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ABSTRACT   

A two-dimensional, in the horizontal plane, high order Boussinesq-type model is presented to simulate wave propagation 
in the nearshore zone. The model is extended to the surf zone by applying a wave breaking module of the eddy viscosity 
type and to the swash zone by applying a modified narrow slot technique. Bottom friction and subgrid turbulent mixing are 
also incorporated. The numerical model relies on a generalized multi-step predictor-corrector scheme. Both the one- and 
two-dimensional model versions are verified with a number of experimental cases involving regular and irregular wave 
propagation in the nearshore. A comparison with a Smoothed Particle Hydrodynamics (SPH) model is also included. In 
general, the agreement is satisfactory and most of the nearshore phenomena are accurately reproduced. 

Keywords: Boussinesq model; Wave breaking; SPH model; Wave run-up.

1. INTRODUCTION  

During the last decades Boussinesq-type wave models have been a field of intense scientific research. In this context, 
the main interest of researchers has been the enhancement of the dispersive and nonlinear character of this type of 
models in order to be applicable to more and more deep water. Thus the nonlinear shallow water equations were initially 
extended by Peregrine (1967) to account for weakly dispersive waves. His “classical” Boussinesq equations provoked 
scientists to extend their range of applicability further offshore by enhancing their linear and nonlinear characteristics 
(Madsen et al., 1991; Nwogu, 1993; Wei et al., 1995; Madsen and Schäffer, 1998; Gobbi et al., 2000). More recently, 
some advanced post-Boussinesq models have eliminated any virtual depth limitation (Madsen et al., 2002; Karambas 
and Memos, 2009). 

Extending inshore has been another challenge for Boussinesq models for the sake of coastal engineering applications. 
In order to simulate surf and swash zone dynamics, a number of complex physical processes have to be accurately 
reproduced. In particular, three different techniques have been mainly proposed for simulating wave breaking. The first 
one relies on the eddy viscosity concept (Zelt, 1991; Kennedy et al., 2000), the second one on the surface roller 
approach (Schäffer et al., 1993) and the last one employs a vorticity transport model (Veeramony and Svendsen, 2000). 

On the other hand, extension to the swash zone requires a treatment of the moving shoreline (Pedersen and Gjevik, 
1983; Militello et al., 2004). 

In the present work, a 2DH higher-order Boussinesq-type model is presented to simulate wave propagation over the 
entire nearshore zone. Extension to the surf zone is attained by treating wave breaking through the eddy viscosity 
concept, while wave run-up is simulated by applying a modified slot technique. The model is validated against a number 
of experimental tests, both in one and two horizontal dimensions. The test cases involve regular and irregular wave 
propagation on plane beaches and over submerged shoals. A comparison with a modern Computational Fluid Dynamics 
(CFD) approach for free surface flows, implemented by Makris et al. (2015a; 2015b), is also presented. The latter 
approach is based on Smoothed Particle Hydrodynamics (SPH), a Lagrangian mesh-free (particle) method. The 
Boussinesq-type model’s response is, in general, reasonably good proving the model’s ability to adequately reproduce 
the above physical processes. 

2. BOUSSINESQ-TYPE MODEL FORMULATION 

The present model is based on one- and two-dimensional Boussinesq equations expressed in terms of depth-averaged 
velocity. Following Veeramony and Svendsen (2000), an enhanced version of higher order nonlinearity of Karambas and 
Koutitas’s (2002) model was derived. The two-dimensional version of the model relies on Eqs [1]-[3]: 
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where t is the time,       denote the horizontal dimensions,     
 

  
 
 

  
  is the horizontal gradient operator, ζ is the free 

surface elevation,            the depth-averaged horizontal velocity, d the still water depth, g the gravitational 

acceleration, B and B2 free parameters. The Boussinesq terms   
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respectively, where ε = H/d0 is the nonlinearity parameter and σ
2
=(d0/L)

2
 is the dispersion parameter with H, d0 and L a 

reference wave height, water depth and wavelength, respectively. Their lengthy expressions can be found in Klonaris et 
al. (2015). The terms     and     account for the wave breaking,     and     for the bottom friction stresses and       

and       for the subgrid turbulent mixing. Finally,     and     are damping terms applied to absorb the energy of the 

outgoing waves as described in Section 3. 

