09 sec
Proposed after optimization 8.56o 17.31 sec
LK without 20.11o 7.52 sec
LK with LP pre-filter 13.29o 7.95 sec

6.3.2 the speed (magnitude of flow vectors) is encoded using a gray-scale
colormap.

As explained in subsection 5.4 and will be verified, the computational
time of the proposed algorithm in this section is lower than that in section
6.2, because the algorithm handles only the “occupied” voxels. The same
holds for the LK algorithm, for the same reason.

6.3.1. Artificial data

For the needs of this work, a set of three artificial 3D point-cloud se-
quences, with known ground-truth (GT), was created. The well-known static
3D models “Armadillo” and “Dragon” of the Stanford 3D repository2 were
used and the sequences were generated using mesh Laplacian deformation
[42]: For each sequence, a set of “handles” is defined on the static mesh,
the “handles” are moved on a per-frame basis and the mesh is smoothly and
realistically deformed. All sequences contain 21 frames and can be found at
http://utopia.duth.gr/%7Enmitiano/f3sme/3dmotion%5Fdemo.html, along with
the ground-truth (GT) motion. Additionally, details for the creation of each
sequence can be found in the same URL address. In all experiments, the 3D
flow algorithm is fed with Nt = 5 consecutive frames and the estimated flow
is assigned to the middle frame. The integration window size of the proposed
method is set to 11× 11× 11voxels.

Sequence #1: “Armadillo1”: In this sequence, the waist of the “Ar-
madillo” creature does not move, while its upper-body and lower-body parts
rotate clock-wise (CW) and counter-CW (CCW), respectively, with a con-
stant rotational speed equal to from 3o/frame. Using a voxel-size of 2mm,
the described voxelization procedure generates volumes of Nx × Ny × Nz =

2Stanford 3D repository: http://graphics.stanford.edu/data/3Dscanrep/

48

Figure 14: Sequence #1 (“Armadillo1”). Estimated MAE of the LK method, applied to
the first Nt = 5 frames, for different integration windows and LP pre-filters.

Figure 15: Sequence #1 (“Armadillo1”). Comparative MAE results long time.

49

(a) t = 3 (b) t = 11

θ (degrees)

φ
(d

eg
re

es
)

−150 −100 −50 0 50 100 150

−50

0

50

(c)

Figure 16: Sequence #1: Experimental results for the “Armadillo1” sequence. Estimated
3D flow and MAE at (a) t = 3 and (b) t = 11; (c) Colormap used to depict the flows.

65 × 75 × 63 voxels. As stated, the algorithms were applied with Nt = 5
consecutive frames and the estimated flow is assigned to the central frame.

For the specific sequence, we experimented with simple directional filters
of order L = 1. The velocity grid for the initial search is 7 × 3 × 7. The
3D LK method was also executed without and with the application of a
LP pre-filter, since the binary 0/1 input 3D signal contains high-frequency
components. To select the integration window and the LP pre-filter, the LK
method was applied to the first Nt=5 frames using various filters (σωs of
the gaussian filter in the frequency domain) and various integration radii, as
shown in the diagram of Fig.14. As can be seen, the optimal values are 9
voxels and σωs=0.2.

The MAE along time of the proposed method, before and after opti-
mization, as well as of the LK method, with and without prefiltering, is
given in Fig. 15. The corresponding overall MAE measures, along with the
mean execution times, are summarized Table 3. One can observe that the
proposed method produces quite low MAE in a reasonable execution time,
outperforming the 3D LK method.

The estimated flow-fields of the proposed method after downhill simplex
optimization are depicted for t=3 and t=11 in Figure 16, where the corre-
sponding MAE measures are also given.

Sequence #2: “Armadillo2”: In the specific sequence the creature’s waist
does not move, while its upper-body rotates about the horizontal (X) axis

50

Figure 17: Sequence #2 (“Armadillo2”). Comparative MAE results long time.

(a) t = 3 (b) t = 11

θ (degrees)

φ
(d

eg
re

es
)

−150 −100 −50 0 50 100 150

−50

0

50

(c)

Figure 18: Sequence #2: Experimental results for the “Armadillo2” sequence. Estimated
3D flow and MAE at (a) t = 3 and (b) t = 11; (c) Colormap used to depict the flows.

51

Table 4: Armadillo2 sequence: Experimental comparative results and execution times.

Sequence: “Armadillo2” Volume resolution: 63× 75× 65

Method Overall MAE Mean execution time
Proposed init-search (L=2) 14.23o 33.28 sec
Proposed after optimization 7.36o 77.75 sec
LK without 15.94o 7.41 sec
LK with LP pre-filter 10.35o 8.01 sec

Table 5: Dragon sequence: Experimental results and execution times of the proposed
method.