The parameters        and        result from the application of a slot technique to simulate wave run-up and run-
down. The present wave model simulates the wave motion in the swash zone following the procedure described by 
Kennedy et al. (2000) and Chen et al. (2000). This is basically a modification of the slot method originally proposed by 
Tao (1983, 1984). The main idea is that, instead of tracking the moving boundary, the entire computational domain is 
considered active, but wherever there is very little or no water covering the land, modified equations are being solved. 
These equations assume that, the beach, instead of being solid, contains narrow ‘slots’, so that it be possible for the 
water level to be below the beach elevation. Hence the shoreline is at any instant determined by the intersection of the 
water surface and the sea bed.   

This modified slot method ensures that, there is no net fluid loss at a specific location when water is above the top of the 
slot in contrary to the original method of Madsen et al. (1997a; 1997b). However, some small, but much reduced, mass 

loss still exists when water level is below the top of the slot. The parameters   and   are defined by:  
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where δ is the slot width relative to a unit width of the beach, λ is the shape parameter that controls the smooth transition 
of the cross-sectional area from a unit width to a narrow slot, ho is the water depth at the offshore end of the slot and     
denotes the elevation of the sea bed where β = 1 given by: 
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In all of the applications presented here the values λ = 80 and δ = 0.001÷0.01 were applied. 

The model was extended into the surf zone by incorporating wave breaking based on the eddy viscosity concept 
described by Kennedy et al. (2000). The breaking terms are expressed as: 
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where     is the eddy viscosity coefficient localized on the front face of the breaking wave as:   
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with the mixing length coefficient set equal to δb = 1.2 and the quantity     given by: 
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The parameter   
  determines the onset and cessation of breaking as: 
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where    5  g  is the transition time from breaking initiation to a fully developed bore and    is the time that breaking 

was initiated. A typical value of   
   

 is 0.15 g , while parameter   
   

 varies from 0. 5 g  for bar/trough beaches to 

0.65 g  for monotonic sloping beaches. 

The model offers two options for computing the bed shear stresses. The first one is using a quadratic resistance law for 
the instantaneous stresses: 
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where     is the bed friction coefficient that is typically a function of both the wave and the current fields. A detailed 
description for the estimation of the bed friction coefficient can be found in Rakha et al. (1997) and Memos et al. (2005). 
Besides this analytical computation, a value of    , constant in each run, lying in the range 0.001÷0.01 was also 

employed here for simplicity reasons leading to acceptable results. 

An alternative formulation relies on the more sophisticated probabilistic analysis by Kobayashi et al. (2007). Assuming 

equivalence between time and probabilistic averaging as well as a Gaussian distribution of the oscillatory horizontal 
velocity with zero mean, the bed stresses can be approximated by: 
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where σΤ is the standard deviation of the oscillatory horizontal velocity with zero mean given by:  
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with     ζ    ζ   and ζ ,  ζ the mean value, the standard deviation of the free surface elevation ζ, respectively. 

Normally,           are improper integrals of functions of the velocity field. However, the simplified expressions by 

Feddersen et al. (2000) were used here leading to acceptable deviations: 

 

     
  

  
 1.162   

  

  
 
 

 
   

 and      
  

  
 1.162   

  

  
 
 

 
   

      [15] 

 

with               the current velocity field described below. For the applications presented here both formulations led to 

quite similar results. Hence no clear evidence emerged proving the superiority of either approach. 

Due to the complex three-dimensional nature of the turbulence an approximation was applied. In particular, as this 
Boussinesq model is based on vertically integrated mass and momentum equations and the grid size is usually smaller 
than the typical depth, the concept of Large Eddy Simulation was applied on the horizontal plane to parameterize a good 
portion of the effects of unresolved small-scale motions. The effects of subgrid turbulent processes on the horizontal 
plane were thus taken into account by using the Smagorinsky-type subgrid model (Chen et al., 1999; Zhan et al., 2003) 

which yields the following extra terms: 
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where    is the eddy viscosity coefficient due to the subgrid turbulence estimated by:  
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in which cs is the mixing coefficient with a default value of 0.25 and    and    are the grid spacing in the x and y 

directions, respectively. 

The traditional treatment of nearshore dynamics requires splitting of the total flow field into a wave and a current 
problem. The decoupled approach includes at first the computation of the radiation stresses from a wave model and then 
the solution of the nonlinear shallow water equations for the mean flow driven by them. This practice is both time 
consuming and more importantly it omits the wave-current interaction. However, this decoupled procedure is not needed 
for a nonlinear Boussinesq-type model, as this one, when it be extended to the surf and swash zones (Basco, 1983). 
These models provide inherently the combined effects of wave-wave and wave-current interactions, without the need of 
explicit formulation for the radiation stresses.  

The total horizontal velocity,                 , with   the vertical coordinate, can be written as the sum of a mean velocity, 

              assumed uniform over depth, and an oscillatory component,     . The depth-averaged mean horizontal 

velocity is introduced in such a way that if multiplied by the mean water depth gives the mean mass flux (Mei, 1983; 

Dingemans, 1994). The horizontal mean velocity,      , so defined has actually two components, the wave-induced current 

field plus the effect of the mass flux due to the wave motion, i.e. it includes the Stokes drift.   

It should be noted that the one-dimensional version of the model reduces to Karambas and Koutitas’s (2002) model if 

term    
   
  or    

   
  is omitted in Eq. [2] (or Eq. [3]). Thus, the present model offers an enhancement of the nonlinear 

properties of their equations, especially concerning the nonlinear amplitude dispersion. For a comprehensive study on 
this issue see Memos et al. (2015) and Klonaris et al. (2015). The values B = 1/15 and B2 = 0.0653 give the minimum 
error for the linear dispersion and linear shoaling gradient (Madsen et al., 1991; Schäffer and Madsen, 1995) and were 

adopted herein.       

3. NUMERICAL MODEL 

The differential Eqs [1]-[3] were solved numerically using a finite difference scheme on a non-staggered grid. Terms 
involving first-order spatial derivatives were differenced to O(Δx

4
) while second and third-order spatial derivatives were 

differenced to O(Δx
2
). This was chosen in order to reduce the truncation errors to a small amount relative to each of the 

retained terms in the equations. 

Time integration is performed using a generalized multi-step predictor-corrector scheme proposed by Zlatev et al. 
(1984). The predictor formula is of the third order, followed by a fourth-order corrector arrangement. The corrector step 
was iterated if the relative error between two successive results exceeded 0.001. For weakly nonlinear waves the 
scheme required typically no iterations, unless problems arose from the boundaries. However, for strong nonlinear 
problems, more iterations were required. In order to increase the convergence rate, a relaxation technique was applied 
at the corrector stage. Numerical instabilities were removed in most of the cases by applying a fourth-order Shapiro 
(1970) numerical filter. 

The desired waves were generated inside the computational domain by introducing a source term in the continuity Eq. 
[1]. The analytical expression for this source function term is given in Klonaris et al. (2015). The basic idea behind this 
method is the distribution of the source function over a certain neighbourhood of the source in order to avoid the 
generation of spurious noise around the source point (Wei et al., 1999). 

For a reflective boundary with an outward normal vector    , three conditions were imposed : 

 

          0  ,    ζ      0  ,  
      

    
 0  ,               [19]  

 

where   is the fluid computational domain,    is the reflective boundary of the associated domain,    is a position in the 

domain and       is the velocity component tangent to the boundary.  

Absorbing boundary conditions yield extra damping terms,     and     in Eqs [2] and [3] given by: 
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for a sponge layer parallel to the y-axis. The constants   ,   ,     are determined for each specific run,  is the 

frequency of the wave to be damped and      is a relaxation function varying smoothly from 0 to 1 (Israeli and Orszag, 

1981; Wei and Kirby, 1995).   