Sequence: “Dragon” Volume resolution: 67× 49× 35

Method Overall MAE Mean execution time
Proposed init-search (L=1) 8.37o 7.59 sec
Proposed after optimization 7.31o 13.80 sec
LK without 10.41o 5.90 sec
LK with LP pre-filter 8.14o 6.25 sec

that pass through the center of gravity, from the erect position to a bent
pose. On the other hand, its lower-body part rotates about the vertical (Y-
)axis. The rotational speed for both the upper- and lower-body is constant,
equal to 3o/frame. The volume resolution for the specific sequence, using a
voxel-size of 2mm, is 63×75×65 voxels. The experimental results presented
for this sequence were obtained using simple directional filters of order L = 2
and init search-grid 3× 5× 5. The LK method was applied using the same
parameters with the previous experiment, since the input 3D signal is the
same (ignoring its motion).

As in the previous experiment, the MAE along time is given in Fig. 17,
while the overall MAE measures and the mean execution times are sum-
marized Table 4. In comparison to the 3D LK method, the proposed one
produces smaller MAE errors. However, here, the execution-time of the pro-
posed method is higher than in the previous experiment, due to the larger
order of the employed filter.

The flow fields obtained by the proposed method after downhill opti-
mization are given for two time instances (t=3 and t=11) in the diagrams of
Figure 18.

Sequence #3: “Dragon”: The dragon sequence contains quite compli-

52

Figure 19: Sequence #3 (“Dragon”). LK method’s estimated MAE for different integration
windows and LP pre-filters.

Figure 20: Sequence #3 (“Dragon”). Comparative MAE results long time.

53

Figure 21: From Left to right t = 3, t = 11, t = 17. The used colormap is the same as the
one in Fig. 18.

Figure 22: Sequence #3: Experimental results of the “Dragon” sequence. Estimated
flow-field and MAE at t = 3, t = 11 and t = 17.

cated motions. More specifically, the bottom-frontal region of the “Dragon’
creature deforms very slowly around a fixed “handle” point, while the posi-
tion of the head varies sinusoidally with time and moves inwards. The middle
part of the tail moves upwards with a sinusoid speed, whereas the whole tail
deforms outwards.

For the specific sequence, a voxel-size of 3mm is used, resulting into a
volume resolution of 67 × 49 × 35 voxels. For the results provided here, we
used filters of order L = 1 and an init search grid 3×9×13. The LK method
was applied with an integration windows of radius equal to 9 voxels and a
LP pre-filter of σωs = 0.4, i.e. the optimal parameters found according to
the diagrams of Fig. 19. The MAEs in the diagrams were obtained as the
mean of the corresponding MAEs at t = 6, t = 11 and t = 14.

Comparative results along time are given in Fig. 20. The corresponding
overall MAEs and mean execution times are given Table 5. In this experi-
ment, although the proposed method in general outperforms the LK method,
the latter produces quite accurate results, because the motion in voxels/frame
is in general smaller than in the previous two experiments.

Example flow fields obtained by the proposed method after optimization,
at t=3, 11 and 17, are given in Fig. 22.

6.3.2. Real-world Kinect data

In this subsection, we provide experimental results using sequences of
real 3D point clouds, captured by one or multiple Microsoft Kinect sensors.
More specifically, subsequences “Dimitris1” and “Dimitris2” constitute a part

54

1300

1400

1500

1600

1700

(a) 1st and 16th frame (Depths)

−500 −400 −300 −200 −100 0 100 200 300 400 500

1400

1500

1600

1700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

Z

X

Y

−500 −400 −300 −200 −100 0 100 200 300 400 500

1400

1500

1600

1700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

Z

X

Y

8.4

(b) Estimated flow field

Figure 23: Sequence #4: (a) Kinect depth maps from which the “Dimitris1” sequence was
generated; (b) Estimated flow-field. Flow vectors’ direction is color encoded (left) using
the colormap of Fig. 16(c). Speed is encoded with a gray-scale colormap (right).

55

of a long sequence, captured by a single Kinect and contain a human in
various movements, while the “Dimitris Skiing” sequence was captured using
five Kinects and contain a human moving fast on a ski simulator. Further
details are given below. Since the GT of these sequences is not known,
only qualitative conclusions can be drawn. In order to assist qualitative
evaluation, apart from color encoding the directions of the motion vectors, we
further encode the length of the vectors (speeds) using a gray-scale colormap.
See for example Figure 23(b).