4. MODEL VERIFICATION  

Both the 1DH and 2DH model versions were verified against a number of experimental tests involving both regular and 
irregular wave propagation. Some of the tests were very demanding since they addressed simultaneously a number of 
physical processes such as shoaling, depth refraction, diffraction, breaking, wave run-up and nonlinear energy transfer. 
A comparison against the results of an SPH simulation with refined spatial resolution is also presented.              
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4.1 1DH verification 

4.1.1 Regular breaking waves on a planar beach  

The first test refers to the experiment by Hansen and Svendsen (1979) involving shoaling and breaking regular waves in 
a wave flume. The waves were generated on a horizontal bottom at a depth of 0.36 m, followed by a planar beach of 
slope 1:34.26. The test case presented here is No. 051041 involving spilling breaking waves with a period of T = 2 s and 
incoming wave height Ho = 0.036 m. A comparison between the measured and the computed wave height and wave 
setup is shown in Figs 1 and 2, respectively. 

 

Figure 1. Computed and measured wave height for spilling breaker case No. 051041. 

 

Figure 2. Computed and measured wave setup for spilling breaker case No. 051041. 

The dimensionless wavenumber in the source region was kd = 0.64 which is lying in the range of applicability of the 
present model (kd ≤ 3). The comparison is very good since both the breaking height and the initiation of breaking are 

well-predicted. There is only a slight over-prediction of wave height and setup in the inner surf zone. This has been also 
observed in other Boussinesq-type models simulating wave breaking by using the eddy viscosity breaking module 
(Kennedy et al., 2000).  

4.1.2  Solitary wave breaking and run-up 

In order to further check the model’s response in the surf and swash zones the experiment by Synolakis (1987) was 
simulated. This corresponds to the propagation and breaking of a solitary wave on a laboratory beach of constant slope 
1:19.85. Waves were generated at a distance 14.68 m offshore from the toe of the slope. The beach consisted of a ramp 
made out of anodized aluminium panels with a hydrodynamically smooth surface. Thus in the numerical simulations bed 
friction was neglected. The still water depth in the constant depth region was d = 0.2 m and the wave height H = 0.056 m 
giving a ratio H/d=0.28. In Fig. 3 a comparison is shown between experimental data and snapshots of the non-

dimensional surface elevation ζ/d as computed from the model at different non-dimensional times  
 
     g  .  

The model’s response to this demanding test was quite good both in the surf and swash zones. The nonlinear 
steepening is well-reproduced until the inception of breaking, i.e. around  ΄=20. The almost vertical wave front is very 
accurately described, and so is the breaking wave form in the surf zone. In addition, the moving shoreline concept 
behaved well, except for a slightly thinner wave tongue during the downwash as expected (see discussion in Section 2). 
A slight over-estimation of the maximum run-up could be possibly attributed to the neglect of the bed friction. 
Nevertheless, the simulation of run-up and run-down stages are generally acceptable.  
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Figure 3. Measured and computed snapshots of the solitary wave run-up in Synolakis’s (1987) experiment. 

4.1.3 Irregular wave breaking over a submerged bar  

Another test for the verification of the one-dimensional model corresponds to irregular waves propagating and breaking 
over a submerged trapezoidal bar. The experimental layout was the one used by Beji and Battjes (1994) and is depicted 
in Fig. 4. The specific test simulated here corresponds to random waves of a Jonswap spectrum, generated on a 
horizontal bottom of depth 0.4 m. The peak period was Tp = 2 s and the dominant breaker over the bar was of the spilling 
type.  

 
Figure 4. Layout of Beji and Battjes’s (1994) experiment (from Beji and Battjes, 1994). 