Sequence #4: “Dimitris1”: This sequence contains a human, who’s up-
per part rotates around his vertical body axis, clock-wise (CW). The motion
is similar to upper-body motion of the artificial “Armadillo1”. The motion
is slow and therefore we experimented with Nt=16 volumes as input to the
proposed algorithm. Kinect depth-maps, from which the 3D point clouds
were reconstructed, are depicted in Figure 23(a). The human rotates around
the vertical body axis, as can be observed.

In both “Dimitris1” and “Dimitris2” sequences, quadrature pairs of order
M = 2 are employed. Additionally, for both sequences, a voxel size equal
to 20mm is used. Notice that the point-cloud vertex positions corresponds
to real-world units (milimeters) and therefore a size of 20mm (2cm) is a
reasonable selection. For the specific voxel size, the volume resolution for
“Dimitris1” is 58× 54× 28 voxels.

The computational times for this experiment are: 33.6sec for the initial
grid search (a search-grid 7 × 5 × 7 is used) and 15.4sec for downhill simplex
optimization, resulting into totally 49sec. The obtained flow-field results are
given in Figure 23(b). Qualitatively, the results are sensible, in accordance
with the actual motion. For example, the opposite motion directions of the
left/right body parts is reflected by the symmetric colors in the color-encoded
diagram in Figure 23(b). Additionally, the more far a point is from the main
vertical axis, the larger its speed is, as observed by the gray-scale encoded
diagram in Figure 23(b).

Sequence #5: “Dimitris2”: Depth-maps, from which the “Dimitris2”
point-cloud sequence was reconstructed, are depicted Figure 24(a). The hu-
man holds his waist and lower-body almost static and rotates slowly his
upper-part around the X-axis, from a bent pose towards an erect position.
This results into a motion mainly upwards and towards back (far).

As with “Dimitris1”, here the input of the proposed algorithm consists of
Nt=16 volume frames. With the voxel-size of 20mm, the volume resolution

56

X: 60 Y: 293
Index: 750
RGB: 0.313, 1, 0.688

X: 63 Y: 238
Index: 773
RGB: 0.375, 1, 0.625

600

800

1000

1200

1400

1600

(a) 1st and 16th frame (Depths)

−400
−200

0
200 800

1000

1200

1400

1600

−600

−500

−400

−300

−200

−100

0

100

200

−400
−200

0
200 800

1000

1200

1400

1600

−600

−500

−400

−300

−200

−100

0

100

200

7.0

(b) Estimated flow field

Figure 24: Sequence #5: (a) Kinect depth maps from which the “Dimitris2” sequence was
generated; (b) Estimated flow-field. Flow vectors’ direction is color encoded (left) using
the colormap of Fig. 18(c). Speed is encoded with a gray-scale colormap (right).

57

is 40 × 48 × 62 voxels.
Using quadrature pairs of order M=2, the execution time for this experi-

ment is totally 57.8sec, and more specifically 36.8sec for the initial grid search
(a search-grid 5 × 9 × 5 is used) and 21sec for downhill optimization. The
flow-field results are depicted in Figure 24(b). The results are qualitatively
correct, reflecting the actual motion. The more far a point from human’s
waist is, the larger the speed is. This is true in the right plot of Figure 24(b).
Additionally, the dominant colors in the left plot of Figure 24(b) are magenta
and red. According to the colormap in Figure 18(c), these colors encode the
mainly upward motion of the human.

Sequence #6: “Dimitris Skiing3-PoissonLow”: Finally, we present
experimental results on a sequence of 360o (full 3D) point-cloud data, re-
constructed using depth maps from multiple Kinect sensors [43] by a water-
tight volumetric reconstruction method [38]. The data are freely available
at http://vcl.iti.gr/reconstruction/ and constitute a part of the official MPEG-
3DGC database [44].

The sequence contains a human performing skiing on a ski simulator, as
shown in Figure 25(a). The dominant motion is periodic and oscillatory,
backwards-right, forwards-left. The motion is quite fast. Notice from Fig-
ure 25(a) that a single half-period (backwards-right) is less than 6 frames.
Therefore, here we use as input to the algorithm Nt=4 frames. Additionally,
the used voxel size is 35mm, resulting into volumes of approximately 40 ×
56 × 48 voxels (this changes slightly, as the algorithm is fed with consecutive
frame quartets).

We experimented with simple directional filter of order L = 1. The output
of the proposed algorithms on 60 frames of the sequence (frames 240-299) is
given in the supplementary-material video. The mean execution time from
the 60 runs of the algorithm is 6.7sec/frame, 4sec for the initial grid search
(a search-grid 7 × 5 × 5 is used) and 2.7sec for downhill optimization.