Wave spectra were computed from both the measured and the model’s surface elevation time series. A comparison 
between the two is shown in Fig. 5 at four wave gauges. Although this is a quite demanding test, the model’s response is 
reasonably good. Spectral transformation due to shoaling is very accurately reproduced for the main part of the 
spectrum around the peak frequency. The energy dissipation due to breaking seems reasonably predicted as the 
spectrum shape is described correctly and a secondary peak is formed due to wave-wave interactions. However, both 
the primary and the secondary peaks are over-estimated at station 5. On the other hand, the spectral density is under-
predicted at the high-frequency domain. On the contrary, both the bound sub-harmonics and the released long waves 
due to the surf beat mechanism are computed quite accurately. 
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Figure 5. Measured and computed wave spectra at various wave gauges for Beji and Battjes’s (1994) experiment. 

4.1.4 Comparison with an SPH model against experimental data 

A gridless approach, namely the SPH method (Monaghan, 2005), was also introduced for intercomparisons against the 
Boussinesq-type model. SPH is a mesh-free particle method, implementing spatial interpolations over all the movable 
nodes of the computational domain, by using integral smoothing functions for the Navier-Stokes equations written in 
Lagrange-type notation. It has been used extensively in the recent past for the simulation of free-surface flows with 
strong deformations, such as wave breaking of the plunging type in coastal areas (e.g. Dalrymple and Rogers, 2006). 
The method’s fundamental principle is the integral interpolation of any given (scalar or vectorial) function       and/or its 

derivative in the computational domain that reads in discretized notation, as (Violeau, 2012): 

 

                                                                            [22] 

 

where h=cf∙[(Δx)
2
+(Δz)

2
]
1/2

 is the smoothing length in 2-D, Δx and Δz are the horizontal and vertical initial spatial 

discretization steps respectively, cf is a smoothing calibration parameter,    and     are the arbitrary particle location and 

the distance between particles respectively,         is the distance-varied weighting function called “kernel”, i 
corresponds to an arbitrary particle (center of SPH interpolations) and j to particles within the compact support region of 

the kernel of particle i, mj and ρj are the mass and density of particle j and     is the kernel in particle notation. 

Specifically a state-of-the-art vertically 2-D SPH model is implemented, in the framework of the academic ‘open source’ 
numerical code SPHysics v.2 (Gómez-Gesteira et al., 2010a; 2010b). The solid walls of the computational domain were 
treated as repulsive, which defined a more or less slip boundary condition at the inviscid limit (Gómez-Gesteira et al., 
2010a). The symplectic time-integration technique with variable time step (Gómez-Gesteira et al., 2010b) was preferred 
for quicker simulation times. Similarly to the pseudo-LES approach in the Boussinesq-type model, a sub-particle scale 
(SPS) approach (Appendix of Gómez-Gesteira et al., 2010b) for approximate turbulence closure was incorporated, yet 
on a vertical plane, accounting actually for internal friction effects in terms of the stress tensor (in Einstein notation): 

 

                                
          

 
            min       

        [23] 

 

where νt is the turbulent eddy viscosity, CI = 0.0066,    is the inter-particle spacing,  ij is the Kronecker delta, kSPS is the 

SPS turbulent kinetic energy, and        is the local strain rate calculated from the resolved variables, i.e. the norm of the 

second-order invariant of the Favre-filtered strain rate tensor. Hence, the eddy viscosity assumption (Boussinesq 
approximation) was employed in the framework of a standard, non-dynamic Smagorinsky model with a constant 
coefficient Cs=0.145 both in space and time, fitting the case of weak plunging breakers (Makris et al., 2015a). 
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Both the SPH and the Boussinesq-type models were applied to simulate Stansby and Feng’s (2005) experiment. The 
specific test involves regular wave breaking of weak plunging type on a constant slope 1:20. Shorenormal waves with 
height Ho = 0.105 m and period T = 2.42 s were generated at a constant depth region of d = 0.34 m. A very fine spatial 

resolution was applied for the vertically 2-D SPH simulation, with an initial discretization step of Δx=0.001 m, requiring a 
variable time step of about Δt = 10

-6
÷10

-5
 s. This extremely small value was chosen following the flow scale analysis by 