In Figures 25(b) and (c), we provide the experimental results for two
phases of the skiing performance. More specifically, Figure 25(b) depicts the
estimated fields at the beginning of a backwards-right phase, while Figure
25(c) shows the fields at the end of a forwards-left phase. One can observe
in Figure 25(b) the domination of cold colors (cyan and blue), reflecting the
backwards-right motion. Even the presence of red at the leg of the skier is
qualitatively correct, since the leg moves in the opposite direction, due to
motion inertia. Additionally, the fact that the estimated speeds are initially

58

(a) Skiing Frames 257 and 261

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

(b) Skiing Part 1: Estimated flow-fields for t = 256, 257

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

(c) Skiing Part 2: Estimated flow-fields for t = 265, 266

Figure 25: Sequence #6 “Skiing”: (a) Two Frames of the sequence (apprx. one half-
period); (b),(c) Estimated flow-fields.

59

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

(a) Skiing Part 1: Estimated flow-fields for t = 256, 257

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

−500
0

500 500

1000

1500−1000

−800

−600

−400

−200

0

200

400

600

800

114.9

(b) Skiing Part 2: Estimated flow-fields for t = 265, 266

Figure 26: Sequence #6 “Skiing”: (a),(b) Estimated flow-fields of the LK method (7×7×7)
and σωs=0.2.

small and increase as the human accelerates, are in accordance with the
actual motion. On the other hand, in Figure 25(c) hot colors dominate (red
and magenta), reflecting the forwards-left motion. Additionally, as can be
seen at the right part of the figure, the speeds are initially large and decrease
as the human decelerates his motion, before stoping. The estimated fields,
qualitatively are in a accordance with the actual motion of the skier.

In Fig.26, the corresponding results of the LK method are given. The
method was applied with a LP-prefilter of σωs=0.2, as in the “Armandillo”
squences, and with an integration window of size 7×7×7. This window size
is in relation with the window used in the “Armandillo” sequences, since their
volume size was approximately 11

2
times larger along each dimension. Still,

qualitative comparison is difficult. One observation is that the LK method
outputs smaller velocities (lighter gray in the images) and it seems that it
cannot capture well the fast motion of the upper body part.

Apart from the supplementary video, detailed experimental results for
the specific sequence can be found in subsection A.2 of the supplementary-
material document.

60

7. Discussion - Conclusions

In this work, the theoretical details for the construction of narrow multi-
dimensional steerable filters and quadrature pairs were given. Although the
constructed filters and quadrature pairs can serve several multi-dimensional
signal processing tasks, we focused on the dense 3D flow estimation problem
directly in three dimensions. By studying the problem in the N -D spa-
tiotemporal frequency domain we showed that motion manifests itself as a
“motion hyper-plane” in the frequency domain. Guided by this fact, we
formulated the “Hyper-donut” mechanism for both simple directional filters
and quadrature pairs and provided a thorough theoretical analysis on how
it can be employed for 3D flow estimation. Finally, based on our theoreti-
cal developments, a simple yet efficient algorithm for 3D flow estimation in
volume or point-cloud sequences was described.

The proposed algorithm, based on the introduced steerable filters, present
low computational effort when low-order filters are used (L=1), despite the
high dimensionality of the data. This effort is comparable with that of spa-
tiotemporal differential approaches, such as the extension of Lucas-Kanade
(LK) into 3 dimensions. However, as the used filters’ order increase the com-
putational effort increases, producing potentially more accurate results. We
note that the given and tested algorithm is the simplest one that could be
formulated based on our theoretical developments. Compared to differen-
tial approaches, such as the LK, the algorithm is more accurate, according
to the presented experimental results, regardless of the used filters’ order.
Similar results are expected with other differential approaches, such as with
the Horn-Schunck (HS) method, which is less accurate than LK, according
to [13]. Additionally, given the high dimensionality of the data, a global
approach (i.e. estimation of the flow by minimizing a global function for the
whole volume), such as the HS method, is expected to present high compu-
tational and memory requirements.

One limitation of the proposed approach, as analyzed in subsection 5.4,
is its high memory requirements. Thus, given the current technology, it
cannot handle very large volume data, unless a sophisticated implementation
is investigated.

Apart from analyzing volume data sequences (as e.g. in [16, 17, 18, 19]),
possible applications of the presented approach include analysis of 3D point-
cloud/meshes, for instance for 3D scene analysis (e.g. human action recog-
nition tasks [45]) or in time-varying mesh compression [46], to align a source

61

point-cloud to a target one.
The directions of future work include a) the implementation and exper-

imentation with alternative, more sophisticated algorithmic ideas (e.g. see
subsection 5.2) and b) the parallel-computing implementation of the algo-
rithm on the GPU (Graphical Processing Unit), e.g. using NVidia’s CUDA
(Compute Unified Device Architecture). The described algorithm involve
mainly voxelwise operations that can be parallelized in several execution
threads. As demonstrated in our previous work [10], a GPU implementation
can introduce a significant speed-up of the algorithm. Finally, c) one of our
intentions is to test the proposed 3D flow estimation framework in human
motion/action analysis and recognition tasks, as e.g. in [45].

Acknowledgement

This work was supported by the F3SME research project (PE6 3210),
implemented within the framework of the Action Supporting Postdoctoral
Researchers of the Operational Program Education and Lifelong Learning,
and co-financed by the European Social Fund (ESF) and the Greek State.

Appendix A. Supplementary theoretical notes

In this Appendix, some additional notes are provided to support the
theoretical developments of the paper.

Appendix A.1. Hyper-spherical coordinates and integrals

Appendix A.1.1. Hyper-spherical coordinates

The hyper-spherical coordinates in N dimensions are defined by the ra-
dius r and N − 1 spherical angles {φn}n=0,...,N−2, with φ0 := θ ranging in
[0, 2π) radians and {φn}n>0 ranging in [0, π) radians. The hyper-spherical to
cartesian transformation is recursively defined, as follows [29, ch. 22]:

x1

x2
...
xn

 = Ψn(r ; θ, φ1, . . . , φn−2) =

(
Ψn−1

(
r sin(φn−2) ; θ, φ1, . . . , φn−3

)
r cos(φn−2)

)
,

(A.1)

where Ψ2(r ; θ) =

(
r cos θ
r sin θ

)
the well-known polar-to-cartesian transforma-

tion.

62

Appendix A.1.2. Hyper-spherical integrals

We consider a function defined on the unit hyper-spherec SN−1, denoted
as g(φ), where φ = (θ, φ1, . . . , φN−2) ∈ [0, 2π) × [0, π)N−2. The surface
integral is given [29, ch. 22] (with r = 1) by:∫

φ

g(φ) ∆N(θ, φ1, . . . , φN−2) dθ dφ1 dφ2 . . . dφN−2, (A.2)

where the Jacobian is ∆N(θ, φ1, . . . , φN−2) = sinφ1 sin2 φ2 . . . sin
N−2(φN−2).

For example, with g(φ) = 1 the surface of the hyper-sphere is

σ(SN−1) =

∫
φ

∆N(θ, φ1, . . . , φN−2) dθ dφ1 dφ2 . . . dφN−2

= 2π
N−2∏
n=1

γn, where γn =

∫ π

φ=0

sinn φ dφ. (A.3)

For the unit-circle it is σ(S1) = 2π, for the unit-sphere σ(S2) = 2 · 2π, etc.
For the needs of the paper (see subsection 3.2.1), we consider a function

that depends only on the last spherical angle φN−2, i.e. g(φN−2). Based on
the previous analysis, the surface integral on a portion of the unit hyper-
sphere φN−2 ∈ [Φ1,Φ2] is

E(Φ1,Φ2) = σ(SN−2) ·
∫ Φ2

Φ1

g(φN−2) sinN−2(φN−2) dφN−2. (A.4)

Appendix A.2. Calculation of trigonometric power integrals

For the needs of subsection 3.2.1, the calculation of the integral

R(m) =

∫
cosm φ sinN−2 φ dφ (A.5)

is needed, where m = k+ l. Considering the 4D case (N = 4), here we derive
an analytical solution of this integral. With N = 4, it holds:

R(m) =

∫
cosm φ sin2 φ dφ =

∫
cosm φ

(
1− cos2 φ

)
dφ

=

∫
cosm φ dφ−

∫
cosm+2 φ dφ = P (m)− P (m+ 2), (A.6)

cTo be specific, S1 is the unit circle, S2 the unit sphere, etc.

63

where P (n) =
∫

cosn φ dφ.
Using Euler’s formula ejφ = cosφ+ j sinφ, the binomial expansion theo-

rem and De Moivre’s formula (cosφ + j sinφ)n = cos(nφ) + j sin(nφ), after
a set of manipulations and making use of trigonometric identities, one can
conclude to the “cosine-power reduction” formula:

cosn φ = Dn +
1

2n−1

xn−1
2
y∑

k=0

(
n
k

)
cos
(
(n− 2k)φ

)
, (A.7)

where x◦y stands for the floor (integer part) operation and

Dn =


0 if n odd

1
2n

(
n

n/2

)
if n even.

(A.8)

Based on the above formula, one concludes to

P (n) =

∫
cosn φ dφ = Cn +

1

2n−1

xn−1
2
y∑

k=0

(
n
k

)
sin
(
(n− 2k)φ

)
n− 2k

, (A.9)

where Cn is zero for odd n and Cn = 1
2n

(
n
n/2

)
φ, otherwise.