Makris et al. (2015a; 2015b), in order to fulfill the requirement of Δx being obviously and marginally smaller than λ0 and 
ΛΕΙ=λ0/6 (Pope, 2000). The latter are, in respective order, the characterisitic values of integral turbulence length scales 
and the demarcation point between anisotropic large eddies and isotropic small eddies. The defining λ0 values were 
experimentally measured for intensely spilling breakers by Cox et al. (1994), and corresponded to the mixing length in 
the surf zone. This led to simulations engaging nearly 1.8 million particles, and it took nearly six months for the 
completion of a single run! Yet it was considered necessary in order to render the 2-D Smagorinsky-type SPS model 
active, thus incorporating a pseudo-LES implementation for SPH, i.e. by explicitly simulating the largest structures of the 
flow. The refinement of particle resolution to such a degree has been proven to lead to a drastic improvement of the 
model’s results (Makris et al., 2015b). On the other hand, in the Boussinesq-type model a far coarser spatial step of 0.04 
m and a time step of 0.005 s were chosen for numerical stability reasons. A comparison between the measured and 
computed by both models wave height and wave setup is shown in Fig. 6.    

  
Figure 6. Measured and computed from Boussinesq-type and SPH models wave height (left) and wave setup (right) for Stansby and 

Feng’s (2005) experiment. 

Wave breaking initiation was observed at about x = 4.95 m. The wave characteristics are very accurately computed by 
the SPH model, especially in the surf zone. Only a slight over-estimation of the wave set-down is observed offshore. 
These results were expected due to the nature of this approach and the very fine grid used. They are definitely superior 
to the ones from the Boussinesq-type model which over-estimates the wave height in the inner surf zone. This result has 
been also observed in other models simulating wave breaking through the eddy viscosity concept. However, it should be 
noted that the specific experimental test hardly lies in the range of applicability of the specific Boussinesq-type model 
due to the high Ursell number, Ur = 48.19, much higher than 32 which is approximately a typical limit for the original 
Boussinesq theory. In addition, plunging breaking is difficult to be simulated by a Boussinesq model because total flow 
disruption and intense foaming take place. Thus, despite the discrepancies observed in Fig. 6 the overall response of the 
Boussinesq-type model to this demanding test was acceptable. Finally, it is worth mentioning that the computational time 
of the SPH model is more than two orders of magnitude greater than the corresponding of the Boussinesq-type model.         

4.2 2DH verification 

4.2.1 Regular wave propagation over an elliptic shoal 

The first test for checking the validity of the two-dimensional Boussinesq-type model is the benchmark test by Berkhoff et 
al. (1982). Their experiment referred to monochromatic wave propagation over an elliptic shoal and combined a number 
of physical processes, such as shoaling, refraction, diffraction and nonlinear dispersion. Nonbreaking regular waves of 
period T = 1 s and wave height Ho = 0.0464 m were generated in a constant depth region of d = 0.45 m and propagated 

over an uneven bottom. The experimental layout and the bathymetry are shown in Fig. 7 (at left). The bathymetry 
displays an elliptic shoal resting on a 1:50 plane sloping seabed. The entire slope is turned at an angle of -20° with 
respect to the wave paddles. 
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Figure 7. Left: Experimental layout and bathymetry of Berkhoff et al.’s (1982) experiment (contours in meters). Right: Snapshot of the 

free surface elevation, viewed in plan. 

The computed wave field reached a stable state after t = 30 s. A snapshot of the free surface elevation at t = 40 s is also 
depicted in Fig. 7 (at right) in a plan view. Strong energy focus is observed behind the shoal, pronouncing the large 
effect of wave diffraction. Fig. 8 shows a comparison between the measured and computed wave heights along four 
sections of Fig. 7 (left). 

  

  
Figure 8. Computed and measured relative wave heights along four sections in Berkhoff et al.’s (1982) experiment. 

The computed results for the wave height agree quite well with the measured ones along both directions, parallel and 
normal to wave incidence. The quite large values of the dimensionless wavenumber (kd ≈ 1.9 close to the wavemaker) 

prove the model’s ability to reproduce fairly good the nonlinear dispersion effect. 

4.2.2 Oblique long-crested irregular waves 

The last validation test refers to the laboratory experiments performed in the U.K. Coastal Research Facility at HR 
Wallingford (Memos et al., 2005), aimed at studying various aspects of random wave propagation in shallow water. The 

basin of the facility, with overall dimensions 27 m × 54 m (Fig. 9), contained a narrow strip of horizontal bed and a rigid 
beach sloping uniformly at 5%. The water depth over the horizontal bed was 0.80 m. The bed was constructed rough, 
everywhere but for the part of the horizontal bottom between the left lateral wall and the centre line in Fig. 9, where the 
bed was considered smooth. 
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Figure 9. Plan of the experimental setup at HR Wallingford. 

The test case presented herein corresponds to oblique long-crested irregular waves of a Jonswap spectrum with 
enhancement factor γ = 3.3, peak period Tp = 1.2 s and significant wave height at the wave paddles Hs = 0.09 m. The 
angle of incidence was 15

º
 to the shore. A comparison between the wave spectra estimated from the measured and the 

computed surface elevation time series is depicted in Fig. 10. 

  

   
Figure 10. Measured and computed wave spectra at various wave gauges of the experiment at HR Wallingford. 

The agreement seems satisfactory over a wide depth range since the corresponding to the peak frequency 
dimensionless wavenumber at the source area is kd ≈ 2.3 whereas at station 11 kd ≈ 1.1. The spectrum shape all over 
the wave tank and the effect of energy transfer to higher frequencies are simulated reasonably well by the present 
Boussinesq-type model. 

5. CONCLUSIONS 

A one- and two-dimensional higher-order Boussinesq-type model was presented embedding enhanced nonlinear 
characteristics compared to its predecessor counterpart of weaker nonlinearity. In order to form a robust tool applicable 
to the entire nearshore zone the major coastal physical processes have to be modelled realistically. Wave breaking was 
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incorporated by applying the eddy viscosity concept. However, in some cases this approach over-estimates the wave 
height in the inner surf zone. Wave run-up was simulated using a modified slot technique which is slightly better than the 
conventional one in terms of mass conservation. Bed friction was modelled using either the conventional quadratic law 
or a more sophisticated probabilistic method. However, both approaches led to similar results. The unresolved small-
scale motions were approximated by employing a quasi-Large Eddy Simulation technique. The numerical model relies 
on a fourth-order generalized multi-step predictor-corrector scheme. Waves were generated by applying the source 
function technique, while the outgoing energy was absorbed by suitable damping layers.  

The one-dimensional version of the model was applied to simulate regular wave breaking on a plane beach with very 
satisfactory results. Breaking and run-up of a solitary wave were also simulated fairly well, proving the efficiency of the 
moving shoreline treatment. In addition, a demanding test involving irregular wave breaking over a submerged bar 
showed good agreement.  

The Boussinesq-type model was also compared with an SPH model for a regular plunging breaking test. The latter 
proved superior by means of accuracy, especially in the surf zone. As expected, the intense free surface deformation 
caused by the plunging breaker is very well described by the SPH model due to its Lagrangian nature. However, the 
computational time for a simulation by such a model is typically very much higher than for a Boussinesq model. Hence, a 
computational efficiency analysis is needed to decide which model would be more suitable for each specific case.  

The two-dimensional validation included two test cases. The first one referred to regular wave propagation over an 
elliptic shoal. Complex phenomena as the nonlinear diffraction and energy focusing behind the shoal were adequately 
reproduced. The second test involved oblique incidence of long-crested irregular waves on a sloping beach. The 
agreement was found reasonable since the spectra transformation and the energy transfer were acceptably estimated.  

In conclusion, the Boussinesq-type model presented herein proved an efficient tool for simulating most of the nearshore 
phenomena such as shoaling, refraction, diffraction, wave breaking and run-up.        
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