Appendix A.3. Extended cross-product for N dimensions

The cross-product is defined in N dimensions as the operation that takes
N − 1 vectors and produces a new one which is perpendicular to them. Let

the standard basis of RN be {i1, i2, . . . , iN}. Let also ×
(
w1,w2, . . . ,wN−1

)
denote the extended cross-product of N − 1 vectors in N dimensions, where
wi = [wi,1, wi,2, . . . , wi,N]T. The extended cross-product is calculated from
[30]:

×
(
w1,w2, . . . ,wN−1

)
=

∣∣∣∣∣∣∣∣∣
i1 i2 . . . iN
w1,1 w1,2 . . . w1,N

...
...

...
...

wN−1,1 wN−1,2 . . . wN−1,N

∣∣∣∣∣∣∣∣∣ . (A.10)

64

θ (degrees)

φ
(d

eg
re

es
)

−150 −100 −50 0 50 100 150

−50

0

50

(a) max
k
|Bk(θ, φ)|, k = 1, . . . ,K(L)

(b)
∑

k

(
Bk(θ, φ)

)2
Figure B.27: Pictorial demonstration of eq. (B.1).

65

Appendix B. Demonstration of the “Hyper-donut” mechanism in
the 4D case

Appendix B.1. Demonstration of equation (21)

We would like to demonstrate the validity of equation (21) in the 4D case.
Without loss of generality, let v = 0T and therefore, according to (18), it is
n(v) = [0T, 1]T. From equation (19) with v = 0T, the vectors spanning the
“motion hyper-plane” are en(v) = in(v), n = 1, 2, . . . , N − 1, namely they
match the basis of the (N -1)-D subspace. Consequently, from (20), we have

v = 0T ⇒ sk(v) = qk, k = 1, 2, . . . , K.

Therefore, it remains to verify that

On motion hyper-plane (∀ω ⊥ n(v)) :

K(L)∑
k=1

(
ω̂T · qk

)2L

= const(L) (B.1)

holds on the “motion hyper-plane” that is perpendicular to n(v) = [0T, 1]T.
The hyper-plane that is perpendicular to n(v) = [0T, 1]T, is ω4 = 0.

Therefore, the unit-frequency vector on this hyper-plane is of the form ω̂ =
[ω̂T

3D, 0]T, where ω̂3D = [ω̂1, ω̂2, ω̂3]T is a 3D unit-frequency vector. In other
words, ω̂3D lies on the unit sphere. Consequently, exploiting spherical coor-
dinates, we use the term Bk(θ, φ) to notate the underlying directional filters
that are equally distributed on the unit sphere:

Bk(θ, φ)←− Bk(ω̂) := (ω̂T · qk)L, k = 1, . . . , K (B.2)

where (θ, φ) is the spherical-coordinates representation of the unit vector
ω̂3D.

In other words, notice here that by definition of the filters introduced in
this paper, a filter’s value (in the frequency domain) is independent to ||ω||.
It depends only on ω̂ = ω/||ω||, i.e. on the filter’s direction. Therefore, for
the studied case of v = 0T, one can depict the filters’ values as a function of
orientation (θ, φ).

Demonstrations in Fig. B.27 are given for L = 3 and consequently
K(L) = 32. Figure B.27(a) depicts the filters |Bk(θ, φ)|, k = 1, . . . , 32. To

be more specific, it depicts
K

max
k=1
|Bk(θ, φ)|. Given that the vectors qk are

equally distributed on the unit sphere, the uniform distribution of the filters’
directions is evident in Fig. B.27(a).

66

θ (degrees)

φ
(d

eg
re

es
)

−150 −100 −50 0 50 100 150

−50

0

50

(a) Left: max
k
|Qeven

k (θ, φ)|, Right:
∑

k

(
Qeven
k (θ, φ)

)2

θ (degrees)

φ
(d

eg
re

es
)

−150 −100 −50 0 50 100 150

−50

0

50

(b) Left: max
k
|Qodd

k (θ, φ)|, Right:
∑

k

(
Qodd
k (θ, φ)

)2

Figure B.28: Pictorial demonstration of eq. (27).

Based on the above, in order to demonstrate (B.1), it is adequate to show

that the energy
K∑
k=1

(
Bk(θ, φ)

)2

is constant, independent to (θ, φ). This fact

is depicted in Figure B.27(b).

Appendix B.2. Demonstration of equation (27) - Quadrature pairs

Using similar notation and arguments with the previous subsection, the
validity of equation (27), i.e. the “Hyper-donut” mechanism for quadrature
pairs in the 4D case, is demonstrated here for M = 4 and K(M) = 32.

67

The following notation is used

Qeven
k (θ, φ) := Qeven

k (ω̂) :=
M∑

L=0,L+=2

aM [L](ω̂T · qk)L,

Qodd
k (θ, φ) := Qodd

k (ω̂) :=
M∑

L=1,L+=2

aM [L](ω̂T · qk)L. (B.3)

Figure B.28(a) depicts |Qeven
k (θ, φ)|, k = 1, . . . , 32. It additionally shows the

energy
∑

k

(
Qeven
k (θ, φ)

)2

, which is almost constant, independent to (θ, φ)

and equal to conste(M) = 4.56. Similarly, Figure B.28(b) depicts the corre-
sponding results for the odd part of the quadrature filters. It can be verified
that |Qodd

k (θ, φ)| ' |Qeven
k (θ, φ)|, as well as consto(M) = conste(M) = 4.56.

References

[1] W. T. F. Freeman, E. H. Adelson, The design and use of steerable filters,
IEEE Trans. Pattern Anal. Mach. Intell. 13 (9) (1991) 891 – 906.

[2] W. T. Freeman, Steerable filters and local analysis of image structure,
Ph.D. thesis, School of Architecture and Planning, Massachusetts Insti-
tute of Technology (1992).

[3] D. S. Alexiadis, G. D. Sergiadis, Narrow directional steerable filters in
motion estimation, Computer Vision and Image Understanding 110(2)
(2008) 192–211.

[4] E. H. Adelson, J. R. Bergen, Spatiotemporal energy models for the per-
ception of motion, J. Opt. Soc. Am. A 2 (Feb.1985) 284–299.

[5] E. P. Simoncelli, Distributed representation and analysis of visual mo-
tion, Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology (1993).

[6] S. Vedula, S. Baker, P. Rander, R. Collins, T. Kanade, Three-
dimensional scene flow, IEEE Trans. Pattern Anal. Mach. Intell. 27
(Mar. 2005) 475–480.

[7] C.-L. Huang, Y.-T. Chen, Motion estimation method using a 3D steer-
able filter, Image and Vision Computing 13 (1) (1995) 21–32.

68

[8] K. Derpanis, J. M. Gryn, Three-dimensional n-th derivative of Gaussian
separable steerable filters, in: IEEE International Conference on Image
Processing (ICIP), 2005.

[9] M. T. Andersson, Controllable multi-dimensional filters and models in
low-level computer vision, Ph.D. thesis, Department of Electrical Engi-
neering, Linkonping University, Sweden (1992).

[10] D. Alexiadis, N. Mitianoudis, T. Stathaki, Multidimensional steerable
filters and 3D flow estimation, in: IEEE International Conference on
Image Processing (ICIP), 2014, pp. 2012 –2016.

[11] B. Horn, B. Schunck, Determining optical flow, Artif. Intel. 17 (1981)
185–204.

[12] B. Lucas, T. Kanade, An iterative image registration technique with
an application to stereo vision, in: Proc. Seventh International Joint
Conference on Artificial Intelligence, 1981, pp. 674–679.

[13] J. Barron, D. Fleet, S. Beauchemin, Performance of optical flow tech-
niques, Int. J. Comput. Vision 12(1) (1994) 43–77.

[14] M. J. Black, P. Anandan, The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields, Computer Vision and Im-
age Understanding 63 (1) (1996) 75–104.

[15] J. L. Barron, N. A. Thacker, Tutorial: Computing 2D and 3D Optical
Flow, Tina Memo No. 2004-012, 2005.

[16] J. L. Barron, Experience with 3D optical flow on gated MRI cardiac
datasets, in: 1st Canadian Conference on Computer and Robot Vision,
2004, pp. 370–377.

[17] M. D. Abramoff, M. A. Viergever, Computation and visualization of
three-dimensional soft tissue motion in the orbit, IEEE Transactions on
Medical Imaging 21 (4) (2002) 296–304.

[18] X. Chen, J. L. Barron, R. E. Mercer, P. Joe, 3D regularized velocity
from 3D doppler radial velocity, in: IEEE Int. Conf. Image Processing
(ICIP), Vol. 3, Thessalonki, Greece, 2001, pp. 664–667.

69

[19] J. L. Barron, R. E. Mercer, X. Chen, P. Joe, 3D velocity from 3D doppler
radial velocity, Int. J. of Imaging Systems and Technology 15 (3) (2005)
189–198.

[20] A. A. Kassim, P. Yan, W. S. Lee, K. Sengupta, Motion compensated
lossy-to-lossless compression of 4-D medical images using integer wavelet
transforms, IEEE Trans. on Information Technology in Biomedicine 9
(Mar. 2005) 132–138.

[21] L. Alvarez, C. A. Castano, M. Garcia, K. Krissian, L. Mazorra, A. Sal-
gado, J. Sanchez, 3D motion estimation using a combination of corre-
lation and variational methods for PIV, in: EUROCAST 2007, LNCS
4739, 2007, pp. 612–620.

[22] H. Spies, B. Jaehne, J. L. Barron, Range flow estimation, Computer
Vision and Image Understanding 85 (2002) 209–231.

[23] M. B. Holte, B. Chakraborty, T. B. Moeslund, J. Gonzalez, A local
3D motion descriptor for multi-view human action recognition from 4d
spatio-temporal interest points, IEEE Journal of Selected Topics in Sig-
nal Processing, Special Issue on emerging techniques in 3D 6 (Sep. 2012)
553 – 565.

[24] H. Li, R. W. Sumner, M. Pauly, Global correspondence optimization for
non-rigid registration of depth scans, Computer Graphics Forum, Proc.
of the Sixth Eurographics Symposium on Geometry Processing, 2008
27 (5).

[25] H. Li, B. Adams, L. J. Guibas, M. Pauly, Robust single-view geometry
and motion reconstruction, ACM Transactions on Graphics.

[26] M. Hazewinkel (Ed.), Multinomial coefficient, Encyclopedia of Mathe-
matics, Springer, 2001.

[27] E. B. Saff, A. B. Kuijlaars, Distributing many points on a sphere, The
Mathematical Intelligencer 19 (1) (1997) 5–11.

[28] B. Jaehne, Digital Image Processing, 6th revised and extended Edition,
Springer, 2005.

[29] B. K. Driver, Analysis Tools with Applications, Springer, 2003.

70

[30] M. Spivak, Calculus on Manifolds: A Modern Approach To Classical
Theorems Of Advanced Calculus, 1971.

[31] M. Frigo, S. G. Johnson, The design and implementation of FFTW3,
Proceedings of the IEEE 93 2 (2005) 216–231.

[32] S. G. Johnson, M. Frigo, A modified split-radix FFT with fewer arith-
metic operations, IEEE Trans. Signal Processing 55 (1) (2007) 111–119.

[33] W. Press, S. A. Teukolsky, W. Vetterling, B. Flannery, Numerical
Recipes: The Art of Scientific Computing, 3rd Edition, New York: Cam-
bridge University Press, 2007.

[34] O. Cappe, S. J. Godsill, E. Moulines, An overview of existing methods
and recent advances in sequential monte carlo, Proceedings of the IEEE
95 (5).

[35] J. Gall, J. Potthoff, C. Schnoerr, B. Rosenhahn, H.-P. Seidel, Interacting
and Annealing Particle Filters: Mathematics and a recipe for applica-
tions, Journal of Mathematical Imaging and Vision 28 (1) (May 2007)
1–18.

[36] K. He, J. Sun, X. Tang, Guided image filtering, IEEE Transactions on
Pattern Analysis and Machine Intelligence 35 (6) (2013) 1397–1409.

[37] D. Alexiadis, D. Zarpalas, P. Daras, Real-time, realistic full-body 3D re-
construction and texture mapping from multiple kinects, in: 11th IEEE
IVMSP Workshop, June 2013.

[38] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in:
Symp. on Geometry Processing, 2006, pp. 61–70.

[39] E. P. Simoncelli, Design of multi-dimensional derivative filters, in: IEEE
Int. Conf. Image Processing, Vol. 1, 1994, pp. 790–793.

[40] Organ motion from 4D MRI, Online.
URL www.vision.ethz.ch/4dmri

[41] M. von Siebenthal, G. Szekely, U. Gamper, P. Boesiger, A. Lomax,
P. Cattin, 4D MR imaging of respiratory organ motion and its variabil-
ity, Phys. Med. Biol. 52 (2007) 1547–1564.

71

[42] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Roessl, H.-P. Seidel,
Differential coordinates for interactive mesh editing, in: Shape Modeling
Applications, 2004.

[43] D. Alexiadis, D. Zarpalas, P. Daras, Real-time, full 3-D reconstruction
of moving foreground objects from multiple consumer depth cameras,
IEEE Transactions on Multimedia 15(2) (Feb. 2013) 339–358.

[44] MPEG-3DGC database, Online.
URL http://www.gti.ssr.upm.es./%7Empeg/3dgc/

[45] G. T. Papadopoulos, P. Daras, Human action recognition using 3d re-
construction data, IEEE Trans. on Circuits and Systems for Video Tech-
nology.

[46] A. Doumanoglou, D. Alexiadis, D. Zarpalas, P. Daras, Towards real-time
and efficient compression of human time-varying-meshes, IEEE Trans.
on Circuits and Systems for Video Technology (24).

72